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Abstract. We propose a novel nonparametric approach for estimating the produc-
tion frontier based on a data-fitting technique. The proposed approach allows for
stochastic noise and provides decision-makers with a general and flexible estima-
tion procedure to support and facilitate the decision-making process in the stochas-
tic context. A major feature of the proposed approach is that the estimation pro-
cedure is completely nonparametric and easy to implement. Similar to other exist-
ing nonparametric approaches, our proposed approach results in an estimate of the
piece-wise linear production frontier. In contrast to the existing ones, the evaluation
of each data point is performed within a unit-specific data range. We also propose a
naive method for determining the data ranges of each data point. The performance
of our proposed approach is examined using various simulated scenarios. For each
scenario, we compare our proposed approach with the existing methods, including
the data envelopment analysis (DEA), the stochastic nonparametric envelopment of
data (StoNED), and the stochastic frontier analysis (SFA). The simulation results
suggest that our approach performs better than the existing methods in the single
input and single output case. Our proposed approach can also be easily extended
to a multi-input setting. Moreover, the proposed naive method on data ranges also
shows its flexibility and usefulness in the simulated examples.

Keywords. production frontier, nonparametric estimation, data-fitting technique,
downside deviation, stochastic noise

1. Introduction

Estimating production frontiers is essential for performance benchmarking and pro-
ductivity analysis. The current approaches include the data envelopment analysis
(DEA,e.g., [1,2]), the stochastic nonparametric envelopment of data (StoNED,e.g., [3,
4]), and the stochastic frontier analysis (SFA,e.g., [5,6]). DEA is a nonparametric method
for measuring the relative efficiencies of peer decision-making units (DMUs). Because
DEA ignores stochastic noise, the frontier estimated by DEA is entirely deterministic,
suggesting that any deviations from the frontier (e.g., gauging the distance to the bound-
ary of the production technology) can be considered a measure of pure inefficiency.
By contrast, SFA is known as a general stochastic parametric approach. It accounts for
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stochastic noise by treating all deviations from the frontier as aggregations of both in-
efficiency and noise. However, compared with the flexibility of nonparametric measure-
ments, SFA relies heavily on an accurately pre-specified functional form for production
technology. To combine both advantages of DEA (i.e., nonparametric estimation) and
SFA (i.e., stochastic noise), StoNED has been introduced in the literature on efficiency
analysis [7]. Because StoNED formulates a quadratic programming problem, solving
large-scale problems requires more efficient computational algrithms [8].

This study proposes a nonparametric approach for estimating the production fron-
tier. The proposed approach is based on a data-fitting technique and accounts for stochas-
tic noise. The commonly used regression technique is easy to implement using ordinary
least squares regression (OLS). A significant feature of the regression technique lies in
that the estimated coefficients characterized a hyperplane passing the barycenter of all
data points. Contrary to the regression lines (or hyperplanes), the production frontier
identifies a set of maximum producible outputs at a given level of inputs. To obtain an up-
per bound of the observed level of outputs, we modify the OLS problem as a minimiza-
tion problem of downside deviations [9] by restricting all residuals to be nonnegative.
However, in practice, an infinite number of upper bounds could exist as it is challenging
to observe the same DMU multiple times. Such an issue can be interpreted as a missing
data problem. Methodologically, we propose a naive method that considers the similarity
of the observed data point, and the upper bound of the observed point is estimated by
using its neighborhood points. After the upper bound of each data point is estimated,
the following procedure becomes a problem of choosing correctly estimated coefficients
that can be used to construct a non-decreasing concave function. We show that such a
problem can be solved by Afriat’s inequalities [10]. Finally, we can derive an estimator
of the piece-wise linear production frontier by using the lower bound of the maximum
producible outputs corresponding to the selected estimated coefficients.

Recently, methods such as DEA, SFA, and StoNED have become important ana-
lytical tools in expert and intelligent systems that facilitate decision-making by policy-
makers or regulators (for recent relevant studies, see, e.g., [11,12,13,14]). This study
provides an alternative approach for supporting the decision-making process from the
methodological perspective. Moreover, our proposed approach overcomes several draw-
backs of the existing approaches and provides decision-makers with a general and flex-
ible modeling approach in the stochastic context. We will discuss this in detail in Sec-
tions 2 and 4.

The remainder of the paper is structured as follows. Section 2 reviews previous re-
lated research on the production frontier estimation. Section 3 provides methodologi-
cal details. In Section 4, we use six simulated scenarios to examine the flexibility and
usefulness of the proposed estimation procedure. Section 5 concludes the paper.

2. Literature review

This section briefly reviews major existing approaches for estimating production fron-
tiers in the field of productivity analysis and efficiency measurement. Understanding the
level of efficiency and productivity is essential for fostering continuous improvement of
the production and operation management in a production activity (e.g., firm, school,
government, nonprofit organization, etc.). During the past several years, the term “best
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practice” has been widely used in both the theoretical and practical benchmarking litera-
ture. A popular idea for identifying best practices is to model the frontier of the produc-
tion technology, which is a mathematical description of the relationship between inputs
and outputs. The theoretical literature on production theory imposes several basic axioms
of production technology, such as free disposability, convexity, and returns to scale (see,
e.g., [10,15,16,17]). The frontier estimated in this study is non-decreasing and concave,
which is consistent with the theoretical axioms of production theory.

The production frontier estimation can be implemented with DEA, SFA, or StoNED.
Since the first DEA model was proposed in 1978 [1], there has been a rapid growth in
the number of theoretical and practical DEA studies in various areas such as agriculture,
banking, supply chain, transportation, and public policy, among others (see, e.g., [18,19,
20,21]). A major reason for this popularity lies in that the DEA method can measure
various frontiers according to the different assumptions of returns to scale. Examples
include the constant and variable returns-to-scale DEA frontiers (see, e.g., [1,2]). Note
that the frontier estimated in this study is implicitly based on the variable returns-to-scale
assumption. However, by dropping off the intercept term (i.e., α in Section 3), one can
easily impose the constant returns-to-scale assumption. Compared with the DEA frontier,
our approach allows the existence of stochastic noise while the DEA frontier envelopes
all of the observed data as tightly as possible, which is purely deterministic.

On the other hand, both SFA and StoNED account for stochastic noise, and these
methods allow the data outside the estimated frontier are outside by pure chance. Ac-
cording to the survey [22], the SFA frontier has also been widely used in many areas of
applications, and the top five SFA research areas are banking, insurance, container ports,
hospital/health care, and agriculture (see also [23] for a systematical review of empirical
applications in SFA). A major drawback of SFA is that the SFA frontier is constructed
by a pre-specified functional form such as the Cobb-Douglas, translog and generalized
McFadden. In contrast to SFA, the StoNED frontier can be estimated nonparametrically
(more precisely, semi-nonparametrically, as additional parametric assumptions will be
required if one uses the method of moments or quasi-likelihood estimation to derive the
frontier estimates). However, compared with the number of applications in DEA or SFA,
there are few empirical studies using the StoNED, and most focus on banking, energy,
and agriculture (see, e.g., [24,25,26]).

A significant feature of StoNED is that the convex nonparametric least-squares [3]
is used to estimate the frontier, which is a problem with quadratic constraints (QCP).
Several packages and solvers can be used for estimating the StoNED frontier, such as
the “benchmarking” package in R, the “pyStoNED” package in python, QCP solvers
in GAMS, and the “CVX” toolbox in Matlab. From a computing perspective, however,
the standard estimation procedure of the StoNED frontier suffers from the computa-
tional burden even with relatively small sample sizes [27]. Moreover, previous studies
on improving the computational performance of StoNED require the assumption of the
additive composite error structure [8]. If the composite error structure is multiplicative
(e.g., the simulated example using the univariate Cobb-Douglas model in Section 4 ), the
StoNED estimation becomes a nonlinear programming problem, and the computational
merits of the algorithm in [8] no longer hold.

Another existing stochastic nonparametric approach is called chance-constrained
data envelopment analysis (CCDEA, see, e.g., [28,29,30]). The CCDEA approach shares
with SFA and StoNED that some of the data variations may be noise. However, the esti-
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mation problem requires strong assumptions on the noise terms, and the computational
burden is bigger [31]. In this study, we only compare the performance of our proposed
approach with DEA, SFA, and StoNED. Once the frontier is estimated, the existing met-
rics for the efficiency or productivity in the benchmarking literature, such as distance
functions (e.g., [32,33] ) or Malmquist-type indices (e.g., [34,35,36]), can be applied for
further analysis.

3. Method

We propose a novel nonparametric approach for estimating the production frontier with
consideration of inefficiencies and random noise. To introduce the basic idea, we begin
with the description of the theoretical model for a single input and single output case.

Considering a sample of n DMUs, each of them produces a single output yi ∈ R+

with a single input xi ∈ R+ for i = 1, . . . ,n. The production function is denoted by f :
R+→R+. We assume that f is a continuous, non-decreasing, and concave function. Let
ui ∈ R+ and vi ∈ R be the nonnegative inefficiency term and random noise, respectively.
Formally,

yi = f (xi)−ui + vi

= f (xi)+ εi, i = 1, . . . ,n,

where εi = vi−ui is a composite error term. We also assume that ui and vi are independent
of each other as well as of xi for all i = 1, . . . ,n.

For any observed point (xi,yi), the tangent line of f (xi) represents the upper bound
of xi. Consider the following minimization problem:

min
n

∑
i=1

(α +βxi− yi)
2 (1)

s.t. α +βxi− yi ≥ 0, i = 1, . . . ,n (2)

β ≥ 0. (3)

Let ei := α +βxi− yi for all i = 1, . . . ,n and let (êi, α̂, β̂ ) be the optimal solution to the
problem (1)–(3). We call êi the estimated downside deviation of the point (xi,yi), and
yi + êi(= α̂ + β̂xi) is then referred to as the estimated upper bound of (xi,yi). It can be
proved that the estimated upper bound is independent of the choice of (êi, α̂, β̂ ) (For
details of the proof, see Theorem 1 in [9]). The difference between the problem (1)–
(3) and the ordinary least squares regression is illustrated below: In Figure 1, we plot a
sample of 100 points that are produced with a common production technology y = x0.5

where the composite error term follows from u∼ Exp[μ = 1/6] with μ representing the
expected inefficiency and v ∼ N(0,1/6). The red line passing through the barycenter of
all points is the regression line estimated by the ordinary least squares. By contrast, the
blue dashed line results from the problem (1)–(3) and envelopes all points.

Our purpose is to estimate the unknown function f in a nonparametric approach. We
consider the problem of estimating the tangent line of f (x) at any given (xi,yi) such as
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Figure 1. Illustration of the downside-deviation least squares

min ∑
i∈Gi

(α +βxi− yi)
2 (4)

s.t. α +βxi− yi ≥ 0, i ∈ Gi (5)

β ≥ 0, (6)

where Gi is an index set for the range of the observed point (xi,yi) and
⋃n

i=1 Gi =
{1, . . . ,n}. The set Gi can be determined based on a priori information about the pro-
duction function. In this paper, we propose a naive method for determining Gi for the
purpose of clarification. For some pre-assigned number 1≤ k ≤ n, define

Gmin(i) := max(i− k,1), i ∈ {1, . . . ,n} (7)

Gmax(i) := min(i+ k,n), i ∈ {1, . . . ,n}. (8)

The set Gi is then represented by [Gmin(i),Gmax(i)]. If k = n, the problem (4)–(6) coin-
cides with the problem (1)–(3).

The problem (4)–(6) implicitly estimates the upper bound for any observed point
(xi,yi) at a given range Gi. Let (α̃, β̃ ) be the optimal solution of (xi,yi). Solving the
problem (4)–(6) for n observed points leads to n estimated coefficients (i.e., (α̃i, β̃i), i =
1, . . . ,n). To further impose the concavity assumption, we apply the following Afriat’s
theorem [10]:

Theorem 3.1 (Afriat’s inequalities). For n observations and m inputs xxx = (x1, . . . ,xm)
�,

the following statements hold:
(1) There exists a continuous concave function f : Rm → R that satisfies yi = f (xxxi) in a
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finite number of points i = 1, . . . ,n.
(2) There exists finite coefficients αi,βββ i = (β1i, . . . ,βmi)

� such that yi = αi + βββ�i xxxi for
i = 1, . . . ,n, that satisfy the following system of inequalities:

αi +βββ�i xxxi ≤ αh +βββ�h xxxi, for i,h = 1, . . . ,n and i �= h.

In the single input and single output case (m = 1), the concavity assumption is

αi +βixi ≤ αh +βhxi, for i,h = 1, . . . ,n and i �= h. (9)

Let I(i, i) := {(α̃i, β̃i) | i = 1, . . . ,n} be the set of optimal solutions of the problem (4)–(6)
for all observed points. Define

¯̄I(i, i) :=

{
I(i, i) α̃i + β̃ixi ≤ α̃h + β̃hxi

I(h,h) α̃i + β̃ixi > α̃h + β̃hxi
(10)

for i,h = 1, . . . ,n and i �= h. The set ¯̄I(i, i) contains the estimated coefficients that can be
used to constructed a concave function f .

Using (α̃i, β̃i) ∈ ¯̄I(i, i), the estimated outputs are computed by ỹi = α̃i + β̃ixi, ∀i. We
then construct the production frontier with the lower bound of the estimated outputs:

f̃ (x) := min{α +βx | α +βxi ≥ ỹi, ∀i}. (11)

Figure 2 illustrates how the production frontier can be determined using the pro-
posed estimation procedure. In Figure 2, we randomly generated 100 data points using
the function y = x0.5 (i.e., the solid black line). By using a pre-assigned number k = 4,
we solve the problem (4)–(6) for each data point and the size of range Gi belongs to the
set {5,6,7,8,9} (See, Eqs. (7)–(8)). By further imposing the concavity assumption, the
upper bounds for determining the frontier are finally reduced to five lines (i.e., the dashed
lines). Consequently, the frontier is estimated as the lower bound of those five dashed
lines (i.e., the red lines). It can be seen that our proposed approach estimates a piece-wise
linear production frontier.

Let J be the number of points satisfying yi ≤ f̃ (xi), ∀i. Then ρ := J/n represents the
ratio of the observed points enveloped by the estimated frontier in the whole observed
points. If k = n, we have ρ = 100%. Suppose the interest is in estimating a frontier that
envelops 80% observed points. In that case, one can start by selecting k = 1 and repeat
the estimation procedure by changing the value of k until ρ ≥ 80% is achieved.

4. Simulations

In this section, we compare the performance of the proposed approach with the existing
methods: DEA, StoNED, and SFA. We consider six scenarios similar to the previous
studies [4,37]. To clarify the significant difference between our proposed approach and
existing ones, we report the results of the index ρ and the standard mean squared error
(MSE) of each method. The notations used in this section are defined below:
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Figure 2. Illustration of the estimated piece-wise linear production frontier

ρ f̂ =
number of the points under the estimated frontier f̂

total number of the points
×100%,

where f̂ denotes the true function f or the frontier function estimated by our proposed
method, StoNED, SFA, or DEA. The MSE statistic is

MSE f̂ =
1
n

n

∑
i=1

( f̂ (xi)− f (xi))
2.

For the purpose of clarification, we consider the following univariate Cobb-Douglas
model:

yi = x0.5
i exp(−ui)exp(vi), (12)

where xi ∼ Uni[0,1], u ∼ Exp[μ = 1/6] with μ representing the expected value of ui
and v ∼ N(0,σ2

v ) where σ2
v = p× μ and p represents the noise-to-signal ratio. If p =

0, the stochastic noise will be assumed away, which is not the interest of our study.
Among the various parametric production functional forms, the Cobb-Douglas model
characterizes a concave production function and is commonly used in the SFA literature.
Following the previous studies [4,37], we use the univariate Cobb-Douglas frontier as
the true frontier and consider six different scenarios for comparing the performance of
our proposed approach with DEA, SFA, and StoNED.

Table 1 reports the results of the index ρ f̂ . Because of the existence of stochastic
noise, the generated random sample may appear above the true frontier. ρtrue shows the
percentage of data under the true frontier. For example, scenario (a) randomly generated
100 points, and 76% of those are under the true frontier. Using this information, we
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Table 1. Comparisons of the estimated production frontiers: Results of ρ f̂

Scenario Description ρtrue ρproposed ρStoNED ρSFA ρDEA

(a) n = 100, p = 1 76
67 (k = 5)

55 81 100
78 (k = 4)

(b) n = 100, p = 2 62
54 (k = 2)

52 87 100
69 (k = 4)

(c) n = 200, p = 1 77
64 (k = 7)

50 85 100
80 (k = 9)

(d) n = 200, p = 2 69
64 (k = 3)

54 76 100
70 (k = 5)

(e) n = 300, p = 1 77
60 (k = 10)

49 87 100
80 (k = 11)

(f) n = 300, p = 2 67
52 (k = 4)

53 72 100
73 (k = 10)

Table 2. Comparisons of the estimated production frontiers: Results of MSE f̂

Scenario Description MSEproposed MSEStoNED MSESFA MSEDEA

(a) n = 100, p = 1
0.0006 (k = 5)

0.0050 0.0009 0.0624
0.0004 (k = 4)

(b) n = 100, p = 2
0.0032 (k = 2)

0.0049 0.0297 0.1481
0.0010 (k = 4)

(c) n = 200, p = 1
0.0074 (k = 7)

0.0077 0.0017 0.0764
0.0013 (k = 9)

(d) n = 200, p = 2
0.0039 (k = 3)

0.0070 0.0038 0.4505
0.0009 (k = 5)

(e) n = 300, p = 1
0.0042 (k = 10)

0.0105 0.0026 0.0617
0.0025 (k = 11)

(f) n = 300, p = 2
0.0058 (k = 4)

0.0090 0.0016 0.2507
0.0022 (k = 10)

repeat the estimation procedure of our proposed method until ρproposed gets closer to
ρtrue. Moreover, we report two types of ρproposed for each scenario: one is less than ρtrue
and the other one is greater than ρtrue. As shown in Table 1, the frontier estimated by
StoNED tends to be located on the lower side of the true frontier as ρStoNED < ρtrue for
all scenarios. By contrast, because ρSFA > ρtrue, the frontier estimated by SFA tend to
be located on the upper side of the true frontier. The frontier estimated by DEA always
envelops all data points because DEA ignores the stochastic noise. On the other hand,
the frontier estimated by our proposed method can be very close to the true frontier if we
choose the proper k. These observations can also be confirmed in Figure 3.

Table 2 further reports the results of MSE f̂ . We obtain that MSEproposeds of scenario
(a)–(e) have smaller values than MSESFA, implying that our proposed method shows
better performance than SFA in most scenarios. It is worth noting that we use the correct
function to fit the SFA frontier for each scenario. Such an observation suggests that even
the naive selection of k is useful in estimating the production frontier. Figure 3 further
shows that our proposed method performs better than all other methods.
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Figure 3. Estimated frontiers
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Figure 3. Estimated frontiers (continued)

5. Conclusions and future research

We propose a nonparametric approach for estimating a piece-wise linear production
function based on a data-fitting technique. Previous studies usually use the parametric ap-
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proach (e.g., SFA), the nonparametric approach (e.g., DEA), or the semi-nonparametric
approach (e.g., StoNED). Our simulation results show that the proposed estimation pro-
cedure performs better than these existing ones. Compared with SFA, our proposed
method does not rely on a pre-specific function and determines the production frontier in
a completely nonparametric way. Compared with DEA, our proposed method accounts
for the impact of stochastic noise. If the policy-makers or regulators have knowledge or
information on the level of stochastic noise, the number k can be appropriately deter-
mined. Alternatively, researchers can obtain different estimates of production frontiers
that envelop different data points by varying the number of k. Compared with StoNED,
our proposed method is easy to implement and can be easily applied to large-scale prob-
lems. It is worth noting that StoNED requires additional parametric assumptions (e.g.,
method of moments, quasi-likelihood estimation) or the nonparametric kernel density
estimator to determine the final estimate of the frontier. Another difference between
StoNED and our proposed method is that the latter does not require further parametric
assumptions.

The present paper focuses on a single input and single output case to clarify the
estimation procedure. Our approach can be easily extended to a multi-input and single-
output setting by replacing the single variable x with a vector xxx of length m. The appli-
cability of a multi-input and multi-output setting needs to be investigated. On the other
hand, methods for the decision of k should be further investigated. We propose a naive
method to decide the number k in this paper, and our simulation results prove the use-
fulness of the proposed naive method. Extensions to empirical data are necessary for ex-
amining the adaptability of the proposed approach in future research. Furthermore, the
relationship among our proposed method, DEA, and StoNED also needs to be investi-
gated. Because both DEA and StoNED estimate a piece-wise linear frontier, our pro-
posed method may produce the same frontier as DEA or StoNED with some designed
DMU-specific range Gis. Finally, we hope this study can make inroads into empirical
practice and believe the proposed idea can be helpful to policy-makers and regulators.
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