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Abstract. In this study, we will examine how the speech sounds generated by one-to-
one or one-to-n human communication are not only simple exchanges of intentions
and opinions, but are also clearly divided into linguistic expression and linguistic
understanding. In this course, we will discuss the problems of interaction between
interlocutors and the complex interplay of phenomena that occur in individual
interlocutors. We propose a method to determine the semantic frame of a dialogue
contextually by integrating and calculating the features of speech and the features
of the meaning of words.
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1. Introduction

The acoustic model in speech recognition technology expresses the relationship between
a series of acoustic features, which is a continuous quantity for each generation time, and
a series of discrete symbols (words, phonemes, etc.).

The dramatic improvements achieved by deep learning in large-vocabulary contin-
uous speech recognition tasks have attracted much attention. Almost all of the research
that had been done on GMM, HMMs in the past has been revised at a rapid pace, and
deep learning is now commonly used as the standard for acoustic modeling. Nowa-
days, deep learning is often used as a standard for acoustic modeling [1,2,3,4]. In the
framework of deep learning, the relationship between discrete symbols is modeled on a
continuous-valued vector space, and the relationship between variable-length input and
output sequences is modeled directly. First, discrete symbols such as words and letters
are treated as fixed-length continuous-valued vectors called Distributed Representation
or Embedding. Instead of the conventional modeling based on sparse information (e.g.,
frequency), it is possible to model discrete symbols on a continuous-valued vector space.
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It is now possible to capture the relationship between discrete symbols in a vector space of
continuous values, rather than modeling based on sparse information (such as frequency).

Second, in addition to the extension techniques, it is now possible to flexibly handle
variable-length In addition to the extension techniques, it is now possible to flexibly
handle discrete symbolic sequences of variable length. In addition, it is now possible to
flexibly handle discrete symbolic sequences of variable length, from fixed-length inputs
(such as Bag-of-Words, which does not consider sequences, or local fixed-length context
information) to fixed-length outputs. context information) as well as fixed-length output.
It is now possible to treat a discrete symbolic series of variable length as a continuous
vector of fixed length [5,6,7,8,9,10].

On the other hand, language models are also being extended in various ways with
the advancement of techniques based on deep learning. Methods using deep learning
have been reported to be overwhelmingly accurate in various tasks such as language
model building [11], proper noun extraction [12], meaning construction based on con-
structive semantics [13], and reputation classification [14,15], and various other tasks,
deep learning methods have been reported to have overwhelming accuracy [16,17].

Traditional word modeling involves word segmentation, parsing, and probabilistic
language models. In the field adaptation, it is important to prepare texts in the adaptation
field and to perform field adaptation of word segmentation and reading estimation. One
of the applications of this method is the "Shabette Concierge" and language processing
developed by NTT Docomo, but it is limited to task determination and keyword extrac-
tion. However, it is limited to task determination and keyword extraction, and semantic
interpretation in simple limited situations [18].

Similar work has been done on slot filling and speech intention understanding.
Typical methods include Support Vector Machine modeling using sparse features such as
n-grams. Machine modeling using sparse features such as n-grams [19,20].

However, although modeling on discrete space and modeling on continuous space
have their own challenges regarding their merits, there is some research on modeling that
considers more complex structures as contexts, such as documents and discourse. There
are few studies that interpret and determine semantic frames for acoustic and language
models [21,22,23].

We propose a method for determining the semantic frame for the process as a result
of the speaker’s semantic understanding and dialogue in a complex specific situation.

Structure of this paper is organized as follows. First, we outline problem settings in
this paper. Next, we briefly describe overall picture of our proposed method. Third, we
present the basic theories to embody the components of the method. Fourth, we explain
the details of the proposed method, and finally we conclude this paper.

2. Problem Settings

Here, we briefly specify the problem. This paper considers involving communication
between consumers and a clerk, such as during a business negotiation or sales promotion.
In such cases, the outcome of the communication, such as whether the negotiation was
successful, unsuccessful, or put on hold, is considered to depend on the tension and
activity of the spoken words and voice. This paper considers the problem of inferring the
speaker’s semantic understanding using linguistic and acoustic information.
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Figure 1. Semantic frame of the proposed method

3. Overview of our method

This section introduces a whole architecture, which is referred to as semantic frame,
to solve the problem in section 2. Figure 1 shows the frame. First, our system sets
assumed semantic contexts that represent the situation of the communication and updates
semantic information that projects linguistic and acoustic information on a semantic
space to evaluate the speaker’s semantic understanding. Note that the frequency of the
calculations, referred to as the period, is days, weeks, etc., because the update requires a
little bit of computational cost for the matrix product and the eigenvalues computation,
as you can be seen later.

For each communication, our system splits the entire communication into processes
by streaming, where the unit of the segmentation is called the time interval.

For each time interval, the system estimates the result of the communication using
linguistic and acoustic information, and it outputs the quantized score for each successful,
unsuccessful, or pending communication category. We achieve the following functions
by applying the next section’s methodologies to realize the frame:

1. Set the Semantic Contexts and Update Semantic Information
2. Split Conversations
3. Infer the Results of Communication

4. Basic Theories

Here, we explain basic theories utilized in the proposed method. In this paper, we utilize
the mathematical model of meaning (MMM) to extract semantic information. Moreover,
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we explain how to process linguistic and acoustic information because both kinds have
to be quantized to calculate the score.

4.1. Mathematical Model of Meaning

The MMM was first proposed to extract semantic information behind data determinis-
tically [24]. Let X ∈ RN×M be a data matrix, where N is the number of data, and M is
the number of features. We use 2-norm normalization in each column of the matrix, and
denote the resulting normalized matrix by X̃, i.e., the (i, j)th element of the matrix is

X̃i, j =
Xi, j√∑N
k=1 X2

k, j

. (1)

This is referred to as the fundamental data matrix. The product of the fundamental data
matrix X̃TX̃ represents a similarity matrix among features, and a subspace spanned using
a combination of the eigenvectors extracted from the product represents a semantic space.
Let λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0 be the eigenvalues and v1,v2, . . . ,vM be the corresponding
eigenvectors. Nevertheless, because the similarity matrix is a symmetric matrix, the
eigenvalues are non-negative and real, and the number of the combination is 2M . A context
matrix and a threshold are used to determine the subspace from the combination. Let
Y = [YT

1 ,Y
T
2 , . . . ,Y

T
t ] ∈ Rt×M t×M be the context matrix, and Q = [v1,v2, . . . ,vM] ∈ RM×M .

Then, for the threshold εmmm, MMM determines the index set of the chosen eigenvectors
Λεmmm using

Λεmmm =
{
j ∈ {1,2, . . . ,M}|0 < εmmm < 1,

(QY ) j

‖QY‖∞ > εmmm
}
. (2)

Here, QY =
∑t

i=1 YiQ, (QY ) j is the j-th element of QY , and ‖QY‖∞ = max
1≤ j≤M

|(QY ) j|. We

obtain the semantic projection by arranging the chosen eigenvectors

P(Y) = [vT
j | j ∈ Λεmmm ] ∈ R|Λεmmm |×M , (3)

where |Λεmmm | represents the cardinality of Λεmmm . When we apply the projection to each
datum g ∈ RM , the datum is regarded as an element of a semantic space, denoted by
P(Y)g. In this semantic space, we can measure the distance between the datum and the
semantic centroid D̄:

D̄ =
1

‖PY‖∞ PY , (4)

where PY =
∑t

i=1 P(Y)Yi. Let D̄ j and (P(Y)g) j be the j-th elements of the vectors; the
distance is calculated as the weighted Euclidean distance dist(D̄,g),

dist(D̄,g) =

√√√√|Λεmmm |∑
j=1

c j
(
D̄ j− (P(Y)g) j

)2
, (5)

where c j =
(PY ) j
‖PY ‖∞ .
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4.2. Configuring Linguistic Information

Assuming that we only utilize speech information, we need a system that generates text
from speech to apply linguistic techniques. Such a speech recognition technique can be
used in the case of both a cloud[25,26] and a premise[27,28]. Next, we need a linguistic
technique to deal with the generated text quantitatively. In this paper, we utilize the
following well-known features as the linguistic features.

• Bag-of-Words(BoW)
• Word embeddings

Let W be a set of words and H the dimension of the embeddings; then, we create a
linguistic feature having the dimension of |W |+H.

4.3. Configuring Acoustic Information

Famous acoustic features obtained from a speech signal are the following ones [29,30].

• power of speech signal
• fundamental frequency
• Mel-Frequency Cepstrum Coefficient

Note that these heterogeneous features need to be aggregated because the features are
calculated differently. For example, the power is obtained for each digitalized timing,
while the fundamental frequency is obtained for each window size. In this paper, we
summarize each feature by the maximum, minimum, mean, and standard deviation with
each common period.

5. Proposed Method

In this section, we explain how to achieve the functions we explained in section 3 one by
one.

5.1. Set the Semantic Contexts and Update Semantic Information

In this process, our system sets semantic contexts and updates semantic linguistic and
acoustic projections. Algorithm 1 shows an overview of the process.

Let S be a set of a semantic context such as in general cases like a business negotiation
and a sales promotion and in specific cases such as a business negotiation in which a
customer decides to purchase something, and let C be a set of communication categories
such as successes, failures, or reservations. Then, our system first establishes the set
S of the semantic context for each period. Next, our system obtains the past linguistic
and acoustic fundamental data matrices Xl

s and Xa
s for each element s ∈ S with the time

interval in the row direction and the features in the column direction, where the element
of each feature is the one described in section 4.3 and 4.3. Then, our system calculates
the eigenvectors (vl

1s, . . . ,v
l
Ms) and (va

1s, . . . ,v
a
Ms) of the product X̃l

s
T

X̃l
s and X̃a

s
TX̃a

s of the
normalized matrices Xl

s and Xa
s . Using the combination of the eigenvectors, our system

prepares the semantic projections for each communication category c ∈C. The linguistic
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Algorithm 1 Algorithm of Setting the Semantic Contexts and Updating the Semantic
Information
Require: εmmm: Threshold to determine the semantic projection, C: Set of communica-

tion category
1: procedure Set the Semantic Context and Update the Semantic Information
2: Set the semantic context S
3: for each s ∈ S do
4: Construct linguistic and acoustic fundamental data matrices Xl

s and Xa
s in s,

respectively.
5: Calculate X̃l

s and X̃a
s using (1).

6: Calculate eigenvector (vl
1s, . . . ,v

l
Ms) and (va

1s, . . . ,v
a
Ms) of X̃l

s
T

X̃l
s and X̃a

s
TX̃a

s ,
respectively.

7: for each c ∈ C do
8: Update linguistic and acoustic context matrices Yl

s,c and Ya
s,c of c in s,

respectively.
9: Determine semantic projections P(Yl

s,c) and P(Ya
s,c) by (3).

10: end for
11: end for
12: end procedure

and acoustic context matrices Yl
s,c and Ya

s,c of a semantic context s and a communication
category c are updated when those features utilized for the previous period are labeled
by c. Our system updates the semantic projections P(Y)l

s and P(Y)a
s using the context

matrices, the eigenvectors, and the threshold εmmm.
Bear in mind that the computational complexity of this process is O(M3+N2), where

M is the number of features, and N is the number of data of the fundamental data matrix.
Therefore, we assume the period to be days, weeks, and so on.

5.2. Split Processes

In this process, our system determines whether or not the conversation is broken based
on a streamed speech signal S (t). Algorithm 2 shows an overview of the process.

Algorithm 2 Algorithm of Split Processes
Require: S (t): Signal of streamed acoustic information, εa: Threshold of silence length,
εl: Threshold of text distance

1: procedure Split Processes
2: Aggregate silence interval in S (t).
3: Evaluate silence interval using εa.
4: Enable speech recognition and generate text text(t) from S (t).
5: Vectorize text(t), denoted by V(t).
6: Evaluate distance between V(t) and previous vector V(t−1) by εl.
7: Integrate two evaluated results and determine whether or not the conversation is

broken.
8: end procedure
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Both linguistic and acoustic determinations can be made on whether or not the
conversation is broken. In the acoustic component, our system evaluates the length of the
silence interval. Therefore, our system aggregates the length from S (t) and evaluates that
the interval exceeds a threshold εa. In the linguistic component, our system first generates
a text text(t) from S (t) using speech recognition. Then, our system transforms text(t)
into a vector V(t) using word embeddings. Finally, our system evaluates the distance
between V(t) and previous vector V(t− 1) and determines whether or not the distance
exceeds a threshold εl. By combining the results, our system determines whether or not
the conversation is broken.

5.3. Infer the Results of Communication

In this process, our system estimates the results of the communication in a split process.
Algorithm 3 shows an overview of the process.

Algorithm 3 Algorithm of Inferring the Results of Communication
Require: U(t): Signal of acoustic information at time interval t, s: Semantic context, α:

Mixing ratio of distance
1: procedure Infer Results of Communication
2: Convert U(t) into linguistic feature Xl(t) and acoustic feature Xa(t).
3: for each c ∈ C do
4: Project the linguistic feature into semantic space in c, denoted by P(Yl

s,c)Xl(t).
5: Calculate the distance between P(Yl

s,c)Xl(t) and the semantic centroid.
6: Project the acoustic feature into the semantic space in c, denoted by

P(Ya
s,c)Xa(t).

7: Calculate the distance between P(Ya
s,c)Xa(t) and the semantic centroid.

8: Integrate the two distance by mixing the ratio α.
9: end for

10: end procedure

To estimate the results of communication at time interval t, our system transforms the
speech signal into linguistic and acoustic features Xl(t) and Xa(t) using methodologies in
4.2 and 4.3. Moreover, in a semantic context s and communication category c, each type
of feature is projected using semantic projectionP(Yl

s,c) and P(Ya
s,c). Our system calculates

the distance between the projected feature and semantic centroid dist( ¯Dl
s,c,Xl(t)) and

dist( ¯Da
s,c,Xa(t)) in (5) for each s and c. Our system integrates the distance using

ds,c(Xl(t),Xa(t)) = α×dist( ¯Dl
s,c,X

l(t))+ (1−α)×dist( ¯Da
s,c,X

a(t)), (6)

where 0 ≤ α ≤ 1. Finally, our system estimates the results of communication based on (6).

6. Conclusion

We proposed a method for determining the semantic frame for the process as a result of
the speaker’s semantic understanding and dialogue in a complex specific situation.
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Our future work involves discussing improvements such as feature selection for both
linguistic and acoustic features and alternative ways to split processes. In addition, we
will conduct numerical experiments and compare the performance between candidates to
validate the method.
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