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Abstract. Dense and complex air traffic scenarios require higher levels of automa-
tion than those exhibited by tactical conflict detection and resolution (CD&R) tools
that air traffic controllers (ATCO) use today. However, the air traffic control (ATC)
domain, being safety critical, requires AI systems to which operators are comfort-
able to relinquishing control, guaranteeing operational integrity and automation
adoption. Two major factors towards this goal are quality of solutions, and trans-
parency in decision making. This paper proposes using a graph convolutional re-
inforcement learning method operating in a multiagent setting where each agent
(flight) performs a CD&R task, jointly with other agents. We show that this method
can provide high-quality solutions with respect to stakeholders interests (air traffic
controllers and airspace users), addressing operational transparency issues.
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1. Introduction

Aiming to contribute to the automation of operations in real-life, complex, safety-critical
settings, AI systems need to meet domain-specific objectives: Systems must be effec-
tive to make accurate predictions and prescribe actions that resolve problematic situ-
ations w.r.t the interests of stakeholders; e.g., without increasing cost of operations or
compromising safety. In addition, they need to meet objectives regarding human perfor-
mance and engagement: Human operators should be comfortable relinquishing control
to a system [8], and should be able to take control safely at any time. Transparency of
decision making is crucial here, especially when system’s responses do not comply with
operators’ usual practices or intuition. Operators need to associate system responses to
the real-life situations and inspect the consequences of alternatives suggested. This is
important towards improving trust, safety and accountability.

Air Traffic Management (ATM) is the integrated management of air traffic and
airspace — safely, economically and efficiently, through the provision of infrastructure
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facilities and seamless services, in collaboration with all parties and involving airborne
and ground-based functions (ICAO Doc. 4444). Air Traffic Control (ATC) in this do-
main, according to ICAO Annex 11, is “a service provided for the purpose of: a) pre-
venting collisions: 1) between aircraft, and 2) on the maneuvering area between aircraft
and obstructions; and b) expediting and maintaining an orderly flow of air traffic”. These
tasks are related to airspace capacities declared by the appropriate authority. The traffic
volume must not exceed capacities, which should be utilized to the maximum extent.
Indeed, the airspace capacity is a crucial factor for the efficiency and safety of opera-
tions, defined by the ability of humans to control airspace volume (i.e. an airspace sector,
called Area of controllers’ responsibility (AoR)). Increase of the airspace capacity, thus
density and complexity of traffic, without compromising safety and efficiency of flights,
introduce challenging issues in the aviation industry, where AI can provide solutions.

Our aim is to advance the automation for conflict detection and resolution (CD&R)
among flights, contributing to operational integrity and automation adoption. To achieve
this challenging goal, we propose building a solution based on a graph convolutional
reinforcement learning (RL) method capable of operating in real-world multiagent set-
tings where agents (flights) cooperate, but without explicit communication. We show that
the proposed method can provide high-quality solutions, addressing ATCO transparency
requirements. The contributions that this work makes are as follows:

- It proposes an enhanced graph convolutional reinforcement learning method oper-
ating in a multiagent setting, where each agent (flight) performs a CD&R task, jointly
with other agents;

- It evaluates the proposed method in real-world scenarios, providing evidence for
the quality of solutions w.r.t. the interests of ATCO and airspace users (AU, i.e. airlines);

- It addresses issues of transparency in decision making, according to operational
requirements and constraints.

The paper is structured as follows: Section 2 provides preliminary knowledge for the
CD&R task and describes proposals towards automating it, using RL methods. Section 3
specifies the CD&R task as a multiagent learning problem, while section 4 describes in
detail the CD&R method we propose. Section 5 presents how transparency requirements
are met, while Section 6 provides evidence on the quality of solutions provided, w.r.t. the
interests of ATCOs and AUs.

2. Preliminaries and related work

To maintain the risk of collision between aircraft in acceptable levels, the ATM system
requires that the aircraft does not breach certain separation minima both at the horizon-
tal and vertical axes. The minimum prescribed horizontal separation when using surveil-
lance systems is 5 nautical miles (5NM) (ICAO Doc 4444). This may be further reduced
or increased under specific conditions. The specified minimum vertical separation for In-
strument Flight Rules (IFR) flights is 1000 ft (300 m) below FL290 and 2000 ft (600 m)
from FL290 and above. When Reduced Vertical Separation Minima (RVSM) apply, this
changes to 1000 ft (300 m) below FL410 and 2000 ft (600 m) from FL410 and above.2 A
loss of separation is defined as the violation of separation minima in controlled airspaces,

2https://www.skybrary.aero/index.php/Separation Standards
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whereas a conflict is defined as a predicted violation of the separation minima. Alerts are
conflicts estimated to occur within a restricted time horizon (e.g. within 10 seconds).

Nowadays conflicts are detected and resolved by a Planner Controller (PC) and an
Executive Controller (EC), which is an ATCO, in a per sector (volumes segregating the
airspace) basis, in two respective phases: the planning and the tactical phase, respectively.
While conflict detection and resolution in the planning phase may suggest changes in the
flight plan (i.e. the flight intended trajectory, as filed even before take-off and updated
until landing), in the tactical phase it mainly implies changes of the actual flight trajec-
tory, given the trajectory flown up to the current time point, the last flight plan, and/or
prediction(s) on the evolution of the trajectory from that time point and on. Prediction
is crucial and implies uncertainties in trajectory evolution: In this work, focusing on the
tactical phase of operations, trajectories are projected into a limited future time horizon
in a nominal way, as existing operational tools do.

ECs (ATCO) detect and resolve conflicts in their AoRs, also coordinating with the
ATCO of the downstream sectors: Coordination mostly concerns the AoR exit point con-
ditions, ensuring safe entry of flights in the downstream sector. While safety is the top
priority, ATCO, close to the interests of AUs, should also aim to increase the efficiency of
the flights, without adding extra nautical miles, flight time, or increasing fuel consump-
tion and emissions due to abrupt changes in speed, flight level, or other reasons.

RL has been already proposed, among other methods, for automating the CD&R
task. However, various efforts present specific limitations and/or make crucial assump-
tions about agents, thus suggesting solutions with a delta from real-world settings. Trans-
parency has not been addressed adequately, yet.

Authors in [9] model the single-agent problem (the ownship flight). The agent in
the presence of uncertainty, chooses the lateral maneuver that resolves a conflict with
another flight, assuming adherence of all other flights to their planned route. The model
was trained by using Deep Q-Network (DQN) and Deep Deterministic Policy Gradi-
ent (DDPG). Although the results show the potential of the proposal, this work, assum-
ing a single-agent decision process, does not consider agents’ cooperation, which is im-
portant to address safety and flight efficiency. The Multi-agent Reinforcement Learning
(MARL) approach in [1] follows a parameter-sharing approach: The model consists of
a distributed actor-critic neural network, trained with the Proximal Policy Optimisation
(PPO) algorithm. Agents however consider only speed adjustments (i.e. a limited reper-
toire of actions) to maintain safe separation while moving along the planned 2D route.
Assuming the route identifier as input, implies that the policy model is not transferable
to agents executing different routes in various airspace. Authors in [7] propose a model-
based approach assuming perfect knowledge of environment dynamics. Again, agents
perform resolutions in the lateral plane. For conflicts with several agents, the problem is
split into pair-wise conflict resolution sub-problems. Very close to our approach, offering
also some inspiration to our problem formulation and use of edges among conflicting
agents, authors in [2] present a recommendation tool based on MARL to support ATCO
in complex traffic scenarios. The model consists of a distributed Message Passing Actor
Critic Model exploiting Message Passing Neural Networks [5]. Parameters are shared
among all agents and are learned using the PPO algorithm. This method allows flights
(agents) to exchange information through a communication protocol before proposing a
joint action that promotes flight efficiency and penalises dangerous situations. The policy
function is trained in a controlled simulation environment, while limited transparency is
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provided. In [4], authors propose a method that combines Kernel Based Stochastic Fac-
torization and a deep MARL method using the PPO algorithm. These methods are com-
bined by another deep policy model that at each timestep decides which of the two mod-
els to choose. The proposed method considers flights in the en-route phase only, consid-
ering only the possibility of speed change. However, the method reports good scalability,
tested in a simulated setting. Focusing on explainability, authors in [3] propose an ap-
proach based on a lattice-space exploration process. Actions are represented by 3D tuples
changing the course, the speed, and the altitude of flights. The action space is modeled
as a lattice that can be pruned and explored in a breadth-first bottom-up manner, giving
priority to actions that impose small changes in the course, speed and altitude, creating
small deviations from the flight plan. This lattice-based approach inherently provides
explanations for choosing an action, in contrast to any other action, but it is not clear
whether explanations provided address ATCO transparency requirements adequately.

Here, we advance previous efforts in several dimensions: We propose using a deep
MARL method that inherently supports agents’ cooperation, DGN [6], enhances with
features describing conflicts among agents, modeled as edges. Agents do share policy
model parameters, and they do take advantage of observations of their neighbors, jointly
with own observations and edges. Furthermore, agents are capable to detect and resolve
conflicts in 3D with a rich repertoire of actions. Finally, our approach has been designed
with transparency in mind, so as to satisfy requirements stated by ATCO, and has been
trained and tested in real-world scenarios.

3. Problem Specification

The CD&R task involves a number of flights in an AoR. The task is about detecting at
any time point t the conflicts that may occur between flights, and decide whether and
what resolution actions should be applied to the conflicting flights.

Casting this problem into a multiagent problem, we consider that each agent i ∈ A
represents one of the N flights in the AoR, or in any downstream sector, for any of the
flights crossing the AoR. We consider the set of Relevant AoRs (RAoRs) as the set of
potential downstream sectors and the AoR.

Given the trajectory Ti of agent i within the RAoRs, we define the set of neighboring
agents to be the set of conflicting flights to Ti in RAoRs at a specific time point t. I.e., the
set of agents that will potentially be in loss of separation with i, as assessed at time point
t. These are denoted Neigh(i,AoR, t)⊆ A.

Agent i has to react and resolve all conflicts with Neigh(i,AoR, t), deciding whether
it will apply any resolution action at at t, and what this action should be. Specifically,
as considered here, the following actions comprise the repertoire of agents’ actions: (a)
Flight Level change, where the agent changes its current flight level one level up /down,
assuming a vertical speed 17/−17 feet/s for ascending/descending course; (b) Course
change, where the available changes of agent’s course are 10,−10,20,−20 degrees; (c)
Horizontal speed change, where the available changes of agent’s horizontal speed are
−3.6008 or 3.6008 m/s, for deceleration or acceleration, respectively; (d) Direct to way-
point, where the agent can choose one of the next four flight plan waypoints; and (e) No
action, where the agent continues its current course without any change.

Actually, an ATCO determines a resolution action and its duration. If the conflict
persists after the execution of the action, the ATCO issues further instructions, but if the
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situation worsens while executing the action, an intervention is possible. Here, actions’
duration is added as an option, expanding further the action space. According to the
domain experts, the accepted range of actions’ duration is 1-3 minutes. Therefore, agents
can choose the duration of each action among four values: 30, 60, 120 and 180 seconds.
It must be noted that duration is not decided for “direct to waypoint” and “flight level
change” types of actions, since these actions are executed within the time span required
by the aircraft3 to reach the target state. This results into a repertoire of 32 discrete
actions: An agent at each timestep has to decide on the specific action (e.g. the specific
change on speed) and its duration, where it applies.

The problem is formulated as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP), where at each timestep t each agent i receives a local observation
ot

i , takes an action at
i , and gets an individual reward rt

i . The objective is to maximize the
sum of all agents’ expected returns.

A local observation of an agent is a vector comprising the following features:
- Nalt = alt/maxalt , where alt is the agent’s current altitude in feet and maxalt is a

normalization factor,
- cos χ and sin χ , where χ is the bearing of the aircraft, i.e. the angle of the agent’s

course w.r.t North, in degrees,

- Nhspeed =
hspeed−minhspeed

maxhspeed
−minhspeed

, where hspeed is the magnitude of the agent’s horizontal

speed in m/s, maxhspeed and minhspeed are precalculated factors,
- cos(χ−ψ) and sin(χ−ψ), where ψ is the relative bearing of the agent w.r.t. the

intended AoR exit point, according to the flight plan,
- NdistExitPoint = dexit/Dexit , where dexit is the horizontal distance of the agent

w.r.t. the AoR exit point in meters, and Dexit is a normalization factor,
- NaltDi f f ExitPoint = |alt−altExitPoint |

max|alt−altExitPoint |
, where |alt−altExitPoint | is the absolute dif-

ference in feet between the agent’s altitude at the exit point and the filed (according to
the flight plan) altitude at the exit point,

- cos(dcoursewp) and sin(dcoursewp) for each one of the next four waypoints wp =
1,2,3..., where dcoursewp is the angle of the current agent’s course w.r.t. the course that
the agent must follow to reach the corresponding waypoint,

- NdistWaypoint = hdwp/HD for each one of the next four waypoints, where hdwp is
the horizontal distance in meters between the current agent’s position and the position of
the corresponding waypoint. HD is a normalization factor,

- NaltDi f fWaypoint = vdwp/VD for each one of the next four waypoints, where
vdwp is the vertical distance in feet between the agent’s altitude at the waypoint and the
filed (according to the flight plan) altitude at that waypoint. VD is a normalization factor.

In addition to these observations, each agent i maintains a vector ei j with any agent
j ∈ Neigh(i,AoR, t), comprising i j edge features that mostly depend on the geometry at
the Closest Point of Approach (CPA), i.e., at the point where agent i will be (or have
been) closer to j (shown in Figure 1 with a red dot in the trajectory of i and discussed in
Section 4.1). These edge features are the following:

- NtCPA = tCPA/TCPA, where tCPA is the time required in seconds for agent i to reach
the CPA with agent j and TCPA is a normalization factor,

3This work does not consider different aircraft abilities and limitations. Adding such features in the state and
conditioning actions under specific aircraft abilities, would refine solutions, without affecting much the design
of the proposed method.
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Figure 1. CPA geometry.

- NdhCPA = dhCPA/DhCPA , where dhCPA is the horizontal distance in meters between
agents i and j at the CPA and DhCPA is a normalization factor,

- cosai, j and sinai, j, where ai, j is the intersection angle in degrees between i and j,
- cosbi, j and sinbi, j, where bi, j is the relative bearing of i w.r.t. to j at the CPA,
- NdvCPA = vdCPA/VdCPA , where vdCPA is the vertical distance in feet between i and j at

the the CPA, and VdCPA is a normalization factor,
- Ndcp = dcp/Dcp, where dcp is the distance in meters between i and j when any of

them passes the crossing point first, and Dcp is a normalization factor,
- Ntcp = tcp/Tcp, where tcp is the time required in seconds for any of i and j to pass

the crossing point first, and Tcp is a normalization factor,
- Ndh(i, j) = hdi, j/HD, where hdi, j is the current horizontal distance in meters be-

tween agents i and j,
- Ndv(i, j) = vdi, j/VD, where vdi, j is the vertical distance in feet between i and j.

4. Automating CD&R

The overall system implemented for automating CD&R comprises three main compo-
nents (Figure 2): The conflicts detection, the conformance monitoring, and the conflicts
resolution component. In addition to these, there is a component that provides basic in-
teraction capabilities with the human operator, integrating and presenting transparency
data, in parallel to the information provided by the operational platform. The system
is integrated with the Spanish ATCO operational platform SACTA and it is fed with a
stream of data from that platform, providing every 30 seconds updates of flights’ radar
tracks and updates of flight plans.

Minimum interaction facilities provided allow the system to operate either as an ad-
visor (in that case the ATCO has to chose an action to be applied), or in full automation
mode (the system takes the initiative to act). In any case, the ATCO gets appropriate in-
formation on the rationale for resolution actions, and he/she may unfold the transparency
data, to get further information on the situation and on the consequences of actions, in
cases where strict operational constraints allow.

The conformance monitoring component, monitors whether an aircraft conforms
with conflict resolution actions prescribed, in a short time horizon of 30 seconds.

Since the focus is on conflicts detection and resolution, subsequent sections describe
the corresponding components in detail.
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Figure 2. CD&R System Overall Architecture.

Figure 3. Cases for projecting flights’ trajectories up to th minutes.

4.1. Detecting conflicts

To detect conflicts, given the state of a flight at a time point t, its trajectory is projected
into the future for a specific time horizon th following a nominal approach. As shown in
Figure 3, if it is assessed that the flight follows its flight plan, the projection is estimated
according to the flight plan, else, it is estimated according to the actual flight’s course.

Given the line segment defined by projecting the aircraft trajectory for th minutes,
we consider that the flight follows its flight plan if either (a) the shortest distance between
the aircraft’s 2D position and the flight plan horizontal profile is less than a distance
threshold dh, and the difference between the aircraft and the flight plan’s course - at the
closest point to the aircraft’s position- is less than ch; or (b) the line segment defining
the projection, intersects with the flight plan’s horizontal profile. In any other case we
consider that the flight deviates from its flight plan. In both cases we assume that the
flight will retain its current vertical and horizontal speed for th.

Having decided on the projection of the aircraft trajectory, the detection of conflicts
considers the following two cases: (a) Both flights have zero vertical speed, (b) one of
the flights has a vertical speed greater than zero. In case (a), if the vertical separation
minimum between aircraft is violated, the flights’ projection segments that intersect in
the temporal dimension are detected, and the horizontal Closest Point of Approach (CPA)
among he flights is computed using the methodology presented in [9]. In case (b) the
CPA in the vertical axis (vCPA) is computed. In case the vertical separation minimum
is violated at vCPA, the method checks near the vCPA to find any point at which the
horizontal separation minimum is violated. If the vertical and the horizontal separation
minimum are violated at a point, a conflict is detected.

The values of the thresholds after study of conflicts’ conditions and consultation
with experts are as follows: The time horizon th is equal to the time needed to reach the
next flight level, if vertical speed is > 0. Otherwise, it is equal to 10min. The distance
threshold dh is set to 2km and the course difference ch is set to 20 degrees.

4.2. Resolving conflicts using graph convolutional reinforcement learning.

Cooperation among agents is crucial, as safety - being the top priority of all stakeholders
in ATM - and flight efficiency - being the main interest of AU - demands it in an inher-
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ently multi-agent setting. According to the graph convolutional reinforcement learning
method DGN [6], agents (flights) are able to learn cooperative policies by focusing on
their neighbors (i.e. those with whom they do interact) instead of taking into account
all the existing agents in their environment. DGN uses a deep Q network and is trained
end-to-end. DGN shares weights among all agents - making it easy to scale, abstracts the
mutual interplay between agents by relation kernels, and extracts latent features by con-
volution. The multi-agent interaction setting is modelled as a graph that DGN considers
dynamic: This is of crucial importance to the CD&R task, as neighboring agents change.

DGN comprises three main modules: An encoder for encoding agent’s i observa-
tions ot

i at any time step t, projecting them in a higher dimensional space, two convolu-
tional layers for implicit communication among the neighboring agents, expanding their
receptive fields, and the Q network which takes as input all features from the encoded
observations and the outputs of the preceding convolutional layers [6].

For the representation of neighboring flights, the adjacency matrix Ct
i of agent

i is of size (|Neigh(i,AoR, t)|+ 1)× N. Each row represents either i itself, or j ∈
Neigh(i,AoR, t). The neighbor agents are sorted in the following order: First are those
that are in loss of separation with i. These are further ranked by their Euclidean distance
to i. These are followed by the agents causing an alert with i and are further ordered based
on the time they need to reach the CPA, tCPA. Agents that are in conflict with i follow,
and these are ordered according to tCPA. Finally, the neighbors which are in conflict but
with a negative tCPA have the lowest priority. By merging all Ct

i at t, we get the matrix Ct

of size N× (|Neigh(i,AoR, t)|+1)×N.
Having extended DGN to consider vectors et

i j comprising features of an edge be-
tween neighbor (conflicting) agents i and j, in addition to observations of i at each time
step t, the elements of et

i j are sorted as elements in Ct
i do. The first element of et

i j con-
sists of predefined values for agent i, in order to facilitate calculations. Edge vectors are
encoded by a distinct MLP. The encoded vectors of observations and edges (hot

j and
het

i j, respectively) are concatenated into vectors in hct
i j, which are stacked horizontally,

obtaining a matrix of such vectors per agent i. These last operations (concatenation and
stacking) are performed by the first convolution layer, as illustrated in Figure 4. Each
vector het

i shown in Figure 4 contains all het
i j, ∀ j ∈ Neigh(i,AoR, t)∪{i}.

The next steps of the algorithm comprise the computations in the two convolution
layers. The convolution kernel is the multi-head dot-product attention kernel, which can
be computed for each agent i and its neighbors as follows:

al
i j =

exp
((

W l
ii · (Kl

i j)
ᵀ)× (1/

√
dKl

i j
)
)

∑ j exp
((

W l
ii · (Kl

i j)
ᵀ)× (1/

√
dKl

i j
)
)

where, j varies in
(
Neigh(i,AoR, t)∪{i}), l denotes the corresponding convolution layer,

dKl
i j

is equal to the size of each head in Kl
i j, W l

ii = f l
W (hct

ii) and Kl
i j = f l

K(hct
i j). Here,

f l
W and f l

K are one-layer MLPs. It should be clarified that when l > 1, the vector hct
i j is

obtained by concatenating the output of the preceding convolution layer, hl−1
j , along with

the corresponding encoded edges het
i j. W l

ii is a matrix of size m× dW l
i j

, with dW l
i j
= dKl

i j

and m the number of attention heads. The same holds for Kl
i j. The attention values al

i j
show the significance that the neighbor-agent j has for agent i decision, as reflected in
the outcome of the convolution layer, denoted by hl

i . The final step, as shown in Figure 4,
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Figure 4. DGN model extended with edges. Connections show agents’ interaction, according to their adja-
cency matrix, at time step t.

concatenates the outputs of the first and second convolution layer, h1
i and h2

i respectively,
as well as the encoded observations hot

i , and feeds the result into the Q network.
During training, at each timestep t a prioritized experience replay buffer stores

tuples of the form (O,E,Ac,O,E ,R,C) (t is not denoted for simplicity), where O =
{o1, . . . ,oN} is the set of agents’ observations and E is the set of edges vectors,
Ac = {a1, . . . ,aN} is the set of agents actions, O ′ = {o′1, . . . ,o′N} is the set of observa-
tions and E ′ is the set of edges vectors resulting after the joint execution of actions,
R = {r1, . . . ,rN} is the set of rewards received by agents, and C = {C1, . . . ,CN} is the set
of adjacency matrix per agent.

Sampling a minibatch of size S from the replay buffer, the loss minimized is L (θ) =
1
S ∑S

1
N ∑N

i=1
(
(yi−Q(Oi,c,ai;θ)

)2, where, yi = ri + γmaxaQ(Oi,C,a;θ ′), Oi,C ⊆ O denotes
the set of observations of the agents in i’s receptive fields determined by C, γ is the
discount factor. DGN uses an online Q network parameterized by θ , and a target Q
network parameterized by θ ’. Both approximators take Oi,C as input and output a Q value
per action ai. The gradients of Q-loss are accumulated to update the θ parameters of the
online Q approximator. The target network parameters are updated by θ ′ = βθ ′+(1−
β )θ ′, where β is a hyperparameter.

Any action executed can change the graph representing neighbor flights at a next
timestep. As suggested in [6] C is kept unchanged in two successive timesteps when
computing the Q-loss in training, to ease learning.

The reward function for each agent i, given the state resulting after applying any of
the actions in a state, is an additive function that depends on the following terms: (a) the
caused change in shift from the exit point, as provided by χ −ψ , NdistExitPoint, and
NaltDi f f ExitPoint, (b) the change in χ , (c) the occurrence of speed change (horizontal
and vertical), and (d) the number of losses of separation and alerts caused.

Specifically, the reward function given state s’ resulting after applying action a in
state s is as follows:

R(s,a,s′) =−1∗ Δχ
F
−0.5∗ |χ−ψ|

π
−0.5∗NaltDi f f ExitPoint

−1∗distExitPoint−1∗ Δhspeed ! = 0−1∗ Δvspeed

V

−10∗NumberO f Alerts−5∗NumberO f Losses
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where �Δhspeed ! = 0 indicates whether there is any change in the horizontal speed, and V
and F are normalization factors.

5. Transparency in decision making

Data provision for transparency is triggered by conflicts. Transparency requirements
gathered from ATCO specify that for any specific conflict, they do need to be provided
with (a) data regarding the conflict detected and how it has been assessed, (b) data re-
garding resolution action per aircraft and major factors driving decisions w.r.t. the inter-
ests of ATCO and AU, as well as (c) deviations from the flight plan and violation of AoR
exit point constraints. This supports them to assess a situation and decide on the appro-
priate action: Specifically, they do need information that reflects the system’s view of the
conflicts, of the foreseen effects of actions, as these are estimated by the system, and a
ranking of the alternative actions per conflict instance. The effects of a resolution action
concern foreseen conflicts caused by the resolution action, nautical miles added to the
flight trajectory and additional flight time, deviation from the planned course, foreseen
alerts or losses of separation, due to traffic. These should be provided with respect to
operational desiderata (specified below), and at the appropriate level of detail. Specifi-
cally, given that there is little or no time for ATCO to exploit and explore detailed expla-
nations while monitoring and resolving safety critical situations, transparency must sat-
isfy Grice’s maxims: Be informative and give the quantity of information needed and no
more, provide adequate information that describes adequately the situation assessed by
the system, be relevant, clear and brief. However, the decision to ask for further informa-
tion about the proposals/decisions of the system should remain with human operators: If
detailed transparency data is provided all the time, the increase in the level of workload
of the operators might not compensate the benefit provided by the transparency itself.

Regarding any conflict detected at time point t, the following information is pro-
vided for situation awareness: (a) The discrepancy between the actual track of each of the
aircraft and of the corresponding flight plan in 3D (horizontal and vertical dimensions),
at the first point of their intersection, or at the closest point between the aircraft course
and the flight plan after t, as determined by applying the process specified in Section 4.1;
(b) Whether the conflict has been detected using a projection of the actual trajectory or
using the flight plan; (c) The features regarding the geometry of the CPA detected; (d)

Foreseen horizontal, vertical and temporal distance to the CPA for each of the aircraft; (e)

The first and last points of conflict detected (these are not used by the conflict resolution
method, as it uses the distance and the time to the CPA); (f) The horizontal and vertical
distance of aircraft at the current position; and (g) Whether each aircraft is in the climb
or descend phase.

For the resolution of conflicts, besides the decided resolution action and its duration,
the system provides the following information: (a) Nautical miles that may be added to
the trajectory due to any change caused by an action; (b) The deviation from the tra-
jectory course caused by the action; (c) Additional conflicts that may be caused by the
resolution action: For each of these conflicts, conflict-relevant information is provided;
(d) Losses of separations with other flights, or alerts foreseen, due to the resolution ac-
tion; (e) In cases of multiple conflicts involving a specific agent, the system provides an
attention hitmap, showing the attention the agent to the neighboring flights, prioritizing
them for the resolution of conflicts; and (f) the deviation from the AoR exit point in 3D.
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Hyperparameter DGN
discount (γ) 0.96
batch size 256

buffer capacity 2×105

β 0.01
ε , min ε and decay 0.6/0.001/0.996

number of neighbors 3
number of convolutional layers 2
m (number of attention heads) 8

d
Kl

i j
16

number of encoder MLP layers 2
number of encoder MLP units (DGN/DGN+SE) (512,128)/(512,256)

encoder MLP activation ReLU
Q network affine transformation
initializer random normal

train steps per episode 80
exploration episodes (SeqN/AllN) 3000/6000
exploitation episodes (SeqN/AllN) 1000/2000

episodes before training 200
PER starting β 0.4

PER max β 1
PER β decay rate per step 0.0025

PER ε 0.05
PER α 0.6

Table 1. Hyperparameters (PER: Prioritized Experience Replay)

6. Evaluation setting and results

This section provides results on real-world scenarios where AoR is a sector near the
Barcelona airport. Scenarios are constructed by choosing a flight crossing the AoR and
a downstream sector (let us call it “main flight”) in a time span of Durationmain seconds.
The “main flight” is chosen so as to present at least one conflict. Flights added in the sce-
nario are all flights that cross the relevant AoRs (RAoR) in a time interval that temporally
intersects with the time span of the main flight. Data about each of the scenarios is pro-
vided in article’s supplementary material. Scenarios involve varying number of flights,
thus various number of initial conflicts, losses and alerts (resolution actions may cause
the appearance of new events) and have varying duration. The scenario ID is constructed
by a timestamp and the AoR ID and it is of the form timestamp-AoRiD.

The proposed enhanced DGN method (DGN enhanced with edges) is compared
against the original DGN method that exploits the information encoded in edges in a
rather direct way. The naive but straightforward manner is to include edges’ {et

i j| j ∈
(Neigh(i,AoR, t)} features in agent i observations. This variation uses one MLP encoder
in contrast to the enhanced method where two distinct MLP encoders (one for the ob-
servations and one for the edges) are used. However, we have carefully designed the en-
coder (two-layer MLP with 512 and 256 neurons, respectively) of this variation, to get
almost the same number of parameters as in the case of the two encoders, and the length
of the output vector to be equal to the length of the vector comprising the output of the
two encoders after their concatenation.

This method variation is denoted as DGN+SE, and the policy models learned by this
method have the “+SE” indication. The comparison between methods aims to show the
importance of edges as considered here, providing to each agent information regarding
the CPA geometry with any neighbor agents. The conjecture is that this naive way to
incorporate edges’ features in agents’ observations does not allow the attention mech-
anism to work properly, because the combined encoded values do not refer exclusively
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to agents’ i and j. Hence, the agents will not be able to construct advanced collabora-
tive strategies as they will be incapable of paying the proper attention to each of their
neighbors. Technical details on DGN+SE are included in the supplementary material.

Models have been trained in different scenarios following one of two alternative
training patterns. First we have trained a model providing samples from a set of N scenar-
ios: The resulting model is denoted AllN. As an alternative, we have constructed a model
trained using samples from M batches of N scenarios, in sequence, as follows: First, we
train a model (named 1SeqN) using a first batch of N scenarios. 1SeqN has been re-
trained in a second batch of scenarios resulting in model 2SeqN, and so on, until the final
model MSeqN. Thus, MSeqN has been trained in M×N scenarios. Models All(M×N)
and MSeqN have been trained in the same scenarios. However, MSeqN models have been
trained using a much larger number of episodes compared to All(M×N). To alleviate the
effect of this, each model is trained on a batch of N scenarios with 4000 episodes (3000
for exploration and 1000 for exploitation), in contrast to All(M×N) which is trained with
8000 episodes (6000 for exploration and 2000 for exploitation). In any of the training
patterns models are trained using a subset of 42 training scenarios w.r.t. a specific order:
All30 and 5Seq6 have been trained using the first 30 of those scenarios, while they have
been tested on the last 6. Similarly, 6Seq6 has been trained using the first 36 scenarios,
and it has been tested in the remaining 6.

The DGN hyperparameters values set for the experiments are shown in Table 1.
Results from policy models All30, 5Seq6 and 6Seq6 for DGN with edges are shown

in Table 2. Specifically, Table 2 shows the percentage of conflicts resolved in training
and testing the different models, the average number of resolution actions applied per
scenario, and the average NM added to trajectories affected by resolution actions. It must
be noted that 5Seq6 is superior to All30 regarding the percentage of conflicts resolved
in the testing scenarios, showing the benefits of using the MSeqN training pattern. This
superiority is further enhanced, by re-training the 5Seq6 model using the next batch of
6 scenarios. Indeed, 6Seq6 manages to solve 90% of conflicts, compared to 66.67% of
5Seq6. In addition to this, the efficacy of MSeq6 models concerning the percentage of
conflicts resolved increases consistently as M increases.

The learning curves for the models trained are provided in Figure 5: Curves provide
the mean reward, number of resolution actions, alerts and losses. The mean reward is
computed as the average reward for all agents, per scenario time step. Curves are pro-
vided (a) (left) for the 1Seq6 model learned by the proposed DGN with edges method,
and the 1Seq6+SE model; and (b) (right) For All30, 5Seq6 and 6Seq6 using the pro-
posed DGN with edges method, and only while training the model with the final batch
of scenarios. It must be noted that 5Seq6 and 6Seq6 curves end early as these models are
are trained with 4000 episodes, while All30 is trained using 8000 episodes. The curves
on the left aim to show the benefits of adding the edges in DGN, while the curves on
the right show the efficacy of the training patterns. Indeed, the 1Seq6+SE model does
not manage to learn effectively compared to 1Seq6 (using edges), as it decreases agents’
mean reward, increases significantly the resolution actions, causing the increase of alerts
and losses of separation. Results on the right show how the efficacy of MSeq6 models
increases, while increasing M: Indeed, 6Seq6 manages to increase agents’ mean reward,
reduce alerts, losses of separation, and resolution actions compared to All30, but with a
slight increase of alerts and of resolution actions compared to 5Seq6.

G. Vouros et al. / Automating the Resolution of Flight Conflicts 83



Figure 5. Learning curves showing the mean reward, number of resolution actions, alerts and losses per train-
ing episode. Left: for 1Seq6 using the proposed DGN with edges (1Seq6), and 1Seq6 using the DGN+SE vari-
ation (1Seq6+SE) and right: for All30, 5Seq6 and 6Seq6 using the proposed DGN with edges, only.

Model
Conflicts resolved % Avg No. of Resolution Actions Avg Additional NMs

Train Test Train Test Train Test

All30 96.08% 37.5% 2.36 3.17 -1.07 0.13
1Seq6 100% 28.57% 5.0 3.5 -0.4 0.97
5Seq6 80.81% 66.67% 5.07 3.00 -1.33 3.25
6Seq6 80.65% 90.0% 4.0 2.5 -0.01 0.35

Table 2. Results of training and testing the models.
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7. Concluding remarks

Aiming to contribute to operational integrity and automation adoption for CD&R in the
ATM domain, this article proposes a solution based on the DGN graph convolutional re-
inforcement learning (RL) method, enhanced with edges representing conflicts between
flights. Experimental results show that the proposed method, can provide high-quality
solutions. Such solutions are also provided while the method works in interaction with
the operational platform, in AoRs other than the Barcelona AoR in which it has been
trained. Also, the system has been designed for addressing transparency, as required by
ATCO experts, and sets the ground for further elaboration towards applying advanced AI
methods in the ATC domain.

Immediate plans include validating the system in simulated real-world settings with
ATCO. Furthermore, enhancement of safety on automation by training the models in
more scenarios so as to adapt efficiently to unseen test cases (e.g. by using adversarial
models) is a necessity. In addition to this, enhancement of the reward function with addi-
tional terms, building and incorporating explainability functionality, always in coopera-
tion with ATCO, to satisfy operational goals and promote trust and system acceptability,
are within the future plans.
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