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Abstract. In many practical applications, data are represented by high-dimensional 
features. Although the traditional K-means algorithm is simple, it usually gets the 
approximation solution by eigenvalue decomposition, this method led to the model 
less efficient. In addition, their loss functions are sensitive to data distribution. In 
this paper, a clustering model of adaptive K-means with sparse constraints is 
proposed. The proposed method is designed by combining the dimension reduction 
with sparse constraints and adaptive clustering. It provides a flexible computational 
framework for subspace clustering and is suitable for different distribution data sets. 
Besides, the sparsely constraint in our method can remove redundant features and 
retain useful information. We develop an effective alternative optimization 
algorithm to solve our model. Finally, the extended experiments on several 
benchmark datasets demonstrate the advantages of our method over other clustering 
algorithms 

Keywords. Feature selection, K-means, discriminative embedded clustering, 
adaptive learning 

1. Introduction 

Clustering and dimension reduction are widely used in machine learning, PCA and K-

means (KM) are frequently used due to their simplicity and efficiency. KM first 

randomly initializes the cluster center, then determines the similarity of the data based 

on the distance between the data and its cluster center. After that, KM assigns the data to 

the nearest cluster center, and then updates its cluster center for each cluster of data.  

However, due to the different distribution of data, a fixed norm may not suitable for 

all data. Typically, as shown in Fig.1(a), KM uses the ��-norm to calculate the loss value, 

which assigns a larger weight to the farther data. Therefore, KM is sensitive to outliers. 

Different from KM, the ��,�-norm used in Du et al. [1] proposed RMKKM in Fig.1(b) 

values higher density areas. However, this weight strategy may be overestimated, lead to 

misjudgement. 

As an essential means to process high-dimensional data, dimensional reduce 

technology can not only reduce the computational time and storage space requirement, 

but also reduce the impact of noise and redundant features. At present, in the field of 

machine learning, the conventional dimensional reduce algorithm relies on the matrix 

decomposition, mutual information [2,3], regression-based feature selection, and so on. 

In addition, with the development of sparse representation and low rank representation 

[4-8], researchers have proposed many efficient and robust dimension reduction methods 
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such as SPCA [4], CSPCA [5]. These methods have achieved satisfactory results in 

practical applications. These sparse dimensional reduction algorithms not only improve 

the readability of the main components, but also preserve as much raw data structure 

information as possible while reducing data redundancy information. In this paper, the 

PCA is imposed to obtain a sparse projection matrix. Because of the diversity of sample 

distribution, a more flexible norm is needed to calculate the amount of data loss 

information. 

In the field of machine learning, clustering, as a basic technique, has been widely 

discuss. In the past few decades, we have seen its remarkable effects in image, voice, 

word, and other information processing. KM is a commonly used clustering method, 

which is widely used in many applications because of its efficiency and simplicity. 

However, KM are very sensitive to initialization, the results are often unstable, especially 

when large amounts of noise and related characteristics are included in the data. In this 

case, the precision of the clustering algorithm will be directly affected.  

It is impractical to deal directly with the unnecessary noise of these high-

dimensional data and the associated characteristics it contains. A simple method to 

handle this problem is to reduce the dimension of the data, such as the Principal 

Component Analysis (PCA), Linear Discrimination Analysis (LDA), and then preform 

clustering [9,10]. For example, a PCA and KM-based clustering algorithm called 

PCAKM was introduced by Hou C et al [9]. However, one of the main disadvantages of 

these clustering is that they perform subspace learning and clustering independently, but 

the subspace obtained by dimensionality reduction may not be the best result for 

subsequent clustering tasks. In order to effectively improve the accuracy of subspace 

clustering, the researchers found that joint subspace learning and clustering are beneficial 

for clustering [11,16].  For example, LDA and KM are adaptively applied to the Joint 

Framework (LDAKM) proposed by Ding C [12]. In this framework, clustering is 

combined with subspace learning adaptively to make the treatment of related features 

more effective. To better explore the identifying information in high-dimensional data, 

Hou et al. [13] have proposed a common framework for both PCA and KM, called 

Discriminative Embedded Clustering (DEC). However, these subspace clustering is 

generally limited to data processing for a specific distribution. When the data distribution 

changes, its accuracy often has some effect. 

To solve the above problem, following the idea of adaptive learning in Nie et al. [17] 

and Wang et al. [18], this paper proposes a flexible dimension framework (named 

ASPCAKM). Besides, to adapt the data of different distributions, we also use adaptive 

paradigm to make the data similarity judgment in subspace clustering. At the same time, 

sparse constraints are added to the projection matrix to reduce data redundancy while 

preserving as much raw data structure information as possible. This improves the 

clustering accuracy.  

 
(a)                                                 (b) 

Figure 1. KM and RKM. (a) KM under the influence of outliers, (b) RKM under the influence of over-penalizing 
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2. Related work 

This section mainly introduces some close related subspace clustering methods. We 

first familiarize some the notations. 

2.1. Notations 

Let X = {�� ∈  ��|� � 1,2. . . 
} be the input dataset with d features. Subspace 

clustering embeds data in feature space through the linear transformation matrix W= 

{ �� ∈  ��|� � 1,2. . . � }. It obtains the prediction Y= { �� ∈  ��|� � 1,2. . . 
 } after 

dimension reduction, and divides the data into class c groups. Tr(.) is the symbol of the 

trace operation. Table 1 introduces the other notations. 

TABLE 1. Important notations 

Notation Description 

d Dimensionality of samples; 

r Dimensionality of embedded subspace; 

c Number of classes; 

� Balance parameter; 

� Adaptive parameter; 

�1�  , �2� The i-th diagonal elements of T1, T2 respectively 

T1, T2 diagonal matrix; 

��  ∈ 	�
 The i-th sample; 

X =
��, ����. . . ��
� Data matrix of the whole samples; 

B ∈  	�	

 Linear transformation matrix; 

G ∈  	�	

 Cluster centroid matrix; 

F ∈  	�	�
 Cluster indicator matrix; 

A ∈  	�	

 Linear transformation matrix; 

2.2. Robust K-means clustering 

The purpose of KM clustering is to divide dataset X into c clusters, and for the 

distance between data, KM calculates the Euclidean distance (the ��-norm of the data 

vector), representing the clustering center matrix of the data in F. Here, � �� = 1 means 

that the i-th data belongs to cluster j.  The target function for KM clustering can be 

expressed as: 

 min
�

∑ ∑ ���
	
�
�

�
�
�  ||�� � �̅�||��                                                                             �1�   

if the i-th data assigned to cluster k ��� = 1, �̅� is the k-th cluster center. 

Despite the K-means algorithm is simple and efficient for clustering, Eq. (1) uses ��-

norm to calculate loss values, which are more sensitive to outliers because they assign a 

larger weight to distant points.  

For the solution to this problem, Du et al. [1] proposed a more robust ��,�-norm- based 

KM. Its loss function is as follows: 

 ��

�

∑ �∑ ���
	
�
� ||�� � �̅�||��

�
�
�                                                                            �2�   
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Such a robust loss function makes RKM reduce the impact of large outliers, but it is 

sensitive to small loss values and tends to overestimate the weight of data areas with 

higher density.  

2.3. Sparse Principal Component Analysis 

PCA is one of the most common used dimensional reduction algorithms by 

maximizing projection variance. Its loss function is as follows: 

���
�

−���	�

�	�    �. �.    	�	 = 
                                                                    (3) 

We obtain Eq. (4) by calculating derivative of Eq. (3) with respect to B 



�	 =  �	                                                                                                          (4)   

Then, we can choose the feature vector according to the feature value of the covariance 

matrix of X, and combine it into the projection matrix W.  

However, PCA has one obvious disadvantage that each main component analysis is a 

linear combination of all variables. This makes it often difficult to interpret the main 

components of the data. In order to solve this problem, a new method is proposed to 

estimate the main component with sparse load, called sparse main component analysis 

(SPCA).  SPCA is based on the fact that the PCA can be written as a regression 

optimization problem with secondary penalties, and lasso penalties (via elastic nets) can 

be integrated directly into the regression criteria to obtain sparsely loaded PCA. Its 

objective function is as follows: 

���，��� = ∑ ||
� − ���
�||�  +�
��� �||�||� 

�                      �5� 
where A ∈ �	
� is an orthogonal matrix, B ∈ �	
� is the projection matrix and the 

rank of both A and B are k,  � is the regularization parameter; 

2.4. Fast Adaptive KM Subspace Clustering 

FAKM use an adaptive loss function for subspace clustering. Its objective function 

is, 

���
�,
,�

 �� �	���	�− �||
�	 − ���||�                 (6)           

where W  ∈ �	
�, F ∈  ��
� is the cluster indicator matrix, G ∈  ��
� is the cluster 

center matrix,  � is the balance parameter, �  is  the adaptive parameter 

It applies the adaptive norm defined in [17]. 

||�||�  =   ∑ (���)||��||�
�

||��||� ���                              (�) 

Where  �  > 0   is an adaptive parameter. 

By analyzing the Eq. (7), one can find that when � → 0, ||�||�  tends to become the 

��,�-norm of �; when � → ∞ , ||�||�  is actually Frobenius norm. 

Although FAKM uses adaptive strategy for clustering to cope with the distribution of 

different samples, it selects the PCA method with the largest variance for dimension 

reduction.  
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3. Proposed method 

3.1. Adaptive discriminative clustering with sparse PCA 

For compressing the projection matrix and further reducing redundancy information. 

we replace PCA with SPCA in subspace clustering. Combining with the SPCA in Eq. 

(4), we first proposed the subspace clustering with sparse constraints method. 

���
�,�,


||
 − 
���||�
� + �||�||� 

� + �||
� − ��||�
�                   �8� 

In order to cope with data in different distributions, refer to the recent discriminant 

subspace clustering [18], we add the adaptive loss function in subspace clustering and 

get the objective function  

 ���
�,�,


||
 − 
���||� + �||�||� 
� + �||
� − ��||�                       (9)    

where A ∈ �	
�is an orthogonal matrix, B ∈ �	
� is the projection matrix, � is the 

regularization parameter, � is the balance parameter �  is  the adaptive parameter. 

3.2. Optimization 

We proposed a simple iterative algorithm to solve the Eq. (8). When we update a 

variable, we keep the other’s fixed. According to the theory in [17], Eq. (8) can be 

translated into the following optimization problem: 

��� 
�,�,
 ��,��

 �1�||�� − �����||��
�

���

+ �||�||� 
� + �  �2�||���� − ��!�||��

�

���

      �10� 

Where   �1� = (1 + �) 
||
����

�
�||����

�(||
����
�
�||���)�

     �2�  = (1 + �) 
||��
��


���||����

�(||��
��

���||���)�

 

Note   U1 = 
 − 
���, U2 = 
� − ��;  T1，T2 are diagonal matrix; diagonal 

element are �1� �2�  respectively, We can obtain 

��� 
�,�,
 ��,��

��("1� �1 "1) + �  ��("2��2 "2)   + �||�||� 
�         �11� 

Step 1: Solving F while fixing B, G, �1, ��� �2 

When B, G, T1, and  T2 fixed, the optimization  problem in Eq. (11) 

become 

��� 
�
∑  ||���� − ��!�||���

���     =   ��� 
�
∑  ∑ ||���� − #�||�

��
���

�
���  ���           (12) 

By assign data to its nearest cluster center Minimize Eq. (12) 

��� =  $1      % = ��#����   ||���� − #�||�
� 

0         &�ℎ'�(��'                                                  (13) 

Step 2: Solving B while fixing G, F, �1 ,�2 

We obtain Eq. (14) by calculating derivative of Eq. (11) with respect to B 

�  =  ��) + 
��1
 + �
��2
����
��1
�+ �
��2���             �14� 
Where E is the unit matrix, 

Update the A matrix after getting B  


�
� =  "*+�;� =  "+�                                                                                         (15) 

Step 3: Solving G while fixing B, F, �1,�2 
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We obtain Eq. (16) by calculating derivative of Eq. (11) with respect to G 

� =  ������� ��
�                                                                                                   (16) 

Step 4: Updating T1 and T2 by calculating its i-th element as: 

�1� = (1 + �) 
||
����

�
�||����

�(||
����
�
�||���)�

                                                                                 (17) 

�2�  = (1 + �) 
||��
��


���||����

�(||��
��

���||���)�

                                                                               (18)   

Eq. (13) is sensitive to the initialization of F. Concretely, it first initializes F, which is 

used to solve W, G. However, the next time when you need to update, the initial cluster 

center is calculated by the previous F, finally lead to unstable results. Hence, when 

updating F, we initialize F several times, and choose to the one makes Eq (13) smallest. 

we sum up the iteration process of optimization in Algorithm 1. 

 

Algorithm 1 Algorithm to solve the problem Eq. (10). 

Input  

          The input data  X ∈ ��
	 

           The number of clusters c, the reduced dimension number r, regularization 

parameter λ,�  and adaptive parameter σ 

1 Initialize T1, T2   as an identity matrix， randomly initialize B G 

2 repeat 

3              Update F by Eq. (13) 

4              Update B by Eq. (14) 

5              Update A by Eq. (15) 

6              Update G by Eq. (16) 

7              Update T1, T2  Eq. (17)(18) 

8    until Convergence 

 Output: Selection matrix B, Cluster indicator matrix F, Cluster centroid matrix 

G 

4. Experiments 

We analyzed five different public data sets to evaluate the algorithm performance. 

The details of these datasets are summarized in Table 2. 

4.1. Experiment setup 

We have conducted comparative experiment on five public datasets to evaluate the 

algorithm performance. Before executing the algorithm, we perform data normalize. 

These datasets include: one face image datasets (Yale), three UCI datasets (wine, Breast 

and lung), one text dataset (WebKB),  

Detailed information of these datasets is summarized in Table 2. We compared 

ASPCAKM with FAKM and KM, briefly described as follows:  

KM is the traditional K-means algorithm. 

FAKM is a novel subspace clustering with adaptive loss function. 
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To make comparison fair, we record the best results of Comparison algorithm. 

Using Accuracy (ACC) to measure clustering performance. A higher value indicates 

better performance. [19] [20] have explanations of ACC. Table 3 show the results of 

clustering. 

Table 2. A brief description of the datasets. 

Datasets Classes # of 

instances 

Dimensions # of reduced dimensions 

Breast 2 699 10 [3,4,5,6,7,8] 

wine 3 178 13 [3,4,5,6,7,8,9,10] 

Lung 3 32 56 [5,10,15,20,25,30,35,40,45,50] 

Yale 15 165 1024 [100,200…900,1000] 

WebKB 7 814 4029 [100,200 …2000,2100] 

Table 3. Clustering results of compared algorithms (ACC%). 

 Breast Wine Lung Yale WebKB 

KM 60.09 70.22 53.88 40.3 51.61 

FAKM 94.59 87.02 55.56 42.34 67.09 

ASPCAKM 95.57 95.34 59.75 50 69.01 

4.2. visualization 

We perform clustering and visualization on iris dataset. The dataset includes 

versicolor, virginica and setosa three clusters, and has 4 dimensions. The original data 

with the ground truth label is shown in Fig. 2(a), where two characteristics are selected. 

We used ASPCAKM to subspace cluster the original 4-D data and reduced dimension to 

2. ASPCAKM results are shown in Fig. 2(b). Misclassified data are marked with forks. 

 

（a）                                                        (b) 

Figure 2.  (a) Original data with ground truth labels. (b) Clustering result of ASPCA 
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4.3. Influence of dimension reduction 

The purpose of next experiment is testing the effect of dimension reduction applied 

to ASPCAKM  

We set the projection matrix B in Eq. (9) as a d-dimensional identity matrix, and 

generate Eq. (19) 

��

�,�

�|� � ��|�
�
                                                                                            (19) 

Obviously, if we never perform dimensionality reduction, ASPCAKM become KM 

with an adaptive loss function, name it ASPCAKM-ND. Fig. 3 shows a comparison of 

two algorithm ACC on several data sets. The results show that, because of adaptive loss 

function, ASPCAKM-ND obtains higher accuracy than KM. ASPCAKM gets the 

highest accuracy. Therefore, we argue that it is beneficial for clustering to perform 

feature learning and adaptive clustering. 

 

Figure 3. Influence of dimension reduction in ASPCAKM 

5. Conclusion 

In this paper, we proposed a sparse constraints subspace clustering with adaptive 

loss function to deal with the challenges of existing subspace clustering algorithms with 

K-means. We jointly integrated cluster and Sparse PCA into a framework. Additionally, 

to ease the affected by redundant features and outliers, we apply an adaptive loss function 

to calculate the distance data elastically. Based on this theory, we experimented on 

several data sets to demonstrate the advantages of the ASPCAKM algorithm. Indeed, 

you can set the dimension reduced to d-dimension and set the appropriate sparse 

constraint α to get the sparse projection matrix B ∈  �
���, and because the characteristics 

of the sparse PCA redundant features will be compressed to 0, which is similar to the 

best results of the algorithm. In the future we will extend it into a 2-D clustering 

framework. 
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