
Learning Path Constraints for UAV
Autonomous Navigation Under Uncertain

GNSS Availability

Marion ZANINOTTI a,b, Charles LESIRE b, Yoko WATANABE b,
Caroline P. C. CHANEL a

a ISAE-SUPAERO, University of Toulouse, France
b ONERA, The French Aerospace Lab, France

This paper addresses a safe path planning problem for UAV urban navigation,
under uncertain GNSS availability. The problem can be modeled as a POMDP and
solved with sampling-based algorithms. However, such a complex domain suffers
from high computational cost and achieves poor results under real-time constraints.
Recent research seeks to integrate offline learning in order to efficiently guide
online planning. Inspired by the state-of-the-art CAMP (Context-specific Abstract
Markov decision Process) formalization, this paper proposes an offline process
which learns the path constraint to impose during online POMDP solving in order
to reduce the policy search space. More precisely, the offline learnt constraint
selector returns the best path constraint according to the GNSS availability
probability in the environment. Conclusions of experiments, carried out for three
environments, show that using the proposed approach allows to improve the
quality of a solution reached by an online planner, within a fixed decision-making
timeframe, particularly when GNSS availability probability is low.

online path planning, learning for planning, POMDP

1. Introduction

Solving autonomous navigation problems consists in finding a path from an initial
position to a goal with a maximum efficiency, while avoiding the obstacles. These
problems become challenging when the state of the vehicle is uncertain. Particularly,
most of Unmanned Aerial Vehicles (UAVs) are equipped with a Global Navigation
Satellite System (GNSS) receiver as navigation system. In an urban environment, the
GNSS satellites can be masked by the buildings surrounding the UAV, the accuracy or
even the availability of the measured position can then be significantly altered, what can
lead to a fatal collision.

[1] formalize the UAV urban navigation problem under uncertain GNSS availability
as a Partially Observable Markov Decision Process (POMDP) [2]. The latter is a
principled approach to solve planning problems under uncertainty. However, POMDP
planning faces two notorious problems. The first one is the curse of dimensionality:
the size of the belief state space grows up exponentially with that of the state space.
The second problem is the curse of history: the number of action/observation sequences

PAIS 2022
A. Passerini and T. Schiex (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220065

59



to evaluate during research grows up exponentially with the planning horizon [3]. The
use of a Partially Observable Monte-Carlo Planning (POMCP) [4] algorithm makes it
possible to overcome these difficulties. Nevertheless, the performance remains dependent
on the search depth reached within the planning horizon, which is itself dependent on
the branching factor of the search tree [5]. The branching factor includes both the action
factor, i.e. the number of actions available in each belief state, and the stochastic factor,
i.e. the number of possible observations for each action. The stake is then to reduce the
branching factor in order to scale up planning. This is all the more important for online
planning: the planner has to make a decision quickly whereas the long-planning horizon
of such a real-world task incurs prohibitive computational cost. For that, incorporating
domain abstraction is a promising approach. [6] introduce Context-specific Abstract
Markov Decision Process (CAMP), an abstraction of the original MDP model, obtained
by imposing the best constraint on the states and actions considered by the agent. This
best constraint is chosen by an offline learnt context selector according to the features of
a task.

Inspired by this CAMP domain abstraction, this paper proposes to learn offline the
context selector and to impose the best constraint returned in order to reduce the policy
search space during online POMDP solving, for the UAV urban navigation problem.
The context selector chooses the constraint which reduces the UAV position state space
while preserving the solution optimality, in function of the GNSS availability probability
map of a task. Unlike the original CAMP, we address a partially observable domain. In
our case, applying action space abstraction is not straightforward as states are not fully
observable. Nevertheless, a state space abstraction can be achieved through modification
of the cost function for penalizing the constraint violation, which will modify the action
outcomes. Additionally, as our objective is to perform online planning for the UAV safe
navigation problem, whereas an offline POMCP variant is used in the offline process,
an online version is applied for planning. As result, we investigate the use of different
algorithms for learning and planning, which has not been done in the original work of
CAMP. Thus, regarding the UAV navigation problem with uncertain GNSS availability,
our contribution is twofold: (i) we investigate if state abstraction, by adapting the CAMP
framework for a partially observable domain, gives better results when compared to a
full POMDP model, and (ii) we evaluate if such a CAMP-inspired approach is robust if
we use a different algorithm for learning and planning.

After providing the theoretical background and the related work in the next section,
we present the CAMP method adapted to our problem in Section 3. Experimental
results are reported in Section 4, demonstrating the performance improvement of online
planning. Finally, Section 5 includes concluding remarks and future works.

2. Background and Related Work

2.1. POMDP Preliminaries

A POMDP [2] is defined as a tuple (S ,A ,Ω,T ,O,C ,b0,γ), where S , A , and Ω
denote respectively spaces of states, actions, and observations. The transition function
T (s,a,s′) = p(s′|s,a) represents the dynamics of the agent as the probability of
transiting from s to s′ by taking action a. The observation function O(a,s′,o) = p(o|s′,a)

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation60



specifies the probability of observing o after taking action a to reach s′. The cost function
C (s,a) defines the cost of taking action a in s. b0 denotes the initial belief state, and
γ ∈ [0,1] is a discount factor expressing a preference for minimizing immediate over
future cost.

POMDPs capture partial observability of the system using the belief state b, i.e. a
probability distribution over S , which is updated after each action a and observation o
using the Bayes’ rule. A POMDP policy π : B → A prescribes an action for each belief
state in the belief space B. Solving a POMDP requires to find the optimal policy π∗
minimizing the expected future cost, called the value, for all b ∈ B. The value of the
policy π∗ in belief b is defined as:

V π∗
(b) = min

π
E

[
∞

∑
t=0

γ tC (bt ,π(bt))
∣∣b0 = b

]
(1)

Additionally, the Q-value of an action a in belief b can be defined as:

Qπ(b,a) = E

[
C (b,a)+

∞

∑
t=1

γ tC (bt ,π(bt))

]
(2)

2.2. UAV Urban Navigation POMDP-based Problem

The original planning model, proposed by [1], is formalized as a Mixed-Observability
Markov Decision Process (MOMDP) [7], a special class of the POMDP framework. The
state space is factorized into fully and partially observable state variables, respectively
denoted by sv and sh, what reduces the belief state space dimension, and in turn, reduces
policy computation time. The state tuple s= (sh,sv)∈S is defined with sh = (X ,V ,βa)
where X and V are the vehicle position and velocity, and βa is the IMU acceleration
measurement bias, and sv = (Fcol ,FGNSS,P, t f light) with Fcol and FGNSS the collision and
GNSS availability Boolean flags, P the error covariance matrix over sh, and t f light the
flight time elapsed. An action a ∈ A corresponds to the desired velocity direction. The
action space A is a finite set of 10 actions, following 8 radial directions in the 2D
horizontal plane, plus up and down. An observation o ∈ Ω is defined as the sub-tuple
o = sv of the state tuple, given a full observability of (Fcol ,FGNSS) and a deterministic
transition of (P, t f light). This partial state observability limits the branching factor of the
search tree. The transition function follows a GNC (Guidance, Navigation and Control)
model, composed of the vehicle motion model, a guidance law, a state estimator, and the
IMU and GNSS sensor models. The GNSS availability FGNSS affects the error covariance
matrix P, which affects the belief state b′ after transition. In brief, P grows when GNSS
is unavailable, resulting in more collision risk. Finally, the cost function is defined as:

C (s,a) =

⎧⎪⎨
⎪⎩

0 if goal reached
Kcol − t f light if collision
ΔTa otherwise

(3)

with ΔTa > 0: the action execution time, and Kcol > 0: the cost penalty in case of collision.
When a collision occurs, the cost is this penalty subtracted with the flight time elapsed.
Added to the sum of the previous action execution times, all the collision paths are then
equally penalized.

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation 61



2.3. MinPOMCP-GO Algorithm

[1] propose the POMCP - Goal-Oriented (POMCP-GO) algorithm, an offline goal-
oriented variant of POMCP [4]. It samples a state s from the initial belief state b0,
corresponding to the root node, and simulates action/observation sequences, through
trials, in order to evaluate actions while building a tree of nodes. To perform a
trial, POMCP-GO follows a given action selection strategy and a heuristic node value
initialization. For the action selection, it relies on the Upper Confidence Bounds (UCB1)
strategy [8] to deal with the exploration–exploitation dilemma. A trial is stopped when a
terminal state is reached (a goal or collision state), and this procedure is repeated during
a fixed timeframe.

Each tree node h represents a history of action/observation sequences from the
initial belief state. The Q-value (Eq. 2) of an action a in a belief state is approximated
by Q(h,a), which is the mean cost returned from all trials started from h when a was
selected. This approximation incurs a well-known bias, which decreases as the number
of trials increases [9]. To accelerate the policy value convergence by reducing the Q-
value bias, [10] propose the MinPOMCP-GO algorithm which uses a Min-Monte-Carlo
backup [9].

The present paper approach is based on this MinPOMCP-GO algorithm. During
tree building, MinPOMCP-GO initializes the Q-value of a newly created node to a pre-
computed heuristic value, corresponding to the flight time left to the goal estimated
by the Dijkstra algorithm [11]. Even if this heuristic function is more informative than
the traditional rollout used in POMCP, it does not take into account GNSS availability
probability. The latter is only indirectly considered by back-propagating the cost penalty
of a collision due to the uncertain estimated UAV position.

2.4. Domain Abstraction

Sampling-based algorithms, such as POMCP and variants, suffer from exponential
complexity with respect to the branching factor of the search tree. In our UAV navigation
problem under uncertain GNSS availability, the solver cannot explore enough, within a
short decision-making timeframe, to prevent collisions. In difficult environments, with
obstacles reducing GNSS availability probability, navigation mission safety may be
compromised. So, we focus on incorporating domain abstraction to reduce the branching
factor and thus to improve online planning solutions.

State Aggregation. One well-known technique of domain abstraction is state aggre-
gation: the state space is reduced by clustering equivalent states, i.e. states that share
some fully-identical properties - exact aggregation - or nearly-identical properties -
approximate aggregation - and treating each of these resulting state clusters as one. In
[12], the authors list the existing methods of exact state aggregation and unify them to
deduce five generic functions. However, since two states rarely share some fully-identical
properties, exact abstraction is often useless, while approximate abstraction can achieve
greater degrees of compression. In [13], the authors present four types of approximate
aggregation and demonstrate that they lead to a bounded loss of optimality of behavior.
In [5], the authors generalize the formulation of two of these four types of aggregation
and apply them to Monte-Carlo Tree Search (MCTS). AS-UCT [14], ASAP-UCT [15],
and OGA-UCT [16] are other implementations of state or state-action pair aggregation

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation62



to UCT, a MCTS algorithm variant. All of these methods have not been applied in the
partially observable framework.

Hierarchical Planning. Another approach to domain abstraction is hierarchical plan-
ning. It consists in decomposing the planning problem into a network of independent
subgoals. Hierarchical Dynamic Programming (HDP) [17] is an example of hierarchical
planning for navigation problems. A hierarchy of MDPs is constructed and solved using
a hierarchical variation of value iteration. Abstract Markov Decision Process (AMDP)
[18] is a more general method, which allows any MDP planner to be used. Both HDP and
AMDP are top-down approaches: they select the subgoal before performing planning to
reach it. Contrary to bottom-up approaches, they present the advantage that planning is
necessary only for subgoals used for task completion. Nevertheless, the way to define
appropriate subgoals remains an open question.

Integrating Learning for Planning. A third method is to integrate an offline learning
phase as a first step, to guide the search during online planning. The CAMP approach
[6], which has inspired this paper, is part of this category. It reduces the state and action
spaces of a MDP by imposing a constraint learnt according to the features of a task.
Another example is Macro-Action Generator-Critic (MAGIC) [19], a kind of temporal
abstraction, which learns the more efficient set of candidate macro-actions to cut down
the effective planning horizon for online POMDP planning.

As previously discussed in Section 2.3, GNSS availability probability is only taken into
account by back-propagating the cost penalty when a collision occurs. The planning
efficiency can hence be improved by using this information to further focus the search
on more relevant areas, i.e. where GNSS is more likely available. For this purpose, the
CAMP method seems a good candidate to leverage. Implementing a similar approach for
our problem allows to reduce the UAV position state space in function of a probability
map of GNSS availability, considering the latter as a task feature.

3. Learning Path Constraints based on GNSS Availability

3.1. Approach Overview

The objective of the CAMP method [6] is to learn a context selector f : Θ → C . Each
training task corresponds to a feature vector θ ∈ Θ. For each feature vector, the best
constraint C∗ ∈ C is identified. The pairs (θi,C∗

i ) are given to a neural network to learn
f . Once the context selector f is learnt, the best constraint C∗ returned from the feature
vector θ of a test task is then imposed to guide online planning.

In our navigation problem under uncertain GNSS availability, we assume a given
environment, i.e. known obstacles on a map, and a given navigation mission, i.e. fixed
initial position and goal. Figure 1 describes our application of the context selector
learning process to our problem. The probability maps of GNSS availability are used
as feature vectors. For each training map of GNSS availability probability, the best
constraint is identified. We define a constraint as a corridor of the environment in which
the UAV must stay, which we evaluate by performing planning within a training timeout.
Then, these probability maps of GNSS availability and the associated best constraints are

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation 63



used to learn the context selector. Finally, the test tasks are solved online, imposing the
best constraints returned by the context selector from the test maps of GNSS availability
probability. Each step of this process is detailed in the following sub-sections.

Figure 1. Learning the context selector f by identifying the best constraint C∗
i , for each training task i

associated to a probability map of GNSS availability θi.

3.2. Feature Vectors

As previously discussed, GNSS availability is crucial to determine safe paths for our
UAV. As the GNSS satellites are orbiting around the Earth, the GNSS availability
probability varies with the time-of-the-day even for a fixed obstacle environment.
We then propose to compute path constraints based on probability maps of GNSS
availability.

The expected GNSS position accuracy is given by the Position Dilution Of Precision
(PDOP) metric. Given the satellite geometry, user location and surrounding environment,
a PDOP map is generated by using a GNSS simulator. We assume PDOP value to
follow a zero-mean Gaussian distribution [1]. Then, the PDOP map is transformed into a
probability map of GNSS availability by setting a maximum position error threshold ε:

Pr(FGNSS = 1) = erf

(
ε√

2PDOP

)
. (4)

with erf: the Gauss error function.
We generated test task features by setting different ε values to cover the easy and

difficult cases where GNSS is most-like available/unavailable. Then, the training task
features were generated by linear combination of these test task features with randomly
selected coefficients, for more feature variety.

3.3. Constraint Definition and Evaluation

Constraint Definition. We divide the environment map into nL × nl × nh areas in an
uniform way. nL denotes the number of areas over the length, nl over the width, and nh
over the height. For each of these areas, we define a corridor of areas leading from the
initial position to the goal, passing through this area, called passage area. For that, we
concatenate the paths resulting from the A* algorithm [20] from the area including the
initial position to this passage area, and from the latter to the area including the goal

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation64



position. We use the number of areas constituting the path as cost function in the A*
algorithm. We obtain thus at most nL×nl ×nh different corridors of areas, corresponding
to candidate constraints, in which the UAV is allowed to navigate. The sub-figure in the
middle of Figure 2 shows a candidate constraint defined by dividing the environment
map into (nL = 5)×(nl = 5)×(nh = 1) areas, and using the top left area as passage area,
which is highlighted in blue.

Planning with Constraint. For each training map of GNSS availability probability, all
the candidate constraints are evaluated. For that, offline planning imposing the candidate
constraint is performed. We use the MinPOMCP-GO planning algorithm [10], adapting
the heuristic function, which estimates the flight time left to the goal, so that the path
constraint is respected. Figure 2 illustrates an example of the heuristic map obtained from
a given environment, navigation mission, and candidate constraint. On the environment
map on the left, as on the following maps, the initial position and the goal are respectively
represented by a point and a star, and the obstacles are depicted in yellow. On the heuristic
map on the right, the estimated flight time left to the goal is represented inside the
constraint.

To impose a constraint, the cost function of the planning model (Eq. 3) is also
adapted so that it considers a violation of the constraint as a terminal state which leads to
a cost penalty Kconstr. In addition, the collision cost is saturated by a minimal threshold
Kcolthr , as some imposed constraints incur long flight times. The cost function then
becomes:

C (s,a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if goal reached
max(Kcol − t f light ,Kcolthr) if collision
Kconstr if constraint violation
ΔTa otherwise

(5)

Best Constraint Identification. In the original CAMP approach [6], a candidate
constraint is evaluated using a score formulation, which expresses the trade-off between
how much planning is sped up and how much optimality is preserved imposing this
constraint. The planning time and the policy value are obtained as means over several
online-computed paths. In our method, we perform offline planning to evaluate the
candidate constraints. Hence, reaching the convergence on the policy value is required
to estimate the planning time and the policy value. However, this convergence is difficult
to judge and achieve it can take too long. Therefore, to evaluate a candidate constraint,
we stop planning when a training timeout is reached, and we express the score as the
opposite of the resulting initial belief state value V π(b0). For a probability map of GNSS
availability θi, the candidate constraint that achieves the highest score, i.e. the lowest
initial belief state value, is chosen as the best constraint, and is noted C∗

i .

3.4. Context Selector Learning and Online Planning

The training maps of GNSS availability probability {θi} and the associated best
constraints {C∗

i } are used to train a neural network with cross-entropy loss, resulting
in the context selector f (Fig. 1). The generic neural network available in the CAMP
framework is applied, with the proposed Fully Connected Network architecture [6].

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation 65



Figure 2. Generation of the heuristic map (right) from an environment, a navigation mission (left), and a
candidate constraint (middle).

At test time, the best constraint is returned by the context selector, given the
probability map of GNSS availability of the test task: C∗ = f (θ). This constraint is then
integrated in the model to reduce the UAV position state space during online planning,
by imposing to compute navigation paths that stay within the constraint. We use two
planning algorithms to compute these navigation paths. The first one is MinPOMCP-
GO, also used for evaluating the candidate constraints in the training phase. The second
algorithm is MinPOMCP-GO*: it is a variant of MinPOMCP-GO in which trials end
whenever a previously unvisited leaf node is encountered instead of ending a trial only
when a terminal state is reached. MinPOMCP-GO* is aimed to be used online, as it
produces more trials with a shortest depth, hence favoring short-term performance that
would help avoiding collisions.

4. Experiments

We implement the previously described method to three navigation benchmark environ-
ments available in [21]: Cube Baffle, containing two cubes, Wall Baffle, containing two
walls, and the real downtown of San Diego. They are illustrated in Figure 3.

(a) (b) (c)
Figure 3. Cube Baffle (a), Wall Baffle (b), and San Diego (c).

To evaluate our approach, four test tasks are solved for each environment, numbered
from 1 to 4, corresponding to the maps presenting from the lowest to the highest GNSS
availability probabilities. We compare the results obtained imposing the best constraint
returned by the context selector with those obtained without constraint. The performance
metrics are the number of collisions and the mean cost obtained considering a fixed
decision-making timeframe. The lower they are, the better performance is.

4.1. Material

To carry out the experiments, we use a supercomputer constituted of 24 cores. For each
of these cores, the frequency is of 2.60 GHz, the Random Access Memory size is of 96
Gb, and the cache size is of 19.25 Mb.

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation66



4.2. Settings

In the following, we describe the settings used in our experiments. The GNC model and
the reference velocity settings are the same as those described in [1].

Initial Position and Goal. The mean initial position is set to X0 = [10, 25, 5] for Cube
Baffle and Wall Baffle, and X0 = [110, 60, 5] for San Diego. The goal position is set to XG
= [85, 78, 5] for Cube Baffle, XG = [50, 80, 5] for Wall Baffle, and XG = [200, 125, 5] for
San Diego.

Map Decomposition. The map size of Cube Baffle and Wall Baffle is [101, 101, 21].
For San Diego, it is [217, 167, 24]. The maps are uniformly divided into (nL = 5)×(nl =
5)× (nh = 1) areas.

Model and Solver. The factor γ is set to 1, and the action cost ΔTa is set to 2.2. The
collision penalty Kcol , its threshold Kcolthr , and the constraint violation penalty Kconstr
(Eq. 5) are respectively set to 450, 350, and 450. The exploration coefficient c of UCB1
is set to 6.

Training Tasks. The training timeout is set to 2 minutes and the number of training
tasks, i.e. the number of probability maps of GNSS availability used for training, is 30.

Neural Network and Test Tasks. The neural network loss threshold is set to 1.8. The
decision-making timeframe is set to 2 seconds and the number of test tasks, i.e. the
number of probability maps of GNSS availability used for testing, is 4. These maps are
generated with the error thresholds: ε = 1, 2, 5, and 10 meters. For each test task, 50
episodes are launched.

4.3. Results

The performance metric values obtained for each environment are summarized in
Table 1. The probability maps of GNSS availability at the initial and goal altitude are
displayed as background of the following figures, the resulting paths are plotted in red
and the collisions are represented by black dots.

MinPOMCP-GO MinPOMCP-GO*
No constraint Constraint Relative Gain (%) No constraint Constraint Relative Gain (%)

Ncol Cost Ncol Cost Ncol Cost Ncol Cost Ncol Cost Ncol Cost

1 2 115.144 0 114.296 100.00 0.74 0 91.912 0 106.072 / -15.41
Cube 2 0 96.936 0 97.808 / -0.90 0 93.592 0 95.144 / -1.66
Baffle 3 1 104.360 0 105.688 100.00 -1.27 2 108.848 0 100.720 100.00 7.47

4 1 102.648 0 98.384 100.00 4.19 0 94.824 0 99.368 / -4.79

1 21 243.848 6 162.936 71.43 33.18 12 179.696 0 116.664 100.00 35.08

Wall 2 14 191.600 3 141.616 78.57 26.09 9 152.024 0 116.720 100.00 23.22

Baffle 3 0 85.336 0 95.632 / -12.07 0 84.816 0 95.768 / -12.91
4 3 110.976 2 102.616 33.33 7.53 1 95.216 0 87.280 100.00 8.33

1 37 387.776 36 370.904 2.70 4.35 40 385.800 35 355.352 12.50 7.89
San 2 39 381.368 31 347.800 20.51 8.80 27 305.408 23 278.600 14.81 8.78

Diego 3 34 355.872 18 249.392 47.06 29.92 32 334.264 8 180.576 75.00 45.98

4 27 305.496 9 189.824 66.67 37.86 28 311.352 11 199.136 60.71 36.04

Table 1. Comparison of the performance metrics obtained by imposing the best constraint with the ones
without constraint. Relative gain is computed as relative change, taking the performance metric value obtained
without constraint as reference. The considerably performance gains are presented in bold.

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation 67



For the Cube Baffle environment, the costs obtained without constraint and imposing
the best constraint, using MinPOMCP-GO or MinPOMCP-GO*, are similar for all the
test tasks. Indeed, the UAV does not fly close enough to the cubes and the GNSS
availability probability is sufficiently high. Hence, very few collisions occur, even
without constraint. Figure 4 shows the resulting paths without constraint and imposing
the best constraint for the first test task, corresponding to the lowest GNSS availability
probabilities. The imposed constraint makes the resulting paths deviate to avoid the zones
of possible GNSS loss, to reduce the collision risk.

(a) (b)
Figure 4. Results obtained for Cube Baffle, for test task 1: paths obtained using MinPOMCP-GO*, without
constraint (a), and with the best constraint (b).

For the Wall Baffle environment, with MinPOMCP-GO or MinPOMCP-GO*, the
number of collisions and the cost obtained imposing the best constraint are considerably
lower than those without constraint for the test tasks (1) and (2), corresponding to
the two maps presenting the lowest GNSS availability probabilities. For test task (1),
using MinPOMCP-GO, the number of collisions obtained imposing the best constraint
is reduced of almost 72%, and using MinPOMCP-GO*, it is reduced to 0. Figure
5 shows the resulting paths without constraint and imposing the best constraint. For
these first two test tasks, the best constraint forces to fly over the wall, where GNSS
availability probability is greater, instead of flying between the two walls as obtained
when no constraint is imposed. Even if the flight time becomes a bit longer, the cost
is much reduced because less collisions occur. That is, the mission safety is largely
improved. For the third test task, using MinPOMCP-GO or MinPOMCP-GO*, the cost is
slightly increased when imposing the best constraint, still favoring the safer paths flying
over the wall. Finally, for the fourth test task, presenting the highest GNSS availability
probabilities, the best constraint only imposes to slightly move away from the first wall.
It results in a slight decrease of the number of collisions and the cost, with MinPOMCP-
GO or MinPOMCP-GO*.

The San Diego environment includes multiple buildings, which incurs a lot of
regions where GNSS availability probability is particularly low. Without constraint, the
mission leads to a collision in most episodes, for each test task. The best constraints
returned correspond to pass to the left of the obstacles (Fig. 6). With MinPOMCP-GO
or MinPOMCP-GO*, the number of collisions and the cost are decreased imposing the
best constraint, particularly for the two maps presenting the highest GNSS availability
probabilities, test tasks (3) and (4). For the third test task, the cost is decreased to almost
46% using MinPOMCP-GO*, and for the fourth task, it is reduced to almost 38% using
MinPOMCP-GO.

In conclusion, for the three environments, imposing the best constraint always
reduces the number of collisions, with any MinPOMCP-GO variant. This gain on the
number of collisions and the one on the cost are much greater for difficult environments,

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation68



(1)

(2)

(3)

(4)

(a) (b)
Figure 5. Results obtained for Wall Baffle: paths obtained using MinPOMCP-GO*, without constraint (a), and
with the best constraint (b)

comprising multiple obstacles and presenting low GNSS availability probabilities.
Moreover, although the context selector is learnt from MinPOMCP-GO, imposing the
best constraint returned improves clearly the online planning performance even when
using MinPOMCP-GO*.

5. Conclusion

In this paper, we have proposed a learning-based state abstraction approach to address
a partially observable problem of UAV autonomous navigation, where the GNSS
unavailability may have a dramatic impact on the UAV path. We have then implemented
a process to learn the best path constraint, i.e. the best corridor in which the UAV must
navigate, from a set of probability maps of GNSS availability. We have evaluated this
approach on different environments, including a realistic urban one. The presented results
have shown that first, imposing this best constraint can indeed improve the quality of the
online-computed path, especially when uncertainty is high, and second, it achieves good

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation 69



(3)

(4)

(a) (b)
Figure 6. Results obtained for San Diego, for test tasks (3) and (4): paths obtained using MinPOMCP-GO*,
without constraint (a), and with the best constraint (b)

performances although only the state space is abstracted, and different solvers are used
for learning and planning.

Future works will generalize this approach by not only considering the probability
map of GNSS availability as feature, but also the initial and goal positions. To do so, we
will avoid to evaluate all the possible constraints by only considering the most suitable
candidate constraints, in order not to generate a huge number of training data. For
example, in our navigation problem, only three constraints may be considered for each
feature vector: the one corresponding to the shortest path, the one maximizing GNSS
availability probability, and the one weighting the both of them.

References

[1] Delamer JA, Watanabe Y, Ponzoni Carvalho Chanel C. Safe path planning for UAV urban operation
under GNSS signal occlusion risk. Robotics and Autonomous Systems. 2021;142:103800.

[2] Kaelbling LP, Littman ML, Cassandra AR. Planning and acting in partially observable stochastic
domains. Artificial Intelligence. 1998;101:99-134.

[3] Pineau J, Gordon G, Thrun S. Anytime Point-Based Approximations for Large POMDPs. Journal of
Artificial Intelligence Research (JAIR). 2006;27:335–380.

[4] Silver D, Veness J. Monte-Carlo Planning in Large POMDPs. In: Advances in Neural Information
Processing Systems (NeurIPS). Vancouver, BC, Canada; 2010. p. 2164–2172.

[5] Hostetler J, Fern A, Dietterich T. State Aggregation in Monte Carlo Tree Search. In: AAAI Conference
on Artificial Intelligence (AAAI). Québec City, QC, Canada; 2014. p. 2446–2452.

[6] Chitnis R, Silver T, Kim B, Kaelbling L, Lozano-Perez T. CAMPs: Learning Context-Specific
Abstractions for Efficient Planning in Factored MDPs. In: Conference on Robot Learning. London, UK;
2021. p. 64-79.

[7] Ong SCW, Png SW, Hsu D, Lee WS. Planning under Uncertainty for Robotic Tasks with Mixed
Observability. The International Journal of Robotics Research. 2010;29(8):1053-68.

[8] Kocsis L, Szepesvári C. Bandit Based Monte-Carlo Planning. In: European Conference on Machine
Learning (ECML). Berlin, Germany; 2006. p. 282-93.

[9] Keller T, Helmert M. Trial-Based Heuristic Tree Search for Finite Horizon MDPs. In: International
Conference on Automated Planning and Scheduling (ICAPS). Rome, Italy; 2013. p. 135–143.

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation70



[10] Carmo AR, Delamer JA, Watanabe Y, Ventura R, Ponzoni Carvalho Chanel C. Entropy-based adaptive
exploit-explore coefficient for Monte-Carlo path planning. In: International Conference on Prestigious
Applications of Intelligent Systems (PAIS). (Digital ECAI); 2020. p. 1-8.

[11] Dijkstra EW. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik.
1959;1:269–271.

[12] Li L, Walsh TJ, Littman ML. Towards a Unified Theory of State Abstraction for MDPs. In: International
Symposium on Artificial Intelligence and Mathematics (ISAIM). Fort Lauderdale, FL, USA; 2006. p.
531-9.

[13] Abel D, Hershkowitz DE, Littman ML. Near Optimal Behavior via Approximate State Abstraction. In:
International Conference on International Conference on Machine Learning (ICML). New York City,
NY, USA; 2016. p. 2915–2923.

[14] Jiang N, Singh S, Lewis R. Improving UCT Planning via Approximate Homomorphisms. In:
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). Paris, France;
2014. p. 1289–1296.

[15] Anand A, Grover A, Mausam M, Singla P. ASAP-UCT: Abstraction of State-Action Pairs in UCT.
In: International Joint Conference on Artificial Intelligence (IJCAI). Buenos Aires, Argentina; 2015. p.
1509–1515.

[16] Anand A, Noothigattu R, Mausam, Singla P. OGA-UCT: On-the-Go Abstractions in UCT. In:
International Conference on Automated Planning and Scheduling (ICAPS). London, UK; 2016. p.
29–37.

[17] Bakker B, Zivkovic Z, Kröse B. Hierarchical dynamic programming for robot path planning. In:
International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany; 2005. p. 2756-
61.

[18] Gopalan N, desJardins M, Littman ML, MacGlashan J, Squire S, Tellex S, et al. Planning with Abstract
Markov Decision Processes. In: International Conference on Automated Planning and Scheduling
(ICAPS). Pittsburgh, PA, USA; 2017. p. 480-8.

[19] Lee Y, Cai P, Hsu D. MAGIC: Learning Macro-Actions for Online POMDP Planning. In: Robotics:
Science & Systems (RSS). (Held Virtually); 2021. .

[20] Hart PE, Nilsson NJ, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cybernetics. 1968;4(2):100-7.

[21] Mettler B, Kong Z, Goerzen C, Whalley M. Benchmarking of obstacle field navigation algorithms for
autonomous helicopters. In: Forum of the American Helicopter Society (AHS). Phoenix, AZ, USA;
2010. p. 1936-53.

M. Zaninotti et al. / Learning Path Constraints for UAV Autonomous Navigation 71


