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Abstract. In the context of defect detection, there is a difficulty in collecting 

annotated datasets, which leads to limited labeled data. In addition to this, most of 

the defect detection methods have the problem of missing detailed information about 

the defects. To cope with these problems, this paper shows a dense differential 

Siamese network structure for the defect detection of stamping manufacture. In the 

stamping setting, the foreground of the image frequently changes, while the 

background remains the same. Based on this finding, we separate the encoding layer 

of the network into two streams with the same structure and shared weights, so that 

we can handle the foreground and background image pairs simultaneously. To 

extract detailed information of defects, we also impose the dense skip connections 

into our network. Through these skip connections, we can obtain different levels of 

semantic information and capture more detailed information about the defects. 

Testing results on the defect dataset collected from real stamping machines show 

that our method significantly improves over other state-of-the-art methods on 

several evaluation metrics. 

Keywords. defect detection, fully convolutional Siamese network, dense skip 
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1. Introduction 

Defect detection is an extremely important part of modern industrial production, 

which improves production efficiency and yield by detecting defective products in time 

during production [1]. Research on defect detection has a long history, and it continues 

to evolve with the development of computer vision [3, 6]. The goal of a defect detection 

system is to detect the part of the product in the image that appears defects. Today, defect 

detection faces many difficulties. For example, in the defect detection field, there are few 

labeled datasets, which prevents many algorithms from learning well. In addition, the 

diversity of defect types exacerbates this problem. On the other hand, many algorithms 

consider the presence or absence of defects and are not concerned with the complete 

segmentation of defects. To reduce the impact due to the limited labeled data, a possible 

approach is to use Siamese network in the feature extraction stage [7, 8]. Unlike the 

traditional defect algorithm that requires only a single image as the input, the Siamese 

network requires two paired input images. Looking at defect detection from the 

perspective of change, we can consider the defect as the part that changes relative to the 

normal case. For example, a scratch that appears on the surface of a product is the part  

 
1 Corresponding Author: Xiaodong Wang, E-mail: xdwangjsj@xmut.edu.cn 

Design Studies and Intelligence Engineering
L.C. Jain et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220015

100



 
Figure 1. Two close related networks of our method. (a) is a network applied in the field of medical image 

segmentation; (b) is the network applied in the field of change detection. 

 

 

that changes relative to the normal surface. In this case, the Siamese networks could 

collect the rich information from both foreground (defects) and background (non-

defects) and may achieve more accurate detection results than traditional methods. In 

real-world manufacturing products, small defects are often encountered. However, most 

of recent defect detection algorithms usually focus on detecting large defects and are not 

very effective for detecting small defects.  

In this paper we propose a fully convolutional neural network for defect detection 

with a Siamese structured encoder. In addition, inspired by UNet++, we add dense skip 

connections for collecting semantic information at different levels. Our approach uses a 

pair of images from a defect detection dataset for end-to-end training and directly outputs 

a binary map labeled with defects. Moreover, we compare our proposed method with 

current state-of-the-art change detection methods on dataset generated from actual 

factory production, achieving superior performance.  

This paper is organized as follows. Section 2 explores the sources of our inspiration 

in conceiving this approach and provides some related work. Section 3 describes in detail 

the neural network we constructed for defect detection. Section 4 evaluates the 

performance of our method and compares it with other state-of-the-art methods. 

2. Related Work 

Today's defect detection is mainly performed using common image processing 

algorithms, such as extraction of specific defects based on threshold segmentation, 

boundary segmentation, and defect extraction by geometric features and histogram 

features of the image [2]. The generalizability of these methods is low, and their accuracy 

is not very high. Siamese structured auto-encoders are widely used in the field of change 

detection [8-12], and a variety of architectures have been derived according to different 

application scenarios and practical situations. For example, the Fully Convolutional 
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Siamese difference~(FC-Siam-diff) network [7], shown in Figure 1(b), is one of the most 

widely used techniques with Siamese structures and performs well in many change 

detection scenarios. In the change detection, to detect the difference between two images, 

two encoders with sharing weights are used in the feature extraction phase to extract the 

features of both images separately, and skip connections are used to better extract the 

features in the region where the change occurs.  

UNet++ is novel and effective in the field of medical segmentation [13]. As shown 

in Figure 1(a), the UNet++ architecture is essentially a deeply supervised encoder-

decoder network, where the encoder and decoder sub-networks are connected by a series 

of nested, dense skip connections. UNet++ has a great power to extract multi-scale 

features from different convolution levels. The biggest difference between UNet and 

UNet++ is the re-designed skip connections in each level of the decoder. Therefore, 

UNet++ can collect the information extracted by the shallow sub-encoder. Second 

paragraph. 

In defect detection tasks, the defects are often relatively small, so it is difficult to 

segment them accurately. Recent algorithms in change detection such as Early Fusion 

[11], Fully Convolutional Early Fusion, and Fully Convolutional Siamese Concatenation 

[7], etc., are applied in remote sensing and image processing. In these applications, their 

image resolution is high, and the defect areas are often large. Hence, directly applying 

these algorithms to defect detection will result in low detection accuracy and require 

further restructuring to suit the defect detection task. 

3. Proposed Approach 

The proposed network is based on the fully convolution Siamese network structure 

[7] and UNet++, which is shown in Figure 2(a). The ��,� node in the figure denotes the 

convolution block, where i indexes the down-sampling layer along the encoder and j 
indexes the convolution layer of the dense block along the skip pathway [13], and in the 

following, we use ��,� to denote the output of the ��,�node. Our goal is to find the defects 

in the input images. As we discussed in Section 1, we need to input two images to the 

Siamese encoder, image 1 and image 2. Image 1 is the background image of this product 

without defects, and image 2 is the image to be detected where we need to determine if 

there are defects. In real detection procedure, the background (image 1) is usually fixed, 

while foreground (image 2) may contain a variety of defects, and these defect areas are 

changing relative to the corresponding area in image 1. In other words, the changing area 

is the area where the defects appear and is the main concern of our network. In order to 

better collect the characteristics of these changes, we use the operation of subtracting the 

feature maps of the same layer in the encoder part. That is, in the encoder part, we 

subtract the feature maps at the same level of these two encoders and then transfer 

subtraction results to the decoder part. Formally, the feature maps obtained from image 

1 and image 2 at i-th level is defined as ���,�
 and ���,�

, respectively. Then, the result of 

feature map subtraction can be defined as: 

	�  =  
���,�  �  ���,�
 (1) 
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Figure 2. Illustration of the proposed architecture. (a) is the backbone of our network, downward arrows and 

upward arrows indicate down-sampling and up-sampling, respectively. The gray and red dotted arrows 

represent skip connections. The node ��,� indicates a convolution block, of which the detailed structure is 

shown in (b). 
 

 

To preserve fine-grained localization features and prevent the loss of target object 

information, we use dense skip connections mechanism between the encoder and decoder, 

which inspired by UNet++ [13].  Thanks to the dense skip connections, the position 

information in the shallow layer is directly applied to the deep layer so that the fine-

grained information in the input image can be maintained. Take the node ��,� as an 

example, it directly receives not only the feature maps up-sampled by its upper level, i.e., �
,�, but also the information output by ��,
 and ��,�. More importantly, we concatenate 

the feature map 	�, which is the feature map obtained by subtracting ���,�
 and ���,�

, into 

the ��,� node as well. Through these dense skip connections, the differentiated features 

and positional information we obtained through the subtraction operation in the encoder 

stage can be better preserved. 

In our network, we design ��,�  as a residual block [14], which facilitates better 

convergence capacities for the deep network architecture. In particular, the shortcut 

connection is located after the first convolutional layer so as to maintain the unity of the 

convolutional block, which is shown in Figure 2(b). Let ��,� denote the output of node ��,�, ��,� can be formulated as follows: 

��,� =  
��
�� ��(���
,�)�                                                                   � = 0

��������,�, ���,��, �(���
,��
)��                                  � = 1
��������,�, ���,��, �(���
,��
), [��,�]�!
��
 ��                � > 1

     (2) 

where the function �(") is used to down-sample the feature map, using a 2×2 size max-

pooling operation. �(") denotes our residual function in the convolution block in Figure 

2(b). �(") is the element-wise subtraction operation we mentioned in Eq.(1). The  
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Figure 3.   Bi-temporal images with defect variations in stamping defect dataset. 

 

 

function �(") denotes the up-sampling operation. Finally, the ["] denotes the concate-

nation of the feature maps. At the end of this network, we generate four full resolution 

feature maps, i.e., #��,�, � $ {1,2,3,4}%, which is easy to perform deep supervision and 

allows our model to integrate multiple levels of semantic information. It should be noted 

that the shallow sub-decoder outputs a more fine-grained feature map, while the deep 

sub-decoder outputs a more coarse-grained feature map. The final feature maps with the 

different semantic information are joined together and processed by a sigmoid layer to 

generate the final binary result map. 

4. Experiments 

4.1. Dataset and Evaluation Metrics 

The stamping defect dataset was collected from a factory engaged in mold 

production. The subject of the dataset is a variety of stamping machines in the factory. 

These stamping machines are used for producing molds. Figure 3 shows the bi-temporal 

images, i.e., images captured at two different times, in the stamping defect dataset. Here, 

we use T0 and T1 to represent the images acquired at different times, where the red boxes 

represent the defects that need to be identified. In the actual production environment, in 

addition to the different types of stamping machines and defects, there will be 

interference factors, such as noise that is similar to the defects, i.e., the objects marked 

with blue ellipses in Figure 3, and light changes. 

In this dataset, there are about 400 pairs of images in total, where each image is 

1920×1080 pixels in size. Since the resolution of the images is relatively large, training 

the model directly with the original images can lead to a high computation cost. To solve 

this issue, we use the method in [15] to generate image patches by cropping a 160×160 

sized sub-picture on top of the original image. Totally, we obtain a training set with 

30,000 samples, a testing set with 9,000 samples, and validation set with 4500 samples. 

We use Pytorch to implement our model and the compared methods on the hardware 

platform with the ubuntu operation system and a NVIDIA GTX TITAN X graphics card.  
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Table 1.  Comparison results on stamping defect dataset. 

Methods Precision Recall F1-Score OA 
EF 0.596 0.664 0.628 0.905 

FC-EF 0.577 0.709 0.636 0.885 

FC-Siam-conc 0.649 0.693 0.670 0.916 

FC-Siam-diff 0.709 0.685 0.697 0.927 

UNet++_MSOF 0.772 0.688 0.727 0.936 

Ours 0.807 0.714 0.757 0.959 
 

 

During training, we use the minibatch ADAM algorithm as an optimizer with the batch 

size 64, the learning rate 1 × 10�&. We use KaiMing normalization to initialize the neural 

network and train the network with 50 epochs. In terms of the loss function, the cross-

entropy loss function is used in our experiments as well as the comparison experiments. 

Four closely related UNet [16] type methods, i.e., Early Fusion (EF) [11], Fully 

Convolutional Early Fusion (FC-EF) [7], Fully Convolutional Siamese Concatenation 

(FC-Siam-conc) [7], and Fully Convolutional Siamese Difference (FC-Siam-diff) [7], 

are selected for comparison in this paper. Both EF and FC-EF networks first concatenate 

two image pairs and then input them into the encoder, so they have only one encoder. 

FC-Siam-conc and FC-Siam-diff use Siamese structured encoders, that is, two image 

pairs are input to two encoders separately, the difference is that in each layer of the 

encoder, the former concatenates the features, while the latter uses subtraction operation 

for the features. These four methods are based on UNet [16] and Siamese networks [17] 

and have been experimentally shown high performance in the field of defect detection. 

Besides, another UNet++ [13] type method, i.e., UNet++ with Multiple Side-Output 

Fusion (UNet++_MSOF) [12], is also introduced and compared. This network uses the 

strategy of concatenating images first as mentioned in EF, FC-EF in the encoder part, 

while in the decoder part it uses the dense skip connections used in UNet++ and captures 

fine features by fusing the side-outputs. The comparison results on the stamping defect 

dataset are shown in Table 1. In this experiment, we use four quantitative metrics, i.e., 
Precision, Recall, F1-Score, Overall Accuracy (OA), for evaluation. These four 

evaluation metrics are descried as: 

'*+-.	./5 =  6' 
6' +  8' (3) 

9+-:;; =  6' 
6' +  8< (4) 

8
 � ?-/*+ =  2 × '*+-.	/5 × 9+-:;; 
'*+-.	./5 + 9+-:;; (5) 

AB =  6' + 6< 
6' + 6< +  8' + 8< (6) 

where TP, FP, TN, and FN denote the number of true positives, the number of false 

positives, the number of true negatives, and the number of false negatives, respectively. 
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4.2. Results Comparisons 

 
Figure 4. Visualization results on the stamping defect dataset.  Smaller images are enlargements of the 

corresponding areas: (a) is the original images; (b) is the ground truth; (c) is the result of FC-EF; (d) is the 

result of FC-Siam-diff; (e) is the result of our method. 
 

 

As can be seen in Table 1, our method is able to detect defects effectively, with a 

significant improvement over the other methods, and achieves the best results in all 

metrics. In order to verify the effectiveness and superiority of our proposed method, two 

typical scenarios in real production are presented for visual comparisons. As shown in 

Figure 4, it can be observed that our method is more accurate in segmenting the 

boundaries of defects. Overall, our network is better at preserving the detailed 

information of the defects and can segment the defects better. Besides, our method is 

more robust to light changes (red square area). 

The results show that the EF and FC-EF have the lowest F1-Score and OA values 

among the six methods. The reason is that both of these networks are composed of only 

the encoding layer used for contraction and the decoding layer used for expansion, and 

do not use the Siamese structure. Therefore, the features of defects are not well learned 

for the case where only a small number of samples with labels are available. As shown 

in Figure 4(c), in these two different scenarios, FC-EF identifies very limited defects and 

misidentifies light changes as defects (red square area). 

Both FC-Siam-conc and FC-Siam-diff are networks that use the Siamese structure 

at the encoding layer, and thus have higher F1-Score and OA values than EF and FC-EF 

with limited labeled data. FC-Siam-diff uses the subtraction strategy mentioned in Eq.1 

at the encoding layer. Besides, by using differential information collection in the feature 

extraction layer, it obtains better collection of defects feature, i.e., FC-Siam-diff is 2.7% 

and 1.1% higher than FC-Siam-conc in terms of F1-Score and OA values, respectively. 

With the help of subtraction strategy in the encoding layer, our method improves the 

UNet++_MSOF, by 3.5%, 2.6%, 3.0%, and 2.3% in Precision, Recall, F1-Score, and OA 

values, respectively. 

It should be noticed that both our network and UNet + +DEFG use the dense skip 

connections strategy. Nevertheless, FC-Siam-conc and FC-Siam-diff do not have 

complex connections between the encoding and decoding layers, so that low-level detail 

information is missed during the encoding process, as shown in the Figure 4(d). This 
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observation also demonstrates that the fine localization information in the encoding layer 

can be successfully transmitted to the decoding layer through skip connections, thereby 

avoiding the loss of fine-grained features and better detecting small defects or detailed 

regions of defects. 

5. Conclusion 

In this paper, we propose an algorithm for defect detection applications in the 

industry manufacturing. To better adapt the algorithm to defect detection, we combine 

the Siamese network structure with the dense skip connections. To facilitate the 

convergence of gradients in deep full convolutional networks, we use a residual block 

strategy, which can also benefit the network to obtain more detailed information of 

defects. Compared with the other state-of-the-art methods, our proposed approach 

performs better in both visualization and quantitative metrics evaluation. 
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