
Compact Deep Neural Networks via Soft

and Smooth Filter Pruning

Zonghui Fua, Xiaodong Wanga, Wei Lia and Zhiqiang Zenga,1
aCollege of Computer and Information Engineering, Xiamen University of Technology,

Xiamen, China

Abstract. Filters pruning methods are widely used to accelerate the inference pro-
cess of Deep Neural Networks (DNNs). Among them, Soft Filter Pruning (SFP)
has achieved increasing attention due to its compatibility and flexibility. How-
ever,conventional SFP directly sets the pruned filters to zero during training phase,
discarding the training information of the pruned filter completely. In order to solve
the above problem, this paper proposed a soft and smooth pruning method to retain
the training information among pruned filters. Instead of the zeroing the pruned
filters, our method imposes a filter weakening strategy, which gradually forces the
pruned filters to zeros. Such a gradual pruning framework will give the pruned
model more chances to recover the lost information and boost the pruning perfor-
mance. To verify the the actual effectiveness of our proposed method, we conduct
several experimental results on one dataset of metal surface images captured in a
controlled industrial environment, i.e.,KSDD, using Resnet-20 with various prun-
ing rates. Experimental results show that our filter weakening strategy consistently
achieves superior performance over the compared methods, especially when a large
amount of filters is pruned. By pruning 60% of filters, our method only drops 2.52%
on Accuracy.

Keywords. Filter pruning, ResNet, CNN, KSDD

1. Introduction

Recently, deep learning technology has developed rapidly, and various network structures

have continuously emerged. Among them, deep learning networks represented by Con-

volutional Neural Networks (CNNs), e.g., AlexNet [1], VggNet [2] , ResNet [3], have

received widespread attention and continue to improve the accuracy of pattern recogni-

tion in various application fields. Recent studies demonstrate that building deep network

structures is conducive to high performance. However, these deep networks usually com-

pany with heavy computation burdens due to huge numbers of parameters and their high

memory usage [4]. In this situation, despite the excellent learning capabilities of these

deep convolutional neural networks, they are difficult to apply directly to hardware plat-

forms with limited computing resources. For example, in the terminal field, the popular-

ization of applications posed significant challenges for deep learning technology. In order

to further improve the practicality of deep learning networks,researchers have tried to

compact deep learning algorithms for embedded platforms, such as mobile devices and

1
 Correspoding Author: Professor with the College of Computer and Information Engineering, Xiamen

University of Technology; E-mail: lbxzzq@163.com

Design Studies and Intelligence Engineering
L.C. Jain et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220017

119

terminal devices [5,6]. According to previous studies [4–7], The underlying intention for

compacting deep neural networks is that these networks often contain many redundant

neurons, which can contribute a little to the learning ability of the networks. Recently,

there are lots of studies pay attention to compacting the deep neural networks [8–11].

Among them, filter pruning methods aim to evaluate and remove the entire redundant fil-

ters, which are compatible with the hardware platforms, have recently gained increasing

interest [8].

There are mainly two types of existing filter pruning methods, i.e., Hard Filter Prun-

ing (HFP) method [7–9] and Soft Filter Pruning (SFP) method [11] . The difference be-

tween HFP and SFP can be seen in Figure 1. HFP means that the convolution kernel that

needs to be pruned is directly removed from the network when each convolution kernel

pruning operation is performed, which may heavily hurt the quality of the model [8–10].

SFP allows filters that have been pruned to be updated while training. Thus, the net-

work capacity can be restored from the pruned network, obtaining higher accuracy than

HFP [11,12]. However, SFP directly sets the pruned filters to zeros during training phase,

which will cause a serious decrease in the accuracy of the pruning model in the case of

a large pruning rate. To retain the ability of the pruned filters that have been trained, we

propose a weakening factor to improve the flaws of the soft pruning method . Concretely,

our method use a gradual decay strategy to remove the filters that will smoothly converge

to zero, where the training information in these filters can be better remain [13].

We mainly highlight the following contributions:

 We propose a soft and smooth filter pruning framework to accelerat the deep

convolutional neural networks, which forces the redundant filters gradually

converge to zeros and better prevents the losses of training information.

 We introduce a flexible filter weaken strategy, which can smoothly alternate

among different distributions of filter weaken factor.

 We test our proposed method on one metal surface defects dataset, i.e.,

KSDD,using Resnet-20 with various pruning rates.The experimental results

demonstrate that our method is effective.

2. Related work

Deep learning network model compression focuses on reducing the complexity and sav-

ing storage space, so as to accelerate the inference of the model . According to previous

studies, current deep neural network compression mainly includes low-rank decompo-

sition, quantization, and network pruning. Low-rank decomposition usually depends on

the matrix decomposition method ,which can save calculation costs. However, low-rank

decomposition methods suffer from the problem of non-convergence [14].Compressing

neural networks with using quantization can be regarded as a data compression study.

For example, Gong et al. [15] used the k-means algorithm to compress parameters by

quantizing the weight matrix. Another group of network accelerating is network pruning.

Generally, the network pruning technology could reduce the computational consumption

of deep neural networks by removing unimportant filters. The pruned network does not

depend on special hardware for deploying to run on small or mobile devices.This paper

mainly focuses on network pruning.

The study of network pruning has a long story. In the late 1980s and early 1990s,

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning120

Figure 1. Comparison of hard filter pruning (HFP) and soft filter pruning (SFP). The pruned filters are marked
as the dashed boxes. In HFP, the pruned filters cannot be updated in the following training process. Therefore,
HFP may easily reduce the capacity of the model and damage the performance. On the contrary, SFP keeps
the pruned filters and allows them to be updated afterwards. Therefore, the model capacity is restored from the
pruned model, thereby improving accuracy.

the pruning of neural networks has already been studied. For example, S. J. Hanson

proposed a pruning method based on amplitude, applying weight attenuation related to

its absolute value to each hidden unit in the network to minimize the number of hidden

units [16]. Another example is the OBD [17] proposed by Y. LeCun in the early 1990s,

based on the second derivative of the loss function with respect to the weight (the

Hessian matrix for the weight vector) to measure the importance of the weight in the

network. How- ever, because of the general environment at that time, neural networks

were not a partic- ularly mainstream branch of machine learning, so there was not a

large number of stud- ies for network pruning afterward. Despite that, their definition

of network compression problems and problem-solving ideas were excellent. In recent

years, many works have made profound impacts on network compression. By 2012,

most of the researchers focus on improving the accuracy of neural networks and

continuously deepen the weighting network to improve accuracy. For example, the

accuracy of the ImageNet dataset has reached a new high every year [18–20]. During

2015-2016, a series of work on model compression of deep neural networks was

published in this field [21–23]. For example, Han et al. [22] proposed to accelerate the

classic networks, i.e., AlexNet and VGG, com- bining pruning, quantization, and

Huffman coding, and other methods to compress the network. Besides, they also design

an iterative method to compensate for the accuracy loss caused by pruning. After this

work, researchers begin to realize that there indeed exists lots of redundant parameters

in DNN. In the following years, the field of model compression has become more

plentiful. For example, in 2018,Wang et al. [24] proposed the subspace clustering

explore the relevant information in the filter and feature map, so as to simplify and

compress the parameters. Nevertheless, most of the existing methods are focusing on

weight pruning. He et al. [11] proposed the soft pruning method to per- form network

be updated during the training process. In this way, the model capacity can be recovered

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning 121

from the pruned model, which solves the problem of accuracy recovery and obtains

higher accuracy than the previous methods.

As far as we know, SFP sets the pruned filter to zeros during training and updates

model capacity during the next training epoch. However, during the first few trimming

periods of SFP, the accuracy of the test set was significantly reduced. To make better

use of the trained pruning filter, this paper proposed a soft and smooth filter pruning

method, which uses a monotonically decreasing parameter strategy to attenuate the prun-

ing weight. Since our method works in a soft pruning manner, it is compatible with the

training procedure of the neural networks without additional fine-tuning costs.

3. Methodology

Firstly, we introduce some symbols and annotations in this section. For the convenience

of description, the entire network containing L convolutional layers is defined as W =

{W1, W2, ... ,WL }, with the weight matrix of the i-th layer denoted as

, where Ki is the number of input channels, Ki+1 is the number of

output channels, and N is the convolutional kernel size. In addition, for the i-th

convolutional layer, the input feature map Ii and the output feature map Si are denoted

as Ki × Hi × Wi and Ki+1 × Hi+1 × Wi+1, respectively. The calculation formula for the

convolution operation of the i-th layer can be denotes as:

Si,j = Wi, j * Ii, for 1 ≤ j ≤ Ki+1 , (1)

where denotes the j-th output channel of the i-th layer, and

 means the j-th filter of the i-th layer.

In the filter pruning procedure, the corresponding feature map will be removed when

the filter is pruned. Therefore, it can decrease the memory footprint consumption as well

as the computing costs of the model remarkably. Let us assume that the filter pruning

rate in the i-th layer is denoted Fi. In this way, the number of filters will be removed

from Ki+1 to Ki+1(1－Fi) in the i-th layer, which is reduced by Ki+1 × Fi, and the size

of the pruned output feature map Si’ j can be reduced from Ki+1 × Hi+1 × Wi+1 to

Ki+1(1－Fi) × Hi+1 × Wi+1.Therefore, we can reduce the output size of the i-th layer,

which is the input size of the i + 1-th layer, to obtain a higher speedup. According to

SFP , the weights that are pruned in the i-th layer are directly set to zeros, which can be

written as

 Si,j = Wi, j Gi, j, for 1 ≤ j ≤ Ki+1 , (2)

where Gi,j is a indicator matrix which is the same shape as Wi,j, denoting whether

the j-th filter of the i-th layer is pruned . In addition, the symbol is the Hadamard

product. To be more specific, Gi, j = 0 if the filter Wi,j is pruned. Otherwise, Gi,j = 1

indicates that Wi, j is retained.

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning122

To make better use of the training information inside those pruned weights, we as-

sume that the pruning methods should not directly drop the weights of the pruned filters,

that is, setting them to zeros. In contrast, we hope that there are some useful information

among the pruned filters. In other words, the pruning methods should give the model

more chances to transfer these useful information to the retrained filters. To achieve this

goal, following the previous works [11–13], we propose to add a weakening factor a into

Eq.(2), which can be equivalently rewritten as follows:

Si, j = Wi, j Gi, j + αWi,j(1 －Gi, j), for 1 ≤ j ≤ Ki+1, (3)

Obviously, when we set α=0, then Eq.(3) will reduce to the conventional SFP

method. Similar to SFP, we prune models while training. Concretely, we first train the

model for one epoch, then we prune the model by Eq.(3). After each round of pruning, the

filters in the model are sorted from small to large in importance. For the i-th convolutional

layer, we select the first Fi filters as the pruned filters and apply the weakening factor a to

them. Generally, we set α0∈[0,1]. In this case, the information among the pruned filters

is not dropped completely, which can contribute to alleviate the decrease in accuracy

caused by pruning filter .

It is worth mentioning that it is not safe to remove the pruned filters when their

weight values are not zeros. Thus, we propose to gradually reduce a with the increase of

pruned rounds. Formally, suppose the initial value of α is α0, where a0∈[0,1]. We hope

that α0 should converge to zero (or close to zero) at the end of the pruning and

training phase. Let αn be the value of α0 after n pruning rounds. We propose the

following function on a0 to encode an as follows:

 �� =
��

���
�×� �

���� � 	.
� , for 1 ≤ n ≤ nmax , (4)

where nmax is the max

value of training epochs, β is the coefficient which controls

the reducing speed of α0.

From Eq.(4), we can see that if a smaller β is provided , Eq.(4) tends to be a linear

function of n. In contrast, if we provide a larger β , Eq.(4) works more like a reverse

sigmoid function of n. In this paper, we perform the “training and pruning” process using

Eq.(4) until all the values of pruned filter weights are converged to zeros, or we reach the

maximum pruning rounds. Finally, we remove all the pruned filters to obtain the compact

model.

4. Soft and Sooth Filter Pruning

We illustrate our method in Figure 2. From Figure 2, it can be seen that our method

generally contains three steps. Firstly, in the n-th training epoch, our method evaluates

the importance of filters using some metrics, such as l2-norm (used in this paper) and l1-

norm, to rank the filters according to their importance. Then, the redundant filters or

unimportant filters are selected and pruned by reducing their weight values. After that,

we retrain the pruned model for one epoch to recover the lost information due to pruning

filters. This “evaluating, pruning, and retraining” procedure is performed until all the

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning 123

Figure 2. Overview of our method. After each training epoch, we evaluate and sort the filters according the
their importance (i.e., the l2-norm in this paper). The selected redundant filters (white square) are chosen to be
smoothly pruned. Then, we retrain the pruned model for one more epoch, letting it recover itself. After that, we
reselect and prune the redundant filters. This “training and pruning” process is repeated until all the selected
filters converges to zeros.

pruned filters are zeros. Finally, we can safely remove these redundant filters with zero

values to obtain the compact model.

It should be noting that our method illustrated in Figure 2 is quite different from

SFP. Concretely, after selecting the redundant filters, SFP directly set them to zeros. Al-

though SFP does not removes these redundant filters from the pruned model, hoping the

pruned filters to be recovered in the following procedure. Nevertheless, such a tremen-

dous changing on the values of filters may heavily hurt the performance of the model.

In contrast, our method gradually attenuates the filter after pruning, which can greatly

avoid the sharp decline in accuracy caused by pruning . As shown in Eq.(3) and Eq.(4),

the initial value of α is between 0 and 1 (in this paper we set it to 1). In other words, at

the beginning of the training phase, our method will keep almost all the trained informa-

tion in the pruned filter. Then, the selected redundant filters will be pruned smoothly by

decaying the corresponding filter weight via α. The model status may slightly changed

after pruning, giving the pruned model more chances to recover itself and achieve better

performance. In the next training epoch, α is also decayed under the constraints of the

decay strategy in Eq.(4). As the process continues, α will gradually decay to 0, forcing

the pruned filters to zeros, which can be safely deleted. From this point of view, we can

treat our method as a smooth version of the SFP.

5. Experiments

5.1. Experimental setting

Dataset: A dataset of images captured in a controlled industrial environment in a real

case, i.e., KSDD, is selected to evaluate the proposed method. KSDD is a dataset of

metal surface defects, which has a total of 399 pictures of size 500 × 1240 pixels or 500

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning124

Algorithm 1 Soft and Sooth Filter Pruning

Require: training set D, pruning rate Fi, initial weakening factor α0 of α, the user
defined parameter β , the model with parameters W

Ensure: The pruned model and its optimal parameters W*

1: Initialize the model parameter W0

2: for n = 1; n<nmax; n + + do

3: Train model parameters W(n + 1) based on data set D and Wn
4: Decrease weight weakening factor αn using Eq.(4)

5: for i = 1; i<L; i + + do
6: Compute the l2-norm of each filter

7: Select the first Ki+1Fi filters with smaller l2-norm values

8: Decrease the parameter scales of selected filters with α
9: end for

10: Get the softly pruned model parameters Wn+1
11: end for

12: return Obtain the compact model with final parameters W*

× 1270 pixels in two classes. The dataset consists of 52 images with visible defects and

347 images without any defects. In the training process of this article, all input images

are uniformly resized to 206 x 704 pixels. Following [25] we split the dataset into 264

trainning pictures and 135 testing pictures.

network: In this paper, we will revolve about pruning a challenging ResNet-type net-

work, i.e., ResNet-20. We select this networks for its excellent performance and wide

range applications.

Settings: We use the deep learning framework, i.e., Pytorch, and conduct all experi-

ments on the NVIDIA Ge Force RTX 2080 Ti GPU. In our experiments, the model we

use is trained from scratch and the network is trained for 100 epochs with batch size

of 1. We repeat the experiment five times and report the average results along with the

standard deviation. Following the previous work [11], to reduce the complexity of the

determination of pruning rate for each convolutional layer, we set the same pruning rate

Fi for each convolutional layer, which is also called structure pruning. To testify the ef-

fectiveness of our filter pruning, we conduct experiments with several different pruning

rates for comparison. We impose the stochastic gradient descent (SGD) as the optimizer

while training. To avoid the oscillating problem, three milestones, i.e., 30 ,60 and 80,

are deployed with the learning rate decay as 0.2. Concretely, the training process will

adjust the learning rate as the number of training epoch increases. In the beginning, a

learning rate of 0.01 is applied to our model. The learning rate is set to 0.002 from the

30-th epoch to the 60-th epoch, and the learning rate is 0.0004 from the 60-th epoch to

the 80-th epoch. After the 80-th epoch, the model is relatively stable and the learning

rate is set to 0.00008. The value of weight decay and momentum are respectively set to

0.0005 and 0.9. Resizing and Horizontal flipping are applied for data augmentation. Our

method contains one hyperparameter, i.e., β . By default, we set β = 30.

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning 125

5.2. Experimental results

Results. As can be seen from Table 1 ,we summarize the pruning results of our method

and SFP on KSDD dataset , where “Accu. Drop” is the accuracy rate of the baseline

model (the model without pruning) minus the accuracy rate of the pruning model. The

smaller the number of “Accu. Drop”, the better the acceleration effect. It can be con-

cluded from the table that compared with other filter pruning technologies with different

pruning rates, our method shows superior performance than SFP on KSDD.

We separately compare the results of our method and SFP on KSDD with the change

of pruning rate in Figure 3. From Figure 3, it is obvious that our method outperforms

SFP on Resnet-20, especially when the pruning rate is larger than 20%, the accuracy

difference between the two methods is obvious. When the pruning rate increases to 60%,

our method is significantly better than SFP.

Table 1. Comparison results of pruning ResNet-20 on KSDD.

Figure 3. Comparison of test accuracy

trends of pruning ResNet-20 on KSDD by

SFP and OURS with different pruning rates.

Figure 4. Comparison of accuracy drop of pruning

ResNet-20 on KSDD by SFP and OURS as the training

epoch increasing.

Convergence analysis. In Figure 4,we compare the comparison of accuracy drop

of ResNet-20 on KSDD by SFP and OURS in the training epoch when the pruning rate

is 30%.“Accu.Drop” refers to the difference between the accuracy of Top-1 before and

after pruning. The smaller the value, the less obvious the decrease in accuracy caused

by pruning. From the experimental results, we find that the test accuracy drop of SFP

converges to 0 at a faster rate, while OURS maintains a slower convergence rate. The

reason may be that OURS softens the SFP in terms of the weight decay, making it needs

more epochs are needed to converge.

5.3. Ablation Study

Different β values. We observe the relationship between β and α in Figure 5 and the

relationship between β and the number of zero in Figure 6. We can see from Figure 5

that as β increases, the curve of the attenuation factor tends to be steep, and the range of

α is infinitely close to [0,1]. The smaller the minimum value of α, the greater the

Network Method Baseline Accu. (%) Pruned Accu. (%) Accu.Drop(%) FLOPs Pruned

 SFP(20%) 94.67±1.28 93.18±1.27 1.49 2.87E+07 29.3

Resnet-20
OURS(20%)

SFP(40%)

94.67±1.28

94.67±1.28

93.48±1.09

92.00±1.51

1.19

2.67

2.87E+07

1.87E+07

29.3

54.0
 OURS(40%) 94.67±1.28 93.18±1.78 1.49 1.87E+07 54.0

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning126

confidence that redundant filters’s weights are set to 0 at the end of training. In Figure 6，

we show the number of zero-weight filters changes of ResNet-20 on KSDD with different

β values and pruning rates. When the pruning rate reaches at 40%, we notice that the

greater the β , the larger the number of zero weights. Through this experimental results,

it is obvious that as β increases, the effect of pruning is enhanced and the number of

redundant parameters of the network will decrease.

Various pruning rates. In this paper the filter weaken strategy belongs to the weight

decay. According to Algorithm 1, after each training phrase, the filters in the model are

sorted according to their importance and the selected filters are pruned by attenuating the

corresponding filter weight with α. To further clarify the performance of our method, we

show the comparison of accuracy with various pruning rates on ResNet-20 by SFP and

OURS in Figure 7. It can be found that as the pruning rate increasing, the advantages of

our method over SFP are magnified.

Figure 5. The decay trend of α

with different β in the trainng
phrase.

Figure 6. The number of zero-
weight filters changes with dif-
ferent β and pruning rates (in
brackets) in the training phrase.

Figure 7. Comparison of test
accuracies of different pruning
rates for ResNet-20 on KSDD
between SFP and ours (β = 20, 30,
50) with the decay strategy.

6. Conclusion

In this paper, we propose a flexible filter weaken strategy, which softens the pruning

operation of SFP. Compared with SFP, our method uses a weight decay strategy that

gradually decays the weight of filters to zero in the pruning stage to remove the redun-

dant filters. Our method performs well on ResNet-20 with different pruning rates on the

KSDD dataset. In addition, we have studied the internal mechanism of our method and

noticed that our method is pursuing better results without significantly increase of model

convergence speed.

Acknowledgement

This paper was supported by National Natural Science Foundation of China

(Grant No. 61871464), National Natural Science Foundation of Fujian Province (Grant

Nos. 2020J01266,2021J011186), the “Climbing” Program of XMUT (Grant No.

XPDKT20031), Scientific Research Fund of Fujian Provincial Education Department

(Grant No.JAT200486), Program of XMUT for high-Level talents introduction plan

(Grant No. YKJ19003R).

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning 127

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural
networks, Advances in neural information processing systems 25 (2012) 1097–1105.

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv
preprint arXiv:1409.1556 (2014).

[3] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[4] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional networks through
network slimming, in: Proceedings of the IEEE international conference on computer vision, 2017, pp.
2736–2744.

[5] Y. D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep convolutional neural
networks for fast and low power mobile applications, Computer Science 71 (2) (2015) 576–584.

[6] V. Vanhoucke, A. Senior, M. Z. Mao, Improving the speed of neural networks on cpus, in: Deep Learning
and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[7] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient convnets, arXiv preprint
arXiv:1608.08710 (2016).

[8] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding, Fiber 56 (4) (2015) 3–7.

[9] X. Zhang, Y. He, S. Jian, Channel pruning for accelerating very deep neural networks, in: IEEE
International Conference on Computer Vision, 2017.

[10] J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep neural network compression,
in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 5058–5066.

[11] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating deep convolutional neural
networks, arXiv preprint arXiv:1808.06866 (2018).

[12] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for efficient dnns, arXiv preprint arXiv:1608.04493
(2016).

[13] X. Dong, J. Huang, Y. Yang, S. Yan, More is less: A more complicated network with less inference
complexity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5840–5848.

[14] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural networks with low rank
expansions, Computer ence 4 (4) (2014) XIII.

[15] Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quanti-
zation, arXiv preprint arXiv:1412.6115 (2014).

[16] S. Hanson, L. Pratt, Comparing biases for minimal network construction with back-propagation, Ad-
vances in neural information processing systems 1 (1988) 177–185.

[17] Y. Lecun, Optimal brain damage, Neural Information Proceeding Systems 2 (279) (1990) 598–605.
[18] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, N. De Freitas, Predicting parameters in deep learning, arXiv

preprint arXiv:1306.0543 (2013).
[19] S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural networks, ACM Journal

on Emerging Technologies in Computing Systems (JETC) 13 (3) (2017) 1–18.
[20] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, Exploiting linear structure within convolu-

tional networks for efficient evaluation, in: Advances in neural information processing systems, 2014,
pp. 1269–1277.

[21] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, Y. Chen, Compressing neural networks with the
hashing trick, Computer Science (2015) 2285–2294.

[22] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connections for efficient neural networks,
arXiv preprint arXiv:1506.02626 (2015).

[23] S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural networks, ACM Journal
on Emerging Technologies in Computing Systems 13 (3) (2015).

[24] D. Wang, L. Zhou, X. Zhang, X. Bai, J. Zhou, Exploring linear relationship in feature map subspace for
convnets compression, arXiv preprint arXiv:1803.05729 (2018).

[25] D. Tabernik, S. Sela, J. Skvarc, D. Skocaj, Segmentation-based deep-learning approach for surface-defect
detection, Journal of Intelligent Manufacturing 31 (3) (2020) 759–776.

Z. Fu et al. / Compact Deep Neural Networks via Soft and Smooth Filter Pruning128

