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Abstract. With the advocacy of green renewable energy, Electric Vehicles (EVs)
have gradually become the mainstream in the automobile market. Due to the finite
edge resources of the Internet of EVs, this paper integrates idle communication,
caching and computational resources of EVs to enrich the available resources for
vehicular task migration. Considering the limited capacity and resources of EVs, a
distributed lightweight imitation learning-based efficient Task cOoperative migra-
tion Policy Integrating 3C resource policy, named TOPIC, is proposed to maximize
the obtained quality of service. The experimental results based on the real-world
traffic dataset of Hangzhou (China) demonstrate the QoS obtained based on the ex-
pert policy and agent policy of TOPIC is about 3 times higher than other represen-
tative policies.
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1. Introduction

1.1. Background

Considering the deterioration of the ecological environment and the shortage of energy,
Electric Vehicles (EVs), utilizing renewable energy [1], are gradually occupying the ve-
hicular market. However, the contradiction between users’ requirements and EVs’ lim-
ited resources in the latency-sensitive scenario with energy constraints is still one of the
thorniest issues to be solved. Integrating heterogeneous edge resources distributedly to
overcome overloaded vehicular tasks is a promising approach to reduce the workload of
devices and execution cost [2, 3].

1.2. Literature Review

However, the edge resources, consisting of Communication, Computation and Caching
(3C), provided by Mobile Edge Computing (MEC) servers deployed in real-world sce-
narios are rather limited [4]. Homogeneous resource management has been studied ade-
quately, while the study of heterogeneous resource integration is still immature. Zhou et

1Corresponding Author: Xiaojie Wang, E-mail: xiaojie.kara.wang@ieee.org.

Proceedings of CECNet 2021
A.J. Tallón-Ballesteros (Ed.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210443

536



al. [5] integrated caching and computational resources through designing Service Func-
tion Chain (SFC), which is a common method to integrate heterogeneous resources. The
2C models in [6, 7] jointly optimized communication and computational resources allo-
cation. In [6], the downloading communication phase was accelerated with computation
replication in MEC networks to decrease the latency of communication. Ding et al. [7]
minimized the weighted energy consumption for ground devices by joint ground user
equipment association, multi-user transmit precoding, computation task assignment and
communication resource allocation. The joint optimization problem was solved based on
traditional optimization methods.

For the integration of 3C resources, how to comprehensively integrate these three
heterogeneous resources is rather challenging. Luo et al. [8] proposed an efficient Fog-
enabled 3C resource sharing framework (F3C) and solve resource allocation issues based
on the auxiliary graph and proposed F3C algorithm to optimize energy consumption.
Tang et al. [9] proposed a 3C resource integration framework to motivate device coop-
eration and schedule resources more flexibly. However, the investigated scenarios [8,10]
are relatively static, and the dynamics of mobile devices are not taken into account in the
proposed algorithms.

However, the infrastructure resources are always regarded as sufficient in traditional
studies [11], which is not realistic in the real world, especially in the dynamic scenario
with fierce competition. The complexity of integrating heterogeneous resources pro-
motes studies with leveraging Software-Defined Network (SDN), improving the resource
pooling level via decoupling traditional network architecture.

1.3. Research Challenges and Contributions

Integrating heterogeneous edge resources with SDN is a promising approach for flexi-
ble resource scheduling and network service automation, motivating our work. In addi-
tion to the complexity of managing heterogeneous resources, scheduling resources in the
dynamic ultra-dense scenario has fiercer competition among EVs with limited batteries
than traditional vehicles with internal combustion engines, especially for the selfish and
rational users. To solve the abovementioned issues, we construct a task migration frame-
work integrating heterogeneous resources and propose a distributed Task cOoperative
migration Policy Integrating 3C resources (TOPIC) based on Imitation Learning (IL) [2]
to maximize the obtained Quality of Service (QoS). The main contributions are summa-
rized as follows: (1) We construct an SDN-enhanced intelligent, cooperative task migra-
tion framework and formulate the optimization problem; (2) We design a distributed IL-
based cooperative task migration policy, TOPIC, to make a trade-off between rent and
the obtained service rate; (3) The efficiencies of our proposed policy has been validated
with the datasets of Hangzhou (China), compared with representative policies.

The rest of this paper is organized as follows: the system model and problem for-
mulation are illustrated in Section 2. Section 3 specifies the TOPIC policy. Experimental
results and performance evaluation are analyzed in Section 4, followed by the conclusion
Section 5.
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Figure 1. An SDN-enhanced architecture for 3C resource integration.

2. System Model and Problem Formulation

2.1. System Model

A dynamic vehicular network is considered as illustrated in Fig. 1. This paper investi-
gates task migration problem via integrating 3C resources in one cluster-based vehicu-
lar network consisting of v EVs and an Road Side Unit RSU R deployed with an SDN
controller. The vehicular task generated by EV Vi is denoted as Si with service type Sst

i ,
Sst

i ∈K where K represents the set of service types. As shown in Fig. 1, vehicular task
execution is divided into three parts, i.e., input, execution and output.

Herein, the input of vehicular task consists of task data and the data package re-
quired by the service type corresponding to the task. The task data is transmited from the
under-resourced EV, illustrated as process � and � by Vehicle-to-Vehicle (V2V) com-
munication and Vehicle-to-RSU (V2R) communication, respectively. Since the mobility
of vehicles, Orthogonal Frequency-Division Multiple Access (OFDMA) is leveraged to
guarantee steady communication. The signal noise ratio of channel i j is calculated by
pigi, j/σ2 without interference, and the signal to interference plus noise ratio between Vi
and R is defined as pig2

i,r/σ2 + Ii,r. Herein, pi, gi,∗ (including gi, j and gi,r), σ2 and Ii,r re-
spectively indicate the transmission power, channel gain, additive white Gaussian noise
and interference. The inference is generated by other users occupied V2R sub-channels
simultaneously, Ii,r = ∑v

i=1 xi,r pi,r(gi,r)
2 and xi,r indicates the decision variable to indi-

cate the channel occupation. The communication rate among devices (including EVs and
RSU) can be obtained by Shannon equation.

The required data package can be obtained via downloading from the Internet (pro-
cess � and �) or sharing by other vehicles caching this data (�). The idle caching
resource can be utilized to cache data rather than repeatedly downloading for reduc-
ing the redundant cost [12]. Herein, data package obtained rate can be denoted by
∑v

j=1 y j,hRcomm
j,h +(1−∑v

j=1 y j,h)Rdown
j , where binary variable y j,h indicate the decision

of transmitting data package from Vh to Vj. In this paper, the output of task execution
is viewed as small enough to be negligible [13]. After obtaining input data, task can be
executed in device. The computing rate Rcomp

i (Mbits per second) of Si can be calculated
as ∑v

j=0 xi, jsi/tcomp
i . Herein, j = 0 indicate the RSU.

Since the rationality and selfishness of vehicular users, we set battery power and
available computational capacity as the main aspects to define the unit price of rent-
ing computation resources of EVs and RSU, which are calculated by ρcomp( f j,ε j) =

(αeβ/ε j)/ f j and ρcomp
r ( fr,1) = (αeβ )/ fr, respectively. Herein, parameters α and β rep-
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resents price coefficients to adjust the impact of computational resources and battery
power on unit rent at a time slot.

2.2. Problem Formulation

In this investigation, we define QoS as the ratio of payment and the sum service rate, i.e.,
Ui = Rtotal

i /Ptotal
i . The optimization objective is set as maximizing the obtained QoS, i.e.,

max
xi, j ,y j,h

Ui, (1)

and is subject to task migration delay constraint, i.e., tmig
i ≤ min{di,dcomm

i, j }, indicating
the migration delay cannot exceed the delay limitations of Si and communicable distance;
power consumption constraint, i.e., εcost

i < εi,Vi ∈ V , indicating the cost of each device
cannot exceed the minimum power threshold; and communication capacity constraint,
i.e., ∑v

i=1 rcomm
i,r ≤ Zr,Vi ∈V , representing the occupied communication resources cannot

exceed the communication capacity.

3. Task Cooperative Migration Policy Integrating 3C Resources

To solve the optimization problem formulated in the previous section, we design a dis-
tributed IL-based TOPIC policy. The policy consists of an expert policy and an agent pol-
icy. Compared to vehicles, RSU deployed with an SDN controller can observe the global
states, which can be viewed as the expert node to execute expert policy with global obser-
vation. We propose a Deep Reinforcement Learning (DRL)-based expert policy and the
Markov decision process is modeled as a quaternion <S ,A ,R,P >, where S , A , R
and P represent system state, system action, reward function and state transition prob-
ability of TOPIC, respectively. The definitions of state, action and reward are specified
as follows: The environment state S (t) is constructed with 3C states. The action A (t)
consists of task execution and required data package obtainment, which is defined as:
A (t) = {x(t),y(t)}, where x(t) and y(t) are two vectors of binary variables. After exe-
cuting the A (t), agent obtains R(t) = ∑v

i Ui(t), if the constraints are satisfied; R(t) = 0,
otherwise. To obtain the optimal policy, the accumulate reward of the optimization prob-
lem is formulated as follows: Ri = maxxi, j ,y j,h E[∑

T−1
t=0 γ tRi(t)], where γ represents a dis-

count factor indicating the impact of the current feedback gradually decreases over time,
γ ∈ (0,1].

When expert node (RSU) obtains a task migration request of Si, the SDN con-
troller constructs adjacent matrix Mv×v with communication rate between devices, i.e.,
mi, j = rcomm

i, j , and observed the 3C states S (t). The SDN controller makes task migra-
tion decisions with a Double Deep Q-Network (DDQN) algorithm to maximize the ob-
tained QoS by making a satisfying trade-off between service rate and payment with the
proposed pricing mechanism. The core of the DRL-based expert policy is to obtain the
optimal action with the maximum accumulate reward. With the global observation and
the two-hop communicable search range of the requesting device, the caching data hit
rate can be improved to reduce the redundant cost.

RSU generates the trajectories of expert policy through offline training, and the tra-
jectories are transmitted to covered vehicles for training Deep Neural Network (DNN)-
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Table 1. Simulation parameter settings

Parameter Value

Bandwidth of RSU 50MHz

Transmit power of RSU 0.5W

Gaussian channel noise 5×10−13

Available computational capacity of RSU 12Gcycles/s

Unit rent of RSU computational resource 0.7token/Gcycles

Unit rent of RSU communication resource 0.07token/Mbps

Unit rent of RSU download resource 0.2token/Mbps

Download rate of RSU 4Mbps

Available computational capacity of EV [4,8,12,16,20]Gcycles/s

Download rate of EV 2Mbps

Unit rent of EV for resource downloading 0.1token/Mbps

Service type of tasks {1,2,3,4,5}
Data size of task with service type K K×1Mbit

Computational resource required by task with service type K K×2Gcycles

Data size of data package required with service type K K×50Mbits

Delay limitation of service type K K×30s

based online agent policy. The observations obtained by requesting vehicles and deci-
sions are viewed as the features and labels, respectively. Vehicles construct a DNN-based
classifier to label the observation for obtaining task migration decisions.

4. Performance Evaluation

In this section, the simulation setup is introduced first. Then, the proposed TOPIC policy
(includes an expert policy and an agent policy) is evaluated based on the real-world traffic
dataset in Hangzhou (China).

4.1. Simulation Setup

We utilize PyCharm 2019.03 version based on Python 3.7.4 to perform experiments in
a 64bit Windows 10 operating system computer with 128 GB RAM and an Intel(R)
Xeno(R) CPU E5-2640 v4 with 2.4GHz frequency. TOPIC is realized on TensorFlow
1.14.0. Based on the characteristic of V2R communication, the channel gain of RSU
and EVs are calculated by 127+ 30× log2L [14], where L, indicating the distance be-
tween devices (includes EVs and RSU), can be obtained by GPS. The central coordinate
[30.2547,120.2741] of the dataset is set as the location of RSU. The channel of V2R is
divided into 10 sub-channels. To simplify, the number of service types is reduced to 5,
i.e., K = 5. Other simulation parameters are stated in Table 1.

To demonstrate the superiorities of TOPIC, we define six indicators, detailed as fol-
lows: (1) Obtained QoS: the ratio of the sum service rate to total payment; (2) Average
rent: the average rent of migrating a task for execution; (3) Sum service rate: the sum
service rate of executing a task; (4) Average power consumption: the average power con-
sumption of under-resourced EVs; (5) Average increased Time-To-Live (TTL): the aver-
age increased TTL of the under-resourced EVs; (6) Average delay: the average execution
latency of migrated tasks.
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To demonstrate the effectiveness of the proposed TOPIC, the selected representa-
tive schemes are detailed as follows: (1) 3C DRL-based Policy [15]: It is a task offload-
ing policy integrating 3C resources based on duelling DDQN to allocate 3C resources
within one-hop communication range; (2) Computation+cache: computing can only be
executed locally without communication resources; (3) Communication+cache: comput-
ing tasks can be migrated to RSU or executing locally by making a trade-off between
the communication and caching resources; (4) Communication+computation: this policy
allocates communication and computational resources based our proposed TOPIC policy
with caching state locally.

4.2. Experimental Results

(a) Average rent. (b) Sum service rate. (c) Average delay.

Figure 2. Performance of different computational workload.

Fig. 2 evaluates the performance with the distinct computational workload of the
cluster. According to the definition of QoS, the performance of average rent cost and sum
service rate of executing tasks under distinct computation workload are shown in Figs.
2(a) and 2(b), respectively. It can be observed that although the rent based on computa-
tion+cache policy is the lowest, computation+cache policy cannot utilize communication
resources to reduce the local workload and increase the QoS, resulting in the lowest sum
service rate for task execution. When the number of computing tasks is 40, the obtained
sum service rate of TOPIC is 80% higher than computation+cache policy. The expert
policy of TOPIC obtains the highest service rate with average rent second to computa-
tion+cache policy. Following the trajectories generated by the expert policy, the proposed
agent policy can be better approximate to the performance of the expert policy. The rent
of agent policy is only 7% higher than that of expert policy, and the obtained service rate
is only 4% lower than that of expert policy. Figs. 2(a) and 2(b) indicate the proposed ex-
pert policy TOPIC makes a satisfying trade-off between the rent and the obtained service
rate to maximize the total QoS under a large amount of computation workload. Fig. 2(c)
shows the average delay cost of executing one task with distinct computation workloads,
respectively. The average delay of the expert policy of TOPIC is much lower than the 3C
DRL-based policy and other 2C policies when computation tasks are 40. That is because
TOPIC policies within the two-hop search range decrease the competition for available
resources increases as the computation workload becomes large. Agent policy of TOPIC
imitates and follows the trajectories of expert policy for a satisfying trade-off between the
obtained service rate and rent and further decreases the average delay for task execution.

The performance with distinct cached data package sizes is illustrated in Fig. 3. Fig.
3(a) evaluates the obtained QoS of different policies with distinct unit sizes of the data

H. Chen et al. / SDN-Enabled 3C Resource Integration in Green Internet of Electrical Vehicles 541



(a) Obtained QoS. (b) Average power consump-
tion.

(c) Average increased TTL.

Figure 3. Performance of different cached data package size.

package. Even though the QoS of TOPIC (including expert policy and agent policy) de-
creases with the increasing unit data package size, its advantages over the 3C DRL-based
policy increase. That is because the 3C states are constructed by the expert policy of
TOPIC within a larger search range, improving the cache hit rate, and the proposed DNN-
based agent policy imitates the trajectories of expert policy to label the states for mak-
ing decisions accurately. In Fig. 3(b), the increasing rate of the TOPIC is much slower
compared with other policies. For computation+cache policy, the power consumption of
executing tasks that require large data packages is huge. The power consumption of the
expert policy and agent policy is 62.09% and 43.65% lower than that of 3C DRL-based
policy, respectively. That is because although the power consumption of 3C DRL-based
policy can be reduced by integrating 3C resources, while the power consumption of
waiting for completing tasks increases with the increasing data package. Fig. 3(c) eval-
uates the increased TTL of under-resourced EVs compared with local execution. Poli-
cies greatly increase TTL except for the computation+cache policy. Experimental results
show that the computation+caching policy has to execute tasks locally without commu-
nication resources, resulting in large energy consumption. However, policies integrating
communication resources migrate tasks to other devices for execution, greatly reducing
energy consumption and extending the TTL of EVs. Herein, TOPIC (including expert
policy and agent policy) with the higher cache hit rate, reducing the most redundant cost
to save the battery power and increase the life cycle of vehicles.

5. Conclusion

This investigation focused on integrating 3C heterogeneous edge resources in Internet of
EVs based on the SDN technique in the scenario with limited infrastructure resources.
We formulated the optimization objective as maximizing the obtained QoS per token to
motivate device cooperations. To make a satisfying trade-off between devices available
resources and obtained service rate, we considered the constraints, including mobility,
delay limitation, power consumption and available resources. A distributed task coopera-
tion migration method based on IL was proposed to maximize the obtained QoS, namely
TOPIC. Performance evaluations based on the real-world traffic dataset in Hangzhou
(China) illustrated the effectiveness of our proposed policy from the perspectives of com-
putation workload and unit cached data package size. Experimental results demonstrated
that the QoS obtained by the expert policy and agent policy of TOPIC proposed in this
work is about 3 times higher than those of other policies.
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Although distributed IL is safer than centralized policy, designing a security mech-
anism to monitor malicious nodes to protect privacy in the ultra-dense dynamic scenario
with overloaded communication is our further research topic.
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