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Abstract. We develop techniques to translate deterministic cellular automata 
models into colored Petri nets based on an example of known cellular automata for 

modeling and mimicking Ebola virus dynamics. Cellular automata for Ebola virus 
dynamics use parametric specifications of rules that is peculiarity of the present 

study. The simulation results completely coincide with known results obtained via 

dedicated simulator. Having uniform language for models specification brings in 
advantages for models mutual transformations and simulation. 
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1. Introduction 

Ebola is one of the most lethal infectious diseases known to mankind. The Ebola virus 

causes an acute, often fatal hemorrhagic illness. The incubation time is something 

between two days and three weeks after becoming infected with the virus [1]. 

Cellular automata (CA) are widely applied for modeling processes of virus 

spreading both on micro-level of cells of some organ [2] to macro-level of geo-spatial 

representation [3].  

A Petri net is a well-known formalism for specification of concurrent processes [4]. 

A family of Petri net classes offers a uniform language for modeling in various 

domains with possibility of applying both model-checking and simulation techniques 

of analysis. 

In the present paper, we develop a technique for transformation of cellular 

automaton models for virus spreading into colored Petri net (CPN) models using a 

known cellular automaton that specifies Ebola virus dynamics [2]. 

2. Cellular automata and Petri nets 

A cellular automaton [4] represents a homogenous structure of elements (cells) having 

rather simple behavior such that their collective behavior represents a mass parallel 
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process capable of modeling processes in many application domains. A state of cell in 

the next tact of time depends on the cell current state and states of its neighbors. 

Usually, an infinite square lattice of cells in multidimensional space is considered in 

theoretical research though for practical applications, a finite part of the lattice is 

simulated. Even one dimensional elementary (having binary state) cellular automata are 

Turing-complete [5] that illustrates power of the concept. Traditionally, von Neumann 

(sparse) and Moore (dense) neighborhoods of a cell are considered though recently a 

generalized neighborhood, that fills the gap between two mentioned neighborhoods 

within multidimensional lattices, has been introduced and studied [6], [7].  

A Petri net [8] represents a bipartite directed graph with a dynamic process 

introduced on it. The first part of vertices, depicted as circles or ovals and called places, 

represents conditions. The second part of vertices, depicted as rectangles or bars and 

called transitions, represents events. Dynamic elements, called tokens and depicted as 

dots, are situated within places; they are consumed and produced as the results of firing 

transitions. Within a conventional Petri net, tokens are elementary; the net state is 

specified by the place marking represented by a vector which components contain the 

number of tokens in the corresponding places. A conventional Petri net is applied for 

modeling concurrent processes within a wide variety of application domains. 

Comparable simplicity of Petri net concept allows us to apply analytical methods for 

model checking [6] though its descriptive power is not too high for detailed 

specification of systems and processes. 

A colored Petri net [9], [10] represents a combination of a Petri net graph and a 

functional programming language ML. Tokens are considered as elements of data types 

traditionally called color sets. Arcs and transitions are inscribed with ML constructs. 

Besides, time characteristics are introduced for the processes simulation. Supplied with 

a range of random distribution functions, CPN Tools [10] allows us to provide 

statistical analysis of timed and other characteristics. For composition of complex 

models, hierarchical design is provided via the transition substitution when a transition 

is substituted by a subnet. CPNs find wide application for the performance evaluation 

of systems, especially networks, grids, and clouds [11]. For this purpose, classical 

simulation technique is applied refined with special measuring components of models 

to compute statistical characteristics on-the-fly directly in the process of simulation [9]. 

For comparably small models, application of state space technique for the model 

properties analysis is possible.  

3. Cellular automata models of Ebola virus dynamics 

We use Ebola virus dynamics model [2]. A two dimensional CA with the cell states 

within the set {0,1,2,3} is considered where 0 represents a healthy state, 1 and 2 

represent an infected cell, and 3 represents a depleted (dead) cell. Here we present a 

model for one of three rules studied in [2] that explains basic principles of the 

ransformation. 

Let us consider the mentioned rules description where asterisk symbol “*” denotes 

any state and a matrix represents states of a cell (in the center) and its neighbors 

according to Moore neighborhood [6]. Before a matrix, a rule symbol is written; the 

rule application results in a new state of the central cell that is written after the equality 

symbol. 

CA Q with rule q specification follows: 
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The three above lines specify all possible four states of a cell within the set 

{0,1,2,3}: first line – 0, second line – 1 or 2, and third line – 3. Note that, in second and 

third line (for the current cell state 1, 2, or 3), the next state does not depend on 

neighbors. The first line can be considered as a variant of totalistic rule with check that 

the sum of all neighbor cell states is equal to or greater than 1.  

CA Q specifies fast propagation of decease when, according to the first line of its 

description, at least one deceased cell within Moore neighborhood causes the current 

cell got infected. Together with other rules studied in [2], it serves for the subsequent 

composition of stochastic automata that is beyond the scope of the present paper.  

4. CPN model of a cell 

We compose colored Petri net model of a cell functioning under rule q shown in Fig. 1. 

In colored Petri net (CPN) of modeling system CPN Tools [10], [11] places are 

depicted as ovals; each place has its name, written inside a place, data type of tokens 

(color set), and initial marking. A token is not elementary in CPN; in the general case, 

it is an element of abstract data types such as cortege, record, list, or union composed 

of elementary types, such as integer or real numbers, strings and others. In the present 

work, we use only color sets: an integer number (INT), and a timed integer number 

(tint). Basic declarations look rather simple: 

 
colset tint = INT timed; 
var i,ii,j1,j2,j3,j4,j5,j6,j7,j8:INT; 
var c:tint; 
 

The reserved word “closet” serves for defining new sets of colors while the 

reserved word “var” serves for declaration of variables. A color set is specified using 

the equality sign “=”, a new color set tint is defined on basic integer color set INT 

using modifier “timed”. Definition of variables consists of a list of names separated by 

semicolon “:” symbol with the name of color set. 

Within our model, we have only no more than one token inside each place though 

in the general case the place marking is represented by a multiset composed using 

double plus sign “++”. Recall that, each element belongs to a multiset in definite 

number of copies (multiplicity), the multiset element is represented as k`e, where k 

denotes multiplicity and e denotes an element. On the initial marking CPN Tools 
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creates current marking of simulation system which is displayed in green colors and 

changes as result of transitions firing.  

Timed delays are associated either with transitions or with separate arcs. For timed 

multisets, an element is represented as k`e@t, where t is the token activation time. A 

transition fires instantaneously, increasing the step counter Step value, a delayed token 

spends time before its activation in the corresponding output place of transition in 

passive state not possible for enabling any transition. The timed delays are specified as 

k`e@+d, where d species the delay. Here we use integer numbers to specify delay 

though in the general case, a random distribution function can be applied, CPN Tools 

providing a series of random distribution functions including Gauss, Poisson and others.  

In our models, we use a timed CPN to specify synchronous work of all the cells. 

The marking change within a lattice is implemented in two tacts. At the first tact, all 

the neighbors and the current cell itself can read the current “0,0” cell state using two 

directed arcs without change of the marking. During this tact, a new state of the current 

cell is computed and stored within additional place “new 0,0”. Then, at the second tact, 

the current state of all cells is instantaneously replaced by their new states. For this 

purpose, we have a clock token 1@t moving within a circle created by places clock1 

and clock2 and transitions which connect the mentioned places. The clock extracted by 

variable c inscribed on the arcs from place clock1 activates one of the four alternative 

transitions having names “0”, “1”, “2”, and “3”, corresponding to the current “0,0” cell 

state. The corresponding alternative values of the current state are inscribed on the 

transitions incoming arcs. We use double directed arcs though one of the mentioned 

transition fire only once because of the clock arc; after firing a transition, the clock 

token is delayed by “1@+1” to give time for all cell to compute their new state. 

The automaton Q specification in the Section 2, contains simple subrules for the 

cell states equal to 1, 2, and 3:  transform 1 or 2 into 3 and transform 3 into 0 without 

taking into consideration state of the neighboring cells. Each of these transformations is 

specified by a corresponding transition, putting the new current state value into place 

“new 0,0”. For the current cell state equal to 0, the automaton Q, according to its first 

subrule, checks states of its neighbors. There are two alternatives of this check 

represented by transitions “1 or 2” and “all 0 or 3”. Now let us pay attention to the 

naming of cells within the cell model. Because the model should suit to each cell of the 

lattice, we do not use the cell index; instead of it we use neighbor offsets with regard to 

the current state index. Thus, the current cell is named as “0,0”, the left upper cell is 

named as “-1,-1” and so on because we use a matrix-like orientation of coordinate axes. 

To extract values of the neighboring cells, we use a set of integer variables j1, j2, j3, j4, 

j5, j6, j7, j8 corresponding to the clockwise enumeration of neighbors starting from the 

upper neighbor. Note that, to avoid a tangled picture with manifold crossed lines, we 

implement connections of either of transitions “1 or 2” and “all 0 or 3” with 

neighboring cells as a bus merging all arcs in a single line; the bus encircles the cell 

shape with endings of arcs coming to the neighbor cells states.  
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Figure 1. Model of cell with rule q. 

 

To check the state of neighbors, we employ a guard function of a transition. The 

guard function represents a logic expression that combines check of characteristics for 

tokens extracted by various incoming arcs of a transition. The logic expression is 

written in square brackets using the following notations: “orelse” denotes disjunction 

and “andalso” denotes conjunction. Thus we interprete the first variant of the first 

subrule for automaton Q, implemented by transition “1 or 2” as 

 

. 

 

We interpret the second variant of the first subrule for automaton Q as the above 

expression negation with regard to the state value range, implemented by transition “all 

0 or 3” as  

 

 

 

For the further composition of a lattice using the designed cell model, places 

corresponding to the current and neighboring cell states are labeled by the input/output 
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(In/Out) port tag drawn in blue color. They represent parameters of the model and will 

be studied in detail when composing a lattice.  

5. Composing CPN model of a lattice 

To compose a lattice of CA Q, we create a separate place to store the corresponding 

cell state, we use cell indices as names, for instance “0,0”, “0,1” etc. With each cell we 

associate a cell model represented by a separate transition, to which name prefix “c” is 

added, to obtain the main page of CA Q model, shown in Fig. 2. The arcs reflect 

connections with neighboring cells; for Moore neighborhood applied in the present 

model connections look rather dense. Note that, because the current cell state is not 

actually localized within the cell model, we have actually 9 connections for each cell 

represented by bidirected arcs. Neighbors only read the current cell state values while 

the current cell model changes it.  

 

Figure 2. Model of CA Q (with cell model in Fig. 1), finite 4x4 lattice with constant border conditions. 

 

As a mathematical model, CAs are thought of as infinite lattices and this definition 

is applied for deriving analytical results with regard to CA properties. For computer 

simulations, we always use a finite part of lattice obtained according to given size of 

CA, usually square for a two dimensional automaton. Thus, a question regarding the 

borders of finite lattice arise because if we simply cut a square finite lattice, cells on the 

borders will use indices of nonexistent cells to implement their rules. The simplest 
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solution, implemented in our model of lattice (Fig. 2), consists in adding places storing 

states of neighbors for one more layer of cells on each border; it corresponds to 

constant border conditions, though individual for each border cell. Thus in Fig. 2, 

actually cell state of 5x5 lattice is stored while cell state of 4x4 lattice is modified 

according to the rule q. Note that we can implement other border conditions, for 

instance, connect opposite edges to obtain a torus [12] or use additional subnets which 

implement varying border conditions.  

Now let us consider in detail how hierarchical models are composed within CPN 

Tools. The basic operation is substitution of a transition by a subnet. In Fig. 2, each 

transition, which implements modification of the corresponding cell state, is tagged by 

the transition substitution tag “cell”. It means that the subnet shown in Fig. 1 works 

inside each transition with specific data according to the cell neighborhood state. To 

use parameters while substituting a transition, socket-port mapping is provided by CPN 

Tools [11]. Places of a submodel, which map on the corresponding places of a model, 

are called ports and indicated by port tags, for instance In/Out tags in Fig. 1. Ports are 

mapped to places of the model, which are called sockets, using special tools of 

Hierarchy palette of CPN Tools. It is supposed that transition substitution and port-

socket mapping are implemented manually.  

When the CA Q model is composed, we can simulate CA dynamics for various 

input state of lattice and border conditions. For this purpose CPN Tools offers step-by-

step mode of simulation for model debugging. Then simulation of specified number of 

steps can be launched. It is convenient to use time break-points to check the lattice state 

when all the cells implemented change of state at the current timed tact.  

6. Analysis of simulation results 

Specifying here Ebola virus dynamics model in CPN language, we apply mainly 

simulation to study the model behavior and properties. Besides, though it is feasible for 

rather small models without using high performance resources, we can build complete 

state space of model, obtain automatic report on it containing conclusions of such basic 

properties as boundedness, liveness, and fairness [7], [11]. There is an additional 

possibility to compose requests to state space for finding specific properties which can 

be interesting, for instance, when modeling viruses. For 1x1 CA Q shown in Fig. 3, 

CPN Tools built state space drawn in Fig. 4. 

In Fig. 3, we renamed vertices because state space palette of tools has more strict 

requirements to syntax: we replaced zero by “O” and one by “I” and sign minis by “m” 

to have names starting from a letter and containing no special characters. Thus, we 

have a cell with state 1 that has 7 neighbors with state 0 and one neighbor with state 1. 

Built state space of CA Q 1x1 (Fig. 3) represented in Fig. 4 contains 9 states; after an 

initial part of first two transitions, the models falls in a loop of states from 3 to 9. 

Initially drawn state space does not reflect detailed descriptions of states and 

transitions; firing a transition is represented by an arc connecting state, a state is 

specified by its number and the number of incoming and outgoing arcs. Fig. 4 contains 

attributes of all transitions expanded, as well as expanded state description for state 7. 

Transition specification indicates the transition name and values of tokens which were 

taken at transition firing (in curly brackets). Compound names of vertices are written 

including a prefix with the subnet name followed by, separated by quotation symbol, 

the node name. State specification lists marking of all transitions. The obtained report 

D.A. Zaitsev et al. / Modeling Ebola Virus Dynamics by Colored Petri Nets 713



concludes that the net is bounded, its initial marking is a home marking, dead markings 

are absent though some instances of transitions are dead, for example “cell'all0or3”, 

and classifies transitions into impartial, fair, just and unfair, no unfair transitions found. 

 
Figure 3. CA Q 1x1. 

 

 

 
Figure 4. State space of CA Q 1x1 (Fig. 3). 

 

Thus, the CA Q 1x1 model with the specified initial state, coming from CA state 1, 

falls into a loop of CA states 3->0->1->3 stored in place “cell’OO”. With our model, 

we observed other variants of cyclic behavior of CA studied in [2] for 3x3 and 7x7 

lattices that indirectly acknowledges correctness of our constructs. 

For statistical analysis of composed models having big size of the cell matrix, 

simulation on prolonged intervals of time is applied that also acknowledges 

conclusions of [2] with regard to parameters choice to provide recovery after the 

decease spreading. Combining state space and simulation techniques allows us to study 

the constructed models comprehensively that is an advantage of applying a colored 

Petri net and modeling system CPN Tools. 
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7. Conclusions 

In this paper we presenter technique to transform so called SEIR models used in 

mathematical Epidemiology into colored Petri net models. Applying CPN models for 

specifying both behavior patterns of individual cells and virus dynamics within real-life 

scale organs results in a uniform concept for model-checking and simulation.  
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