
Mining Maximal Fuzzy Colocation Patterns 

Meijiao WANG, Yu CHEN, Libo HE and Yunyun WU1 

Yunnan Police College, Kunming, China 

Abstract. Spatial colocation pattern mining is to discover the subsets of spatial 
objects frequently appearing together in adjacent geographic locations. In the 
existing research, several algorithms were proposed for excavating maximal 
prevalent colocation patterns. Furthermore, fuzzy neighborhood relationship(FNR) 
was employed to evaluate the proximity between spatial instances for improving 
the accuracy of the mining results. However, the approach for discovering the 
maximal prevalent colocation patterns based on FNR is not studied yet. This paper 
defines the maximal fuzzy prevalent colocation pattern (MFPCP). We propose a 
maximal fuzzy prevalent colocation pattern mining algorithm to generate the 
MFPCPs instead of all of the prevalent colocation patterns. We conduct 
experiments on the real datasets to evaluate the performance of the proposed 
algorithm. 
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1. Introduction 

Spatial colocation pattern mining which is an important branch of spatial data mining 

has attracted more and more attention in recent years. A spatial colocation pattern is a 

subset of spatial objects of which the prevalence index is no less than the prevalence 

threshold. The instances of its objects are frequently located together in adjacent space. 

Spatial colocation pattern mining is mainly applied in the following domains: Biology, 

Earth science, transportation, public health, etc. [1].   
According to the downward closure property of prevalent colocation patterns, a 

prevalent colocation pattern is maximal when any of its subsets is prevalent while all of 

its supersets are not prevalent[2-4]. This means that all of the prevalent colocation 

patterns can be deduced from the maximal prevalent colocation patterns. Since the 

number of maximal prevalent colocations is much smaller than that of all prevalent 

colocations, maximal co-locations is more convenient for people to use.  

Tobler’s First Law demonstrates that the contributions of instances to their 

pattern’s effect decrease along with the distance diminishes. To take into account the 

proximity level between instances in mining maximal prevalent colocations, Yao etc. 

proposed the SGCT-K algorithm[5]. SGCT-K employed a kernel density estimation 

(KDE) model for evaluating the proximity level between instances, and defined a 

KDE-based prevalence index (PI-K) as the prevalence measure of a colocation. Our 

previous research [6] defined the fuzzy neighborhood relationship(FNR) to evaluate the 

proximity level between instances, and proposed the CPFNR algorithm for mining 
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colocation patterns based on FNR for improving the accuracy of mining results. The 

PI-K in SGCT-K is so small that it is hard to set a prevalence index threshold to filter 

the prevalent colocations. 

It can be seen from the above that it's very meaningful to mine maximal fuzzy 

prevalent colocation based on FNR. The major contributions are as follows: 

(1) Based on the FNR and the downward closure of prevalent colocation 

patterns, we define the Maximal Fuzzy Prevalent colocation Pattern (MFPCP). 

(2) Put forward a maximal Fuzzy Prevalent colocation Mining(MFPCM) 

algorithm for obtaining the MFPCPs. 

(3) The efficiency of the MFPCM algorithm are evaluated by experiments. 
The related works is stated in Section 2. Section 3 describes the relative definitions.  

Section 4 presents the algorithm. Section 5 performs the experiments to evaluate the 

presented algorithm. Finally, a summary is given in Section 6. 

2. Related Work 

Shekhar et al. first defined the concept of spatial colocation pattern[7]. They employed 

the participation index to measure the prevalent level of a colocation. Huang et al. 

present the join-based strategy for mining colocation patterns[1]. It was an Apriori-like 

algorithm which generated the prevalent colocations from short to long size. Because 

the table instance connection process consumed a lot of time, the papers [8,9] proposed 

the join-less algorithm and the partial join algorithm respectively. For efficiently 

pruning the candidates and reducing the memory usage for storing table instances, the 

CPI-tree algorithm[10] and the iCPI-tree algorithm[11] constructed the prefix-tree 

structure for reserving the table instances. Wang et al. studied the SPI-closed 

colocation discovery approach[12,13]. For massive spatial data, the work in [14,15] 

studied parallel colocation mining algorithms on map-reduce platform. The fuzzy set 

theory was adopted in the colocation discovery[6,16-19]. Especially, FNR was used to 

improve the accuracy of the prevalence index calculations in [6]. To reduce the number 

of prevalent colocations, mining maximal colocation patterns was disposed in [2-4]. 

But as far as we know, no work had been conducted on mining the maximal fuzzy 

prevalent colocation patterns based on the FNR, which will be addressed in this paper. 

3. Related Definitions 

Table 1 lists the abbreviations of the important concepts in this paper.  

Table 1. the abbreviations of the important concepts. 

Notations Meaning Notations Meaning 

O spatial objects set k size of a colocation pattern

S spatial instance set FNR fuzzy neighborhood relationship 

   i

u
s  an instance of ou  FNRa α-cut set of FNR  

c a co-location pattern FPR fuzzy participation ratio

μ membership function of FNR FPI fuzzy participation index

α membership threshold of FNR MFPCP maximal fuzzy prevalent colocation pattern 

d the Euclidean distance  min_fprev minimum fuzzy participation index threshold 
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Spatial objects (spatial features or attributes) represent different kinds of things in 

space. Let { }
N

oooO ,...,,=
21

be the spatial object set of N objects. Spatial instances are the 

appearance of spatial objects in different geographical locations. The spatial instance 

data sets is denoted as S, { }
n
sssS ,...,,=

21  
is the set of n instances. For the objects ou 

(1≤u≤N), an instance of ou is denoted as )≤≤1(
u

i

u
Sis .  

3.1 Colocation Pattern mining Based on FNR 

Definition 1(fuzzy neighborhood relationship(FNR)) . Let D(D→[0,∞)) be the 

Euclidean distance set between instances in S. The FNR of S is a fuzzy subset on D, 

which is formalized by the following mapping: 

FNR: [0,1],D d d     

where, μ is the FNR’s membership function, d(d∈D) denotes the Euclidean distance 

between instances in S, ( )d represents the membership value of d and it is exactly the 

probability of d pertinent to FNR.  

Let dist(si, sj ) be the Euclidean distance between two instances si and sj. Then 

FNR can be expressed as: 

 

FNR ={<( , ), ( ( , ))>| , }
i j i j i j
s s dist s s s s S 

 

(1) 

The α-cut set of FNR is denoted as FNRa which is defined as :   

 { ( , ), ( ( , ))>| ( ( , )) , ( , )}
u v u v u v u v

FNR s s dist s s dist s s s s S


       (2) 

where α∈[0,1] is a pre-defined membership threshold, and su and sv are regarded as a 

FNRa neighbor pair that will be connected by a solid line in the diagram of the 

datasets. 

Example 1. Let α = 0.2. An example data sets is illustrated in Figure 1. It is 

convenient to obtain that ( (B.1,C.2)=0.75dist  
and <(B.1,C.2),0.75)> FNR


 .  

Let c be a colocation pattern, c∈O. Let I be a subset of S , SI  . I is called a 

fuzzy row instance of c, if I meets all of the following requirements:  

(1) The size of I is equal to that of c. 

(2) The object type of each instance in I is the same as that of c in the 

corresponding order. 

(3) The instances in I form a clique under the FNRa.  
A fuzzy row instance of c is denoted as FR(c). All row instances of c compose the 

table instances of c denoted as FT(c).  

Example 2. In Figure 1, let c = {A,B,C,D}, FT(c) = {{A.3,B.1,C2,D.3}, {A.2, B.2, 

C.1, D.1}, {A.4, B.4,C.3,D.2}}. 
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   (b) membership function

< (B.1,C.2), 0.75 > 

< (B.1,C.3), 0.35 > 

< (B.2,C.1), 0.5 > 

< (B.2,C.4), 0.46 > 

< (B.3,C.1), 0.69 > 

< (B.4,C.3), 1 > 

(a) distribution of data            (c) FNRa (B,C) 

Figure 1. An example data sets.

 

Definition 2(the contribution of an instance). Given a fuzzy row instance FR(c), the 

instance si∈FR(c), the contribution of si is defined as the minimum membership value 

of all of the membership values between si and its fuzzy neighbors in FR(c), i.e.,  

 1
( ( ), ) ( ( ( , ))),m

i j i j
contri FR c s min dist s s i j



 

 
(3)

 

Definition 2(fuzzy participation ratio(FPR), fuzzy participation index(FPI)). The 

FPR of 
u
o ( co

u
∈ ) is defined as the ratio of the sum of the contributions of non-

repeating instances of 
u
o  in FT(c) to the total number of 

u
o ’s instances, i.e.,  

 
  ( ), ( ) ( )

Max( ( ( ), ))

=
| |

,
i

u

i

u

s FR c FR c FT c

u

u

F

Contri R

PR

s

c

c

o
o

F

 



 

(4) 

where, Max( ( ( ), ))
i

u
Contri FR c s refers to that the maximal contribution is added to the 

sum when
 
si

u is repeated in FT(c).  

 The minimal FPR of the FPRs of all objects in c is regarded as the FPI of c : 

 
{ }),(Rmin=)(

1= u

k

u
ocFPcFPI  (5) 

Given a pre-defined FPI threshold min_fprev, if FPI(c) ≥ min_fprev then c is fuzzy 

prevalent .    

Example 3. In Figure 1, FPR({B,C},B) = (0.75+0.5+0.69+1)/4 = 0.735, 

FPR({B,C},C) = (0.75+1+0.69+0.46)/4 = 0.725, then FPI({B,C}) = min(0.735,0.725) 

= 0.725. If  min_fprev = 0.3, then {B,C} is prevalent. 

3.2 Properties and Related Definitions 

Lemma 1 (Monotonicity of FPR and FPI). Let c′ and c be two colocation patterns, c′ 

⊆ c. For each object o∈ c′, FPR(c′, o) ≥ FPR(c, o). In addition, FPI(c′) ≥ FPI(c). 

E.2 
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Definition 3 (Maximal Fuzzy Prevalent Colocation Pattern(MFPCP)). For a 

colocation pattern c, if any subset of c is fuzzy prevalent while any superset of c is not 

fuzzy prevalent, c is called a Maximal Fuzzy Prevalent Colocation Pattern(MFPCP). 

    Example 4. In Figure 1, FPI({A,B,C,D}) = 0.434, {A, B, C, D} is a MFPCP. 

Because its subsets {A, B, C}, {A, B, D},{A, C, D} and {B, C, D} are all fuzzy 

prevalent, while its superset {A, B, C, D, E} is not fuzzy prevalent. 

4. Algorithm 

In this section, the algorithm for Maximal Fuzzy Colocation Pattern Mining(MFCPM) 

is designed by improving the SGCT algorithm given in [4]. It is described as follows:    

   

Algorithm 1. the MFCPM algorithm 

Input:   

O, S, μ, α, min_fprev 

 

Variables: 
k: size of a colocation pattern 
CP: candidate maximal colocation set 
CPk: size-k candidate set 
TIk: table instance of a size-k candidate  
MPk: size-k maximal fuzzy prevalent set 
MP: maximal fuzzy prevalent colocation set 
ITree: fuzzy instance tree of a candidate 
 
Output:  

MP with fpi ≥ min_fprev  
 

 Steps: 
(1) FNR = get_FNR (S, μ); 

(2) CP2 

= gen_candidate_colocations(O); 

(3) TI2 = get_table_instances(CP2, FNRα); 

(4) P2 = select_prevalent_colocations(CP2, TI2, min_fprev); 

(5) CP = gen_maximal_candidates(P2 

) 

(6) k  

= longest_size (CP ) 

(7) while(not empty CP) do 

(8)    CPk  = gen_size-k_candidate_colocations(CP,k); 

(9)    for each c in CPk 

(10)     ITree = constuct_instance_tree(c) 

(11)     TIk = get_table_instances(c, ITree) 

(12)     fpi = calculate_fpi(c, min_fprev, TIk) 

(13)       if fpi >= min_fprev 

(14)         MPk =MPk∪c 

(15)       else  

(16)         CP = CP∪subset(c) 

(17)   end for 

(18)   MP = MP ∪ Pk        

(19)   k = k - 1; 

(20) end do

     

The main steps of the MFCPM algorithm are as follows:  

Step 1 (FNRa-table construction): Based on the membership function μ and 

membership threshold α of FNR, the grid division technique is adopted to calculate the 

FNRa of the spatial data set. We build the FNRα-table which is a two-dimensional hash 

table for storing the FNRa of the spatial data set. Two object types are used for indexing 

each cell in the FNRα-table. They form a size-2 candidate maximal colocation pattern. 

Example 4. Figure 2 illustrates the FNRa-table of the data sets demonstrated in 

Figure 1. The cell FNRa(B,C) in the FNRa-table represents the FNRa of the candidate 

size-2 colocation {B,C}. 

 

  A B C D

A  FNRa(A,B) FNRa(A,C) FNRa(A,D) 

B   FNRa(B,C) FNRa(B,D) 

C   FNRa(C,D) 

D   

 

FNRa(B,C)  

 

< (B.1,C.2), 0.75 > 

< (B.1,C.3), 0.35 > 

< (B.2,C.1), 0.5 > 

< (B.2,C.4), 0.46 > 

< (B.3,C.1), 0.69 > 

< (B.4,C.3), 1 > 

                 Figure 2. the FNRa-table of the example data set.
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Step 2 (size-2 fuzzy prevalent colocations generation): Generate size-2 candidate 

colocations from spatial objects and then obtain the table instance for each candidate 

from FNRa-table. Filter the prevalent colocations whose FPI is not less than min_fprev;  

Step 3 (candidate MFPCPs generation): The two objects in a size-2 prevalent 

colocations are connected by a solid line. Once this done, an undirected graph is   

constructed, of which each vertex is a spatial object and the two vertices connected by a 

straight line is just a size-2 prevalent colocation. We obtain all maximal cliques from 

the undirected graph based on the Bron-Kerbosch algrithm, and regard them as the 

candidate maximal colocations;  

Step 4 (filtering prevalent maximal fuzzy colocations): Filter the final maximal 

fuzzy colocations from long to short by the size of candidates. The filtering process for 

each candidate is as follows: first, construct its fuzzy instance tree based on the FNRa-

table and the clique verification approach; second, obtain its fuzzy table instance from 

the fuzzy instance tree and calculate its fuzzy participation index; third, if its fuzzy 

participation index is no less than min_fprev, it will be reserved as a maximal fuzzy 

colocation; otherwise, it will be supplanted by its subsets.  

5. Experiments 

This section conducts experiments of the MFCPM algorithm on real datasets, which 

concludes 31 species plants with 336 instances in the Three Parallel Rivers of Yunnan 

Protected Area. The 31 features were denoted by A to Z and a to e in our experiments. 

Besides MFCPM, the SGCT-K algorithm is the only one that mine maximal prevalent 

colocations with the proximity level between instances consideration [5]. Both of the 

two algorithms adopt the SGCT frame given in [4]. The difference of them is that the 

prevalence measure of the former is FPI while of the latter is the KDE-based 

prevalence index (PI-K). As the PI-K in SGCT-K is much less than the FPI in MFCPM, 

we cannot set a definite prevalence index threshold for the two algorithms in the 

experiments.   The algorithms are coded and compiled by Python in the experiments 

and execute the programs on the Windows 7 operating system with 8 GB memory, 3.4 

GHz main frequency and a Intel core i7-6700 processor. 

We normalize the real datasets into a 2000 × 2000 space, and define the 

membership function of the MFCPM algorithm as following: 

2

2

1

( )
( ) 1

( )

0

d a

d a
d a d b

b a

d b







    


   

(6)

where, a and b are the arguments to the membership function, d represents the 

Euclidean distance between instances. The parameter b in MFCPM and the 

distance threshold in SGCT-K have similar meanings.   

   We set a = 20, b = 230, α = 0, min_fprev = 0.3 in MFCPM, and distance threshold 

is 230, prevalence threshold is 0.025 in SGCT-K. Table 2 lists partial mining results of 

the two algorithms. It can be seen that is the PI_K is much less than FPI, which is very 

different from the classic co-location mining with a prevalence index interval [0,1]. 

Figure 3 show the running time of MFCPM when min_fprev take 0.2 and 0.3 

respectively. We can observe that the program executes very fast when min_fprev is 
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0.3, because it can only produce no more than 150 maximal prevalent co-locations with 

the size no less than 3 and no more than 5, while it can generate no more than 560 

maximal prevalent co-locations with the size no less than 3 and no more than 7 when 

min_fprev is 0.2. The larger the number of results, the higher the size, the more 

time the algorithm consumes. 
 

 

Table 2. partial results of the two algorithms. 

Size 
Maximal 
prevalent 

co-locations 

FPI 
(MFCPM) 

PI_K 
(SGCT-K)

Size-5 
AJLZc 0.3467 0.0327 

AHJLZ 0.304 0.0267 

Size-4 
AKLc 0.3759 0.0401 

ALbc 0.3073 0.028

Size-3 
ABX 0.3607 0.0257 

BSX 0.3795 0.0624 
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Figure 3.  the efficiency of MFCPM 

6. Conclusions 

We proposed the MFCPM algorithm for mining maximal fuzzy prevalent colocation 

patterns. MFCPM produces the maximal prevalent colocations from long to short size 

candidates based on the fuzzy neighborhood relationship(FNR). The candidate 

maximal colocations are obtained from the undirected graph consisting of the size-2 

maximal prevalent colocations, and the table instances of a candidate colocation is 

generated by its instance tree. Experiments show that the MFCPM algorithm performs 

good performance.  
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