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Abstract. In this article, based on the self-represented multi-view subspace 

clustering framework, we propose a new clustering model. Based on the assumption 

that different features can be linearly represented by data mapped to different 

subspaces, multiview subspace learning methods take advantage of  the 

complementary and consensus informations between various kind of views of the 

data can boost the clustering performance. We search for the tensor with the lowest 

rank and then extract the frontal slice of it to establish a well-structured affinity 

matrix. Based on the tensor singular value decomposition (t-SVD), our low-rank 

constraint can be achieved. We impose the ��,�-norm to flexibly control the sparsity 

of the error matrix, making it more robust to noise, which will enhance the 

robustness of our clustering model. With combining ��,�-norm and tensor multi-

rank minimization, the proposed Multi-view Subspace Clustering(MVSC) model 

can effectively perform clustering with multiple data resources.  We test our model 

on one real-world spoon dataset and several publicly availabe datasets. Extensive 

evaluation methods have proved that our model is effective and efficient. 
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1.  Introduction 

In daily life, for a specific object, we can usually recognize it from multiple perspectives. 

For example, we can identify a person from his appearance, voice, fingerprints, iris 

etc.[1]; a picture can be represented by different features, such as harris, lpb and gabor; 

We can describe a cat together with pictures and text descriptions. Generally, multi-view 

data has two characteristics: consistency and complementarity. The  consistency means 

that data from different perspectives are used to represent the same object; the 

complementarity means that data from a specific perspective has characteristics that 

other perspectives do not have. Therefore, when improving clustering performance, 

complementary information from multiple views provides more contribution than single-

view data. 

Xu et al. believe that collaborative training, graph-based learning methods, and 

subspace learning constitute the three main categories of multi-perspective learning[1]. 

Multi-view data provides more information for clustering tasks. In this article, we mainly 

study the problem of MVSC, which aims to divide unlabeled multi-view data into various 
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realistic clusters [2], and ensure that the distances of samples within the same cluster are 

close to each other, while the samples in different clusters are far from each other. 

Subspace clustering assumes that different clusters have different low-dimensional 

subspaces, and high-dimensional data can be reconstructed from data existing in 

subspaces. In other words, subspace clustering can reduce the dimensionality of high-

dimensional data  and obtain clustering results at the same time. Sparse subspace 

clustering (SSC) successfully uses sparse subspace representation to solve the coefficient 

matrix, and the clustering results will be outputted when the affinity matrix was inputted 

into the spectral clustering[3]. Low-rank  representation (LRR) effectively enforces a 

lowest rank on the representation matrix so that the subspace to which the data belongs 

will be recovered and the noise of the data will be removed[4]. Although the above two 

single-view clustering algorithms have achieved good clustering effect, data usually 

come from different perspectives or fields in practical application. Therefore, based on 

self-representation, many researchers proposed MVSC algorithm. Cao et al. [5] use 

Hilbert-Schmidt Independence criterion to obtain the enhanced complementary 

information extracted form multiple views of the data and improve the clustering 

performance. Zhang et al. [6] stack the subspace representation matrix into a tensor and 

impose low-rank constraints on the tensor to explore the high-order correlation between 

multi-perspective data. However, the tensor nuclear norm(TNN) cannot satisfy the 

requirements of Tucker rank and ��-norm for compact convex relaxation[2], which is a 

simple rank sum norm, lacking clear physical meaning [7]. Lu et al. [8] extended matrix 

singular value decomposition to higher-order tensors and proposed tensor nuclear norm 

which can be effectively solve by t-SVD. Xie et al. [7] project the tensors into the low-

dimensional matrix space and then obtain the minimized nuclear norm of the tensors 

through the t-product operation. A well-structured subspace representation matrix is 

obtained through the constraints of low-rank tensors, which can form a robust affinity 

matrix for spectral clustering[7]. 
The majority of the above MVSC algorithms use ��,� regularizers to constrain the 

noise matrix of each view. However, as indicated in recent studies [6,7], the  ��,�- norm 

is sample-specific, which may assume data is represented in Laplacian distribution [6]. 

The ��,�- norm is an extension of ��-norm, and��-norm is a convex relaxation of��-norm. 

Although convex relaxation problems are easy to obtain optimal solutions, such solutions 

may be suboptimal. To cope with this problem, inspired by this paper  Xie et al. [7], we 

introduce a more robust and sparse solution with the ��,�-norm for clustering [10].By 

controlling the sparsity of subspace representation matrix with a flexibale parameter, our 

model can flexibly deal with data in different distributions for various applications. 

2. Related Work 

Subspace clustering algorithms, both single-view and multi-view, will be briefly 

reviewed in this section. Some necessary notations are also introduced for better 

understanding .of our method. 

2.1. Notations 

X is indicated in bold uppercase, which is defined as a matrix in this article. As a 

vectors, x is represented by bold lowercase. Tensor are written as bold calligraphy letters, 
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e.g., �. The formulation of the ��,�-norm is to effectively constraint the out of samples 

of  X	 R
×� :   

 ���,� = �� �� �������� ��
����� �

�
�
                                                      (1) 

where p is a variable value, and the ��,� -norm with different p values can constrain 

different types of noise. 

2.2. Single-view subspace clustering 

Affinity matrix or similarity matrix can well represent the relationship between data. 

Clustering results can be obtained by applying clustering method on affinity matrix. 

Therefore, the construction of affinity matrix directly affects the clustering performance. 

Self-representation based subspace learning believes that high-dimensional original data 

can be reconstructed from data existing in low-dimensional subspaces. Some studies 

[12,13,14,15] use affinity matrix, which can reveal the similarities between data, to 

achieved advanced clustering performance. The general clustering model of single view 

subspace based on self-representation is as follows: 

 min�,� ���� + �!(")                      s.t. X=XZ+E                                        (2) 

Where X 	 R#×
 is a data matrix in which the n data samples are represented by each 

column. The subspace representation matrix is represented by Z, E is used to constrain 

sample noise; �$�� is a proper norm, )(Z�  is a regularizer, %is a parameter to balance 

error losses and regularization terms. In order to obtain the local relationship between 

the data, SSC[3] uses ��-norm constraint Z, while LRR[4] uses ��,�-norm constraint E 

to remove the specific noise of samples. Although these two single-view subspace 

clustering algorithms have achieved promising performance, the clustering performance 

cannot be further improved due to the inability to effectively utilize the complementary 

information among multi-view data. 

2.3. Multi-view subspace clustering 

Each view of data from multiple perspectives has information specific to other views, 

which can not be ignored for the improvement of clustering performance. Making full 

use of these information is one of the characteristics of MVSC algorithm. Most MVSC 

algorithms can be represented by the following model: 

 min�(&),�(&) � '�(*)'� +�*�� �!�"(*)�                          s.t. (*) = (*)"(*) + �(*).       (3) 

Here -(*)  represents the data matrix of the vth view. /(*) and 0(*)  are the  

corresponding representation matrix and error matrix of -(*), respectively. m represents 
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the number of views. Applying different constraints on the first and second terms in 

Formula (3) will result in different multi-view clustering methods. Belhumeur et al. [16] 

obtain better complementary information by applying the Hilbert-Schmidt criterion on 

different /(*). By imposing the nuclear norm on the unfolding tensor and forcing the 

error matrix with the ��,�-norm the high-order relationship between different views has 

been obtained by Zhang et al. [6]. However, the requirements of Tucker rank and ��- 

norm for compact convex relaxation are not satisfied by this unfolding-based rank 

constraint, namely the tensor nuclear norm. To make the above problem effectively 

solved, By constraining the tensor nuclear norm based on t-SVD, Xie[7] et al ensure 

consistent information between various kind of views of the data.. 

3. The Proposed Method 

Inspired by t-SVD-MSC, we impose the ��,�-norm on the subspace representation matrix 

to reduce the influence of noise and increase the model’s flexibility. 

3.1. Formulation 

The formulation of our proposed method is: 

min�(&),�(&) �����,� + ���1                                                                                   

s.t. (*) = (*)"(*) + �(*), v=1,...,V,                                                    (4) 

� �2�Z(3), Z(3), . . . , Z(3)�,�
E=[E(1);E(2);...,E(V)], 

where 2($) represents the stacking operation. A 3-order tensor ��will be stacked by 

diverse Z(v). � �1 is the nuclear norm of �,�which is optimized based on the  t-SVD. 

For a comprehensive review of the nuclear norm and t-SVD, please refer to Xie et al.[7]. 

The concatenated error matrix can be effectively represented by the E=[E(1);E(2);...,E(V)]. 

In every view, E connects vertically along the E(v) column[4]. We can flexibly control 

the sparsity of E and obtain the best representation � by optimizing the above objective 

function. 

3.2. Optimization 

To optimize the formulation (4), inspired by the variable-splitting technique, we make 

the tensor � separable by introducing an auxiliary tensor variable � �Then, we can 

rewrite our model as follows: 

4�Z(3), . . . , Z(5); E(3), . . . , E(5);�� 

= %�E��,� + '�'1 + � �6D3, X(3) 7 X(3)Z(3) 7 E(3)853��                                                                           

+ 9
2 'X(3) 7 X(3)Z(3) 7 E(3)'<

�> +6�,�7�8 
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           + ?
� '�7�'<

�
,                                                                                                   (5) 

here the two Lagrange multipliers are effectively represented by Dv, �, respectively, 

and the two penalty parameters are represented by 9 and @. 

Problem (5) can be converted to solving the following three sub-problems: 
1) Z(v)-Subproblem (with the other two variables are fixed): 

min�(&) 6A*, (*) 7 (*)"(*) 7 �(*)8 + B
� '(*) 7 (*)"(*) 7 �(*)'C

�

+6F(*), "(*) 7 G(*)8 + H
� '"(*) 7 G(*)'C

�
    (6)                            

 

Let the derivative of formulation (6) be zero, then the optimal solution of  Z(v) will 

be obtained: 

"(*)I = JK + B
H (*)L(*)>M� J�(*)LA* + N(*)L(*)

7N(*)L�(*) 7 F(*)�/P + G(*)�
                                 

 (7)  
                              

2) E(v)-Subproblem (with variables ��and � are fixed): 

          EI = argminQ%�E��,� + S�6D3, X(3) 7 X(3)Z(3) 7 E(3)8
5

3��
                   + 9

2 'X(3) 7 X(3)Z(3) 7 E(3)'<
�>

               = argminQ
%
9 �E��,� + 1

2 �E 7 B�<�

                                       

      =arg�VW� � JY
B '[�'�

� + �
� '[� 7 \�'�

�>����                                  (8)                             

where B is obtained by connecting  -(*) 7 -(*)/(*) + (1/N)](*) end to end. 
Therefore, equation (8) can be alternatively optimized by solving the following n 

independent subproblems : 

'[�I'� = ^_` minbc
�'[�'�

� + �
� '[� 7 \�'�

�

d = 1,2, . . . , W. ,                                      (9) 

The optimal solution of problem (9): 

[�I = e[�e�
I � fc

'fc'�
�                                                                                                (10) 

Where e[�e�
I
 is the optimal solution of the following formulation: 
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e[�e� = ^_` minebce�
�e[�e�

� + �
� Je[�e� 7 e\�e�>�

                                  (11) 

Subproblem (11) is also a standard �� 
problem,which can be solved by using the 

methods in [17]. 

3) Q-Subproblem (with variables � and E are fixed): 

�I = ^_`�VW����1 + H
� h�7 J� + �

?�>hC
�
                          (12) 

The optimization procedure of this problem can refer to the Algorithm 2 of  Xie et 

al.[7]. 

The two  Lagrange multipliers Dv and �can be updated as follow: 

A*I = A* + N�(*) 7 (*)"(*) 7 �(*)�,                                           (13) 

�I = �+ P(� 7�)                                                                  (14) 

Finally, we described the optimization procedure of the ��,�-norm based MVSC method  

in Algorithm 1. 
Algorithm 1: the optimization algorithm to solve problem (4) 

Input:K is the cluster number, Mutil-view data matrices:{X(v)} and �    

Initialized /(j) = 0, 0(j) = 0, ]j = 0, l = 1, . . . , V;  = = 0;
 

9 = 10Mp, @ = 10Mq, s = 2, 9�tu = @�tu = 10��, v = 10Mw; 
 

While not converge do 
for v = 1 : V do 

Update Z(v) by using (7); 

end 
Update E by using (8); 

for v = 1 : V do 
Update Dv by using (13); 

end 
Obtain ��=2�Z(�), Z(�), . . . , Z(5)�; 
Update ��by using (12); 

Update ��by using (14); 

Update parameters 9
 
and @; 9 = min(s9, 9�tu), @ = min(s@, @�tu); 

�G(�), . . . , G(*)� = xM�(�);
 

Check the convergence conditions: 

y(z) 7 (z)"(z) 7 �(z)y
{

< v and 'Z(3) 7 Q(3)'{ < v ; 

end 
Obtain the affinity matrix by 

L= �
5 � eZ(3)e + eZ(3)�e53�� ; 

Output: Spectral clustering algorithm is run on L to obtain clustering result C . 
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4. Experiment 

4.1. Experiment settings 

In this section, by conducting experiments on four image datasets. We verify the 

effectiveness of our model. We describe these datasets in Table1.
Table 1. The real world datasets. 

Dataset Instances Views Clusters
ORL 400 3 40 

YaleB 650 3 10 

Yale 165 3 15

Spoon 240 3 3 

There are 40 individuals in ORL dataset, and each individual contains 10 pictures 

taken from different conditions. For example, facial expressions, facial details, times and 

lighting. 

There are 38 distinct subjects in YaleB dataset. With different illumination, 64 near 

frontal images has been captured in each subject. In our experiment, we take the first 10 

individuals(650 images). 

The Yale data set consists of 165 different grayscale images, each of which is a 

group of 15 images. Each group of photos represents a different facial expression or 

shape.

The Spoon data set is collected by ourselves. There are a total of 20 spoons with 

varying degrees of defect, and each 80 is a group. Some samples are shown in Fig. 1. 

For the first three face dataset,we extract the intensity, LBP[19] and Gabor[20] 

feature. As for the Spoon dataset, Harris ,LBP and Sift feature are extracted. 

We choose the t-SVD-MSC algorithms as baselines: the competitor solve the TNN 

by using t-SVD so that the low-rank tensor can be obtained,which ensure the consensus 

between different views of the data. 

Two evaluation metrics will be used to assess the clustering performances[18]: 

Normalized Mutual Information(NMI), Accuracy(ACC). For these metrics, higher value 

ind-icates better performance. 

On ORL dataset,we set %=0.1 and p=0.2 in our proposed method. We set %=0.1 and 

p=1.9 on YaleB dataset. On Yale dataset, %=1.1 and p=0.8. As for the spoon dataset, we 

set %=0.1 and p=0.7 in our method. For the t-SVD-MSC, the settings of the parameters 

will follow the experiments in its papers[7]. All experiments were implemented in 

Matlab 2020b on an lntel(R) Core(TM) i5-8300H CPU @ 2.30GHz with 16G memory 

and NVIDIA GeForce GTX 1050 Ti GPU. 

 
(a) (b)                 (c)                

Figure 1. Samples from Spoon dataset. (a) has a significant gap, (b) with small defects and (c) is the 

complete one.
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Table 2. Clustering results of compared algorithms (ACC%). 

 ORL YaleB Yale Spoon 
t-SVD-MSC 96.6 0.30 55.6 0.10 87.2 1.30 61.7 0.00 

our work 96.7 0.40 55.6 0.50 88.1 1.00 62.5 0.00 

Table 3. Clustering results of compared algorithms (NMI%). 

 ORL YaleB Yale Spoon 

t-SVD-MSC 99.3 0.10 59.8 0.20 89.8 1.40 30.9 0.00 

our work 99.3 0.10 59.4 0.60 90.2 1.60 31.9 0.00 

 

 
(a)                                                                      (b) 

Figure 2. Clustering results of our method. (a) Original data. (b) Clustering results on Spoon dataset. 

4.2. Experiment results 

Table 2 show the clustering results on the four datasets, which are obtain by using 

different methods. Our method has achieved a higher metrics than t-SVD-MSC on 

almost all datasets, which shows that our model is more robust to noise by controlling 

the value of p. It is worth noting that on the ORL data set, our method only improved a 

little bit over t-SVD-MSC on ACC, while other metrics were the same. The visual 

clustering results on the spoon dataset are shown in Figure 2, which show that our method 

can effectively cluster the real-world spoon defect dataset. 

5. Conclusion 

We construct a new model to effectively solve the multi-view clustering problem by 

imposing the nuclear norm and ��,�-norm on the representation tensor and the vertical 

concatenation error matrix respectively. The��,�-norm regularizer can fit the variety of 

sparsity requirements via a flexiable parameter. At the same time, the introduction of 

tensor nuclear norm allows us to better probe the high-order relationship between 

multiple views of data. An efficient algorithm has been proposed to optimize our model. 

Extensive evaluation methods have proved that our model is effective and efficient on 

one real-world spoon defect dataset and three publicly available datasets. 
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