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Abstract. Privacy is a fundamental human right and is widely end extensively 

protected in the western industrialized world. The recent advances in technologies, 

especially in the use of applications developed and designed for mobile devices, 

have led to the rise of its abuse on one hand and a higher awareness of the 

importance of privacy on the other side. Legal texts protecting privacy have 

attempted to rectify some of the problems, but the ecosystem giants and mobile 

apps developers adapted. In this paper, we analyze which data mobile apps 

developers are collecting. We have focused on a sample of apps in the medical and 

health field. The research was done using collocations analysis. A relationship 

between a base word and its collocative partners was sought. The initial visual 

results have led us to more detailed studies that unveiled some worrying patterns. 

Namely, applications are collect data about the users and their activities, but also 

about their family members, medical diagnoses, treatments, and alike, going well 

beyond the “need to function” / functionality threshold.  
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1. Introduction 

Mobile phones have become a part of our everyday life and a potent multifunctional 
tool [1]. Mobile technologies have changed our habits and behaviors drastically. By the 

end of 2020, mobile internet traffic was around 50 % of total web traffic, with Africa 

and Asia reaching about 60 % [2]. Daily routine previously conducted in an offline 

world has shifted online and increasingly to mobile devices. Reading mail turned to 

read email, browsing newspapers, checking the news and journals on the phone, and 

going shopping by car has moved to sites like Amazon, eBay, Rakuten, Apple, 

Aliexpress, and others. Visiting friends turned into retweeting their tweets and liking 

their posts. A smartphone has taken over many users’ central functions without a need 

for profound technological and science skills. 

Because of the ease of use and wide availability of services and apps, users 

increasingly use smartphones and apps. Developers are developing them to fulfill the 
users’ needs. However, there are costs associated with developing applications. There 

are several business models apps developers can use, such as “Free,” “Freemium,” 

“Subscription,” “Paid,” and “Paymium” [3]. The most popular business model to 

monetize an app is Free / Freemium (i.e., advertising) because of its easy 

implementation and wide acceptance by mobile application users [4]. Over half of apps 

contain advertising [5].  
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For ads to be effective, they need to “fit” or “match” the target audience (person) 

as closely as possible. The matching of users’ preferences and ads is done via real-time 

bidding (RTB) coupled with the app’s data. In the bidding process, the ad technology 
companies auction off ad space in the apps made available by developers by sharing 

sensitive users’ data collected by the app, such as location, device ID, cookies, 

browsing history, and any other collected data. The sharing is done with many different 

companies involved in a highly complex process [6].  

Sharing of vast amounts of personal data opens many privacy-related questions. 

Namely, privacy is a human right and is protected in the western world. However, 

microtargeting the individuals with ads (and other activities) based on their personal 

data is doable legally, without disclosure and (proper!) informed consent, completely 

bypassing laws and regulations [7], or at least their intentions to protect the privacy.  

Privacy protection is increasingly important in the medical domain [8] as medical 

data are extremely sensitive and need special protection. However, users using medical 
apps agree to the terms and conditions and associated privacy policies set by 

application developers. Users typically do not read privacy policies and hence do not 

know what they are sharing with the application developers and due to the prevailing 

“free” business model also with (too) many other companies. 

In this paper, the research question is which types of personal data medical apps 

are collecting. We will answer this question using linguistic analysis of privacy policies 

and visualization techniques to present the findings.  

The rest of the paper is organized as follows. Section 2 presents the literature 

review dealing with medical apps, data collection, and privacy. In Section 3, we 

describe our research method and deliver the results. In Section 4, we conclude the 

paper with final remarks.  

2. Literature review 

First, we give a brief definition and a description of privacy, followed by a 

description of the advertisement ecosystem in the mobile apps world. 

Privacy has many aspects [9, 10], including :  

� informational privacy (e.g., confidentiality, anonymity, secrecy, and data 

security);  

� physical privacy (e.g., modesty and bodily integrity);  

� associational privacy (e.g., intimate sharing of personal events);  

� proprietary privacy (e.g., self-ownership and control over intangibles such 

as personal identifiers and genetic data, and tangibles, e.g., ownership of 

objects); and  

� decisional privacy (e.g., autonomy and choice in decision-making).  

In this paper, we primarily deal with informational and intangibles proprietary 

privacy. Privacy belongs to fundamental human rights and has a special place in legal 

texts. It is explicitly stated under Article 12 of the 1948 Universal Declaration of 

Human Rights and protected by the 1st, 3rd, 4th, and 5th Amendments of the U.S. 

Constitution [11]. In European Union, it is protected by Article 8(1) of the Charter of 

Fundamental Rights of the European Union and Article 16(1) of the Treaty on the 

Functioning of the European Union (TFEU), and several national constitutions [11]. 
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The implementational part of privacy protection is done on the lower level of the 

hierarchy of laws.  

In the European Union, it is protected by General Data Protection Regulation 
(GDPR) directive [12] – the Regulation (E.U.) 2016/679 of the European Parliament 

and of the Council of 27 April 2016 on the protection of natural persons with regard to 

the processing of personal data and on the free movement of such data. In the United 

States, there is no single (federal level) data or privacy protection law [13].  

California’s California Consumer Privacy Act (CCPA) is the latest and strictest 

state law, effective on January 1st, 2020. It was amended and extended by the 

California Privacy Rights Act and will take effect on January 1st, 2023. The law applies 

to companies that do business in California. CCPA gives users the right to opt out of 

the sale of their personal information. Interestingly, there are exceptions to the 

definition of “sale,” such that not all personal information transfers are sales, e.g., 

transferring personal information to a service provider is not a “sale” [14]. 
The above laws are exemplary because they limit or prohibit the unauthorized 

collection and use (selling) of personal data. They also require the data controllers 

(collectors) to indicate what type of personal information is being collected and why 

with special rights vested upon users. Typically, companies disclose their privacy 

practices in the “Privacy Policy.” 

However, privacy policies are hard to read lengthy legal texts in practice, and users 

do not read them. For example, the Norwegian Consumer Council has conducted an 

“AppFail” campaign. They have downloaded the terms of service and privacy policies 

for a set of typical apps. Together they exceed the New Testament in length – and 

would take more than 24 hours to read out loud [15]. The campaign highlighted the 

absurd length of these agreements. To use apps, the users often need to waive 

fundamental privacy rights and agree that apps track them, and personally identifiable 
data can be resold [16]. 

By using the apps, users consent to data collection and other practices as described 

in the privacy policies, not actually knowing what and how is being collected and 

processed. 

On the other hand, tech firms need personal data residing in apps to serve users 

with targeted ads. Marketing campaigns depend on the successfully placed ads [6]. 

Data need to be shared (legally) with advertisers, and they are asked to bid on an 

individual ad space within an application. 

The bidding process is a multi-level, complex, automated placement of third-party 

ads known as real-time bidding (RTB) [17]. The partial data flow is depicted in Figure 

1 (source: [18]). 

 
Figure 1: Flow of data and money in an RTB Ad Exchange (Source/Figure from: [18]) 
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In the RTB process, there are several layers of companies involved. It is facilitated 

by mobile supply-side platforms (SSPs), providing the developers the necessary tools 

(Software Development Kits, SDKs) that developers build into their apps; the SDKs 
connect apps to the exchanges. Inside an app, the SSP collects information and enriches 

it with its own data about the user.  The enriched data is sent to ad exchanges that 

contact demand-side platforms and DSPs to bid for the ad place. DSPs do data 

matching and possibly bid for the ad space. If the bid is won, a DSP serves a user with 

an advertisement. The advertiser pays to the DSPs, they pay to the RTB bid exchange 

(which collaborates closely with SSPs), and the developer gets paid. 

 

 

Figure 2: Process flow in a typical ad exchange system 

The process of a typical ad exchange system is presented in Figure 2. There are 

several partners (ad exchanges) competing for advertisement space. Table 1 lists an 

excerpt of exchanges participating with AdMob, a Google-owned company [19]. 

An RTB system will invade privacy in two ways. Firstly, before the RTB process 

begins, a myriad of companies have already tracked users, collected their personal 
information online and offline, and combined them into lengthy user profiles. Again, 

during the RTB process, a set of companies use these previously acquired profiles to 

decide how much to pay for the ad space. Secondly, due to the advertisement being 

displayed, the user leaves some traces behind (e.g., data about click, how long an ad 

was shown, how the users tracked the ad using eye-tracking algorithms, conversion of 

clicks to purchases, and many others).  The companies involved in the RTB process 

collect these data and update their profiles, knowing even more about users. The newly 

updated profiles are feeding the future RTBs. RTB is both a cause of tracking and a 

means of tracking of personal information [20]. 
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Table 1: A partial list of partner RTBs 

Open Bidding Partner* Desktop Web Mobile Web Mobile App 

iOS/Android/Interstitial 

Ad Generation � � � 

AerServ � � � 

Fluct � � � 

Improve Digital � � � 

Index Exchange � � � 

Magnite � � � 

Media.net � � � 

MobFox � � � 

OpenX � � � 

PubMatic � � � 

ShareThrough � � � 

Smaato � � � 

Smart Adserver � � � 

Sonobi � � � 

Sovrn � � � 

SpotX � � � 

TripleLift � � � 

UnrulyX � � � 

Verizon Media � � � 

Yieldmo � � � 

YieldOne � � � 
* Some exchanges participate in Open Bidding but have requested not to be listed in this table.  

Google controls massive portions of nearly every level of the real-time bidding 

ecosystem. It is the owner of DoubleClick, an ad network, and AdMob, the largest ad 

server for the app market [17]. Tech giants send data to advertisers, and advertisers pay 

to companies. Nevertheless, Google claims it is not selling personal information, as 

depicted in Figure 3. 

Figure 3: Google’s claim about selling personal information (https://safety.google/privacy/ads-and-data/, the 

screenshot was taken 2021-02-05) 
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It acknowledges that a “sale” is occurring somewhere in this process. Google just 

insists that they are not selling data, thus breaching the laws [17]. Although facilitating 

the RTB process, Google places the responsibility for compliance with the rules upon 
apps’ publishers [21], see Figure 4. 

 

Figure 4: Google’s policy on compliance obligations of apps publishers involved in the advertisement 

business 

As described above, a successful advertisement campaign depends on “good” data 

being collected at the apps’ side. A vicious cycle starts with the good quality and 
quantity of data an app developer makes available in the RTB process. Based on “good” 

data, “good” ads will be displayed to get the user’s attention, finally converging to a 

purchase.  

For publishers to get lots of personal data, they need to get users’ consent to be 

rules compliant. The consent is typically hidden in privacy policies. The whole 

advertisement ecosystem relies on users neither reading privacy policies nor 

understanding or reacting adequately.  

The privacy policies are written in a natural language. A collocation analysis of 

privacy policies, specifically their parts on personal data collection, can be conducted 

to extract interesting patterns. A collocation is a set of terms that co-occur more often 

than would be expected by chance. Collocation can be looked at from three 
perspectives [22]: a statistical view (co-occurrence), a construction view (a correlation 

between a lexeme and a lexical-grammatical pattern, or as a relation between a base 

and its collocative partners), and an expression view (collocations as units of 

expression). In the present research, we use the statistical and the construction view to 

extract interesting patterns in the form of keywords [23, 24].  

 In the following sections, we present a method of analyzing the privacy policies 

with respect to what medical apps are collecting personal data and the analysis results. 

3. Co-occurrence analysis of privacy policies 

This section presents the results of the co-occurrence analysis of a sample of free health 

and medical apps’ privacy policies.   

3.1. Data collection  

First, we scraped the Google Play store for the field “mininstalls” using the public 
“google-play-scraper” from GitHub repository (https://github.com/JoMingyu/google-

play-scraper). From the category “medical” and “health & fitness,” we selected the 50 
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most installed and free ones (number of installs as reported by Google in Google Play 

Store) in each group. Next, we downloaded the texts of the privacy policies from the 

URL obtained via scraping from the Google Play store. 
The exclusion criteria were that the app should have a privacy policy in the first 

place and be written in English. Out of 2x50, we ended up with a sample of n=32 

privacy policies in “medical” and m=30 in “health & fitness.”  

3.2. Data preparation and processing 

We manually trimmed the irrelevant text of the policies and kept only the parts 

describing which private data an app is collecting. Next, the documents were tokenized, 

and part-of-speech details were added (e.g., the word “you’re” was tokenized into “you” 

and “are”). Punctuations, stop words, and short words (with two characters or less) 

were removed, lemma details were added, and all text was converted to lowercase – see 

Listing 1. 

% begin of data reading and processing 
fileName = 'data2.xlsx'; % file name to read 
data = readtable(fileName,'TextType','string'); % read data from text file  
 % as a string 
head(data); % get header line  
textData = data.Description;  % relevant data is in  
 % “description” column 
docs = tokenizedDocument(textData); % tokenize the data 
docs = addPartOfSpeechDetails(docs); % add part of speech 
docs = erasePunctuation(docs); % erase punctuations 
docs = removeStopWords(docs); % remove stopwords 
docs = removeShortWords(docs,2); % remove short words 
docs = removeEmptyDocuments(docs); % remove empty lines 
docs = addLemmaDetails(docs); % add lemmas 
docs = lower(docs); % convert to lowercase 
% end of data reading and processing 
 

Listing 1: data processing source file in MatLab® 

 

After the data preparation, we processed and analyzed the data using MathLab® 

R2020b, using co-occurrence analysis with Text Analysis Toolbox [25] – see Listing 2.  

% begin of co-occurrence analysis with  
span = 6; % length of connecting arcs 
nCooc = 8; % number of co-occurrences 
mode = 'backward';  % mode of co-occurrence building 
 
nKeywords = 6; % start with 6 words for the 
 % general picture 
 
% for detailed pictures, limit visualization to the following stem words: 
% nKeywords = ["password"; "fitness"; "family"; "sex"]; 
% nKeywords = ["location"; "service"; "device"; "browser"]; nCooc=6; 
% nKeywords = ["activity"; "heart"; "weight"; "height"; "body"]; 
% nKeywords = ["route"; "exercise"; "photos"; "gender"]; 
 
 
% build co-occurrence table (function from Text Analysis Toolbox): 
COTable   = createCOTable(docs, span, nKeywords, nCooc, mode); 
 
% build co-occurrence network from the table (function from Text Analysis Toolbox): 
CONetwork = createCONetwork(COTable, 'MI'); 
 
% visualize the network: 
visualizeCO(CONetwork, 'NodeColor', [0.5 0.5 0.8], 'FontSize', 12, 'MarkerSize', 55,  
'EdgeColor', [0 0.8 0.4]); %, 'EdgeWidth',8); 

Listing 2: data processing source file in MatLab® 
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The word cloud was also created using MatLab®, as in Listing 3. The first part, 

data reading & preparation, is the same as in Listing 1 and thus omitted in Listing 3. 

% begin word cloud 
cleanedBag = bagOfWords(docs); % create bag of words 
cleanedBag = removeInfrequentWords(cleanedBag,2); % remove rare words 
tbl = topkwords(cleanedBag,63); % use top words only 
colors = rand(63,3); % set random colors 
figure  
wordcloud (tbl, "Word", "Count", 'Color', colors); % create figure with word cloud 
% end word cloud 

Listing 3: word cloud file in MatLab® 

3.3. Results 

Firstly, we calculated single words’ frequencies and visualized the results using the 

word cloud for the medical category (Figure 5) and the health & fitness (Figure 6). 

 

Figure 5: Word cloud of data collection parts of privacy policies – category “medical”  

 

Figure 6: Word cloud of data collection parts of privacy policies – category “health & fitness” 
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The visualization of individual words’ frequencies shows that mostly sought-after 

pieces of information are the user’s email and physical address, phone number, birth 

date, (geo)location, and data related to browsing activities. Interestingly, from the first 
glimpse, there are no significant differences between the groups. 

Single-word analysis gives only a glimpse into what words are most frequently 

used in privacy policies.  

Here, we already see interesting keywords popping up, such as “name,” 

“password,” and “address” in both categories, and “medical,” “family,” “member,” 

“doctor” in the group “medical,” and “body,” “gender,” “activity,” “exercise” in the 

group “health & fitness.” 

We will further analyze these words using a targeted co-occurrence analysis.  

Secondly, to put words in context, the co-occurrence analysis was conducted. The 

results were visualized and manually inspected.  

3.3.1. Co-occurrence analysis of the “Medical” privacy policies 

The visualization result of the co-occurrence analysis of the keywords of privacy 

policies in the category “medical” is presented in Figure 7. 

 

Figure 7: Visualization of co-occurrence analysis of parts of privacy policies – category “medical” 

The visualization above shows that apps, not surprisingly, collect information 

about users, such as names, addresses, email, and alike.  

However, a detailed inspection unveiled some interesting words worth further 
investigation. These were “location,” “service,” “device,” “browser,” “password,” 

“medical,” “family,” and “doctor.” 

We separately visualized co-occurrences of the above words in two groups, the 

first four and the last four words together, see Figure 8 and Figure 9 and, respectively.   
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Figure 8: Visualization of co-occurrence analysis, words “location,” “service,” “device,” and “browser.” 

(medical apps) 

 

Figure 9: Visualization of co-occurrence analysis, words “password,” “medical,” “family,” and “doctor.” 

(medical apps) 

Here, worrying patterns have shown up. Firstly, it is evident that apps store 
browser-related data, such as page visits, versions, language used, and devices being 

used. About devices, they collect their make and type, operating system used, and 

address (geolocation). Secondly, apps track the services being used and their content. 

Apps collect data about the users and their family members, such as their emails 

and phone numbers, further enabling linking data from various sources.  

Additionally, medical data are being collected, such as medical files, records, 

details, and screenings. Closely related are the data about doctor visits and 

appointments, together with visit frequencies and doctor’s notes taken. 
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3.3.2. Co-occurrence analysis of the “Health & fitness” privacy policies 

The visualization result of the co-occurrence analysis of the keywords of privacy 

policies in the category “health & fitness” is presented in Figure 10. 

 

Figure 10: Visualization of co-occurrence analysis of parts of privacy policies – category “health & fitness” 

The visualization above shows that apps, just as in the “medical” category, collect 

general user information (names, addresses, email, phone number). Same as before, 

more detailed information about users regarding “location,” “service,” “device,” 

“browser,” “password” pop up. Here, we do not repeat the co-occurrence analysis for 

the first group of keywords related to location and device/browser; the results are 

comparable to the medical group. 

However, in the “health & fitness” group, we found the following keywords worth 
further investigation: “route,” “heart,” “weight,” (and “height”), “gender,” and “photos.” 

From the word cloud, we add keywords “body,” “activity,” and “exercise” for further 

investigation. We separately visualized co-occurrences of the above two groups of the 

words. 

 

Figure 11: Visualization of co-occurrence analysis, words “activity,” “heart,” “height,” “weight,” and “body.” 

(health & fitness apps) 
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Figure 12: Visualization of co-occurrence analysis, words “route,” “gender,” “exercise,” and “photos.” 

(health & fitness apps) 

Figure 11 and Figure 12 show a more detailed co-occurrence analysis of the 

selected words. 

Here, interesting patterns show up. Namely, apps track many aspects of users’ 

(sports) activities, including time, geographical location, and duration. Additionally, 

they track sleeping patterns and heart rates. Worryingly, they keep track of menstrual 

cycles and body temperatures. As expected, apps store photos, videos, comments, 

ratings, and preferences. 
Both groups commonly store passwords, which poses a considerable security risk 

[26] and is directly against good password management policies [27]. It is a known fact 

that users reuse their passwords across several platforms and services. In the RTB 

ecosystem, where companies share sensitive data, including users’ passwords, such a 

practice opens a whole new perspective on how securely data are stored and how easy 

it actually is to gain unauthorized access to users’ data on other platforms. 

4. Limitations 

The first and most obvious limitation is the data source, being only the Google Play 

store. However, based on Statista’s surveys [28], the Google Play store has more than 

50 % market share, the rest of the market being shared by the Apple App Store, 

Windows Store, and Amazon Appstore. Additionally, we limited our research to the 
top 30 applications by the number of downloads from each group, “medical” and 

“fitness & health.”  

We believe that apps that are most frequently downloaded exist in both major 

mobile app stores. However, this is an assumption, and we have not checked it. 

The following limitation is the automatic downloading and manual processing of 

privacy policies. For example, automatic downloading could have retrieved only a 

limited portion of the privacy policy, as per example in Figure 13: 
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Figure 13: Partial privacy policy 

As seen from the example above, one has to click on the link “Read more” to see 

(and retrieve) the whole text. 
The next limitation was the way we manually processed the privacy policies. Each 

one was searched for the section explaining what data the company is collecting – see 

Figure 14.  

 

Figure 14: A section of a sample privacy policy describes what data company is collecting 

However, we noticed that companies are “hiding” relevant data to other sections of 

privacy policies and only list “by example” what they are collecting. None of the 

companies disclosed a complete list of attributes they are collecting; mainly, they 
explained the private data they gather by the most apparent attributes (name, email, 

location, IP address, etc.). 

Finally, this work was intended to show the general trend and find attributes of 

personal information that are most frequently used. For this reason, our study does not 

reveal rare practices, bad practices, or outline particular private data some companies 

are collecting. One such example is a company offering a loose weight app for men – 

weight loss in 30 days, collecting the following data (Figure 15). 

 

Figure 15: An excerpt from the privacy policy of an app for men collecting very specific data 

Finding out what “other information” really means remains mission impossible. 
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5. Discussion and conclusion 

This paper analyzed the texts of a sample of 62 privacy policies of the most frequently 

used free medical apps in the Google Play store, focusing on privacy policies 
describing which personal data are being collected and processed by the apps. 

We chose free apps due to the prevailing business model in apps markets where 

developers make their apps available for free and get paid by advertisements shown 

inside the apps. A whole ecosystem was built around the advertisements on the web 

and inside apps, making it a multi-billion-dollar business, predominantly controlled by 

a single company. 

The advertisements are served through a real-time bidding (RTB) process where a 

multitude of companies are collecting, storing, sharing, and doing business with private 

personal data. Due to regulations and restrictions in place, the burden of rules 

compliance is put on the apps’ developers, forcing the users to accept the privacy 

policies, knowing that users neither read nor understand them. The users actually do 
not know what type of personal data the applications are collecting and further (for the 

purpose of advertising) sharing with a myriad of companies. 

The paper’s novelty is applying an automated linguistic analysis on privacy 

policies coupled with visualization techniques to unearth (deliberately!?) hidden 

information on which types of private data apps are collecting. To the best of our 

knowledge, no previous research on privacy policies was done using the specific 

linguistic technique combined with visualization. 

Based on the co-occurrence analysis of privacy policies, a form of text mining, we 

have first visualized the results, followed by a manual inspection of simple graphs. 

Generally, medical, and health & fitness apps collect all the “expected” private data, 

such as user / personal names, gender, email, and physical addresses. Additionally, they 

collect and store photos, videos, chats, messages, opinions, and alike, all created by 
users within the apps offering such options. 

However, a detailed analysis has revealed that apps also collect and store 

passwords (which is a hazardous practice since users reuse passwords across many 

websites, services, and apps). 

Additionally, medical apps collect and process sensitive medical details, such as 

medical records, files, notes, doctor’s appointments with their frequencies, and alike. It 

is incredibly worrying that apps collect data about the app users’ family members and 

their medical data. 

Health and fitness apps are, in general, and at the overview level, less privacy-

invasive. They also collect health-related data, such as sleeping patterns, menstrual 

cycles, heart rates, weight and height, and bodily temperatures. 
The future work can take several strains. Firstly, because data from individual 

users from different apps and their browsing activities are being shared in the 

background, thus creating a rich database, we could try to create a consolidated list of 

all possible attributes potentially being shared about an individual user. Secondly, we 

could extend our analyses not only to the co-occurrence of words, i.e., two words 

occurring at the same time, but also longer sequences and combine them into a single 

picture.  

Sadly, lenient regulations are not protecting users in the app markets (neither in the 

browsing). A simple remedy would require putting personal data on a forbidden list, 

making trafficking with personal data a criminal offense. It cannot be expected that 

users first read what is being collected and then opt out of advertising in every single 
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app they are using. Big players in the market have made the process of protecting 

personal data deliberately tricky, if not impossible. The care (and the burden) of 

privacy protection is put on users, which “By using the Service, you agree to the 
collection and use of information in accordance with this Privacy Policy.” Nobody 

really reads what’s collected. And stored. And shared. 

A simple by default rule, “no personal data storing & processing,” could be a good 

start. 
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