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Abstract. In this paper, we extend RGB-D SLAM to address the problem that sparse 
map-building RGB-D SLAM cannot directly generate maps for indoor navigation 

and propose a SLAM system for fast generation of indoor planar maps. The system 

uses RGBD images to generate positional information while converting the 
corresponding RGBD images into 2D planar lasers for 2D grid navigation map 

reconstruction of indoor scenes under the condition of limited computational 

resources, solving the problem that the sparse point cloud maps generated by RGB-
D SLAM cannot be directly used for navigation. Meanwhile, the pose information 

provided by RGB-D SLAM and scan matching respectively is fused to obtain a more 

accurate and robust pose, which improves the accuracy of map building. 
Furthermore, we demonstrate the function of the proposed system on the ICL indoor 

dataset and evaluate the performance of different RGB-D SLAM. The method 

proposed in this paper can be generalized to RGB-D SLAM algorithms, and the 
accuracy of map building will be further improved with the development of RGB-

D SLAM algorithms. 
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1. Introduction 

SLAM (Simultaneous localization and mapping) is used to estimate the camera pose and 

reconstruct unknown environments, which is currently widely used in various fields, 

relying on sensors to achieve functions such as autonomous positioning, mapping, and 

path planning of the machine. For example, automatic navigation of robots, unmanned 

driving of cars, AR/VR technology positioning and three-dimensional reconstruction of 

objects. 

At present, most of the lidar SLAM used to generate indoor navigation maps use 

lidar as the main sensor. For example, Gmapping[1], Hector SLAM[2], and 

Cartographer[3] can use single-line lidar to generate more accurate indoor navigation 

grid maps, but can only explore the environment in two dimensions. At the same time, 

single-line lidar equipment is large, limited by the fact that it must use a mechanical 
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motor to complete the rotation to obtain the exploration of the unknown environment. 

And the data obtained is with distortion [1, 2], which requires its matching SLAM 

algorithm to perform pre-processing to remove distortion from the data, resulting in 

reduced real-time and accuracy of the algorithm operation. There are also LOAM[4] 

which using multi-line lidar, and V-LOAM[5], LeGo-LOAM[6] based on [4] combined 

with other sensors and improved, which obtains spatial 3D information, also brings the 

problem of high cost [7] and excessive computational effort. Loam_livox [7] which uses 

solid-state lidar as the sensor that characteristics of laser radar have brought major 

challenges to the navigation and mapping of lidar. The above SLAM algorithms that use 

lidar as the main sensor are all limited by the defects of the laser sensor itself.  

In this environment, the RGB-D sensor provides an opportunity to significantly 

develop the robot's indoor navigation and interaction capabilities [8]. At present, for 

SLAM algorithms, RGB-D cameras have been introduced and three-dimensional maps 

can be created in real-time, and a variety of different RGB-D SLAM algorithms have 

been proposed. Most of these RGB-D SLAM are used for indoor localization and object 

dense reconstruction [9]. Mono SLAM [10] and ORB-SLAM2 [11] based on the feature 

point method can directly obtain the camera's pose in space and the sparse point cloud 

map, but the obtained map cannot be directly used for navigation. DVO-SLAM [12] 

based on the direct method estimates the motion of the camera according to the gradient 

information of the pixels, and can construct a dense map.  S-SLAM [13] and Planar-

SLAM [14] based on characteristic lines and surfaces can handle low texture, structured 

indoor scenes. Again, the maps created by SLAM mentioned above do not have the 

capability to be used for navigation. 

In this paper, we exploit the ability of RGB-D SLAM to output depth maps as well 

as camera poses in real time, combined with algorithms for navigation grid map building 

of 2D LiDAR SLAM, to design a robust RGB-D SLAM processing system specifically 

for building maps of indoor environments. We first obtain the depth map and the camera 

pose corresponding to the image information through RGB-D SLAM, then convert the 

depth map into laser information, and pass the camera pose as the predicted pose to 

SLAM to obtain the indoor two-dimensional grid map. The grid map is different from 

[1][2][3]. We pass the camera pose obtained by RGB-D SLAM as the predicted pose 

into SLAM, which is a more robust prediction. At the same time, we use the loop closure 

detection provided by itself to improve the real-time performance of the algorithm. In 

terms of equipment hardware, the system we propose can run in real-time on depth-

sensing equipment, reducing the size and cost of the equipment. We have filled the 

functional gap of sparse RGB-D SLAM in the field of navigation by significantly 

reducing the computational effort. At last, we evaluated the mapping performance of the 

two-dimensional grid map obtained by the system using different RGB-D SLAM in the 

ICL dataset and showed the stability of our system in different RGB-D systems. With 

the improvement of RGB-D SLAM, there are better map building results. 

2. Related Work 

There are many related SLAM algorithms that can be used for indoor navigation, which 

can be roughly divided into two categories, visual SLAM and lidar SLAM. We will 

mainly summarize the RGB-D SLAM systems and the two-dimensional laser algorithm 

used in laser SLAM methods, respectively. 
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2.1.  wo-dimensional laser SLAM 

Two-dimensional laser SLAM is relatively mature in theory and practice and has been 

widely used in scientific research and industrial fields. Gmapping is based on the Fast-

SLAM [15] scheme and is equipped with a two-dimensional algorithm based on particle 

filtering of the lidar sensor. The core idea of particle filtering is to randomly sample and 

estimate the map through selective resampling of particles [16]. Its main contribution is 

to improve the proposal distribution and selective resampling. However, due to the lack 

of closed-loop detection, it can only be used in simple, Maintain reliable accuracy in low-

feature indoor environments. [17] proposed the corrective gradient refinement algorithm, 

which is a new method to improve the positioning based on the particle filter, which 

extends the traditional particle filter algorithm and is more universal.  [18] proposed an 

improved algorithm based on information fusion, combining the odometer and inertial 

measurement unit, using Kalman filter for information fusion, assisting the robot in 

mapping, and improving the robot's positioning and mapping performance in degraded 

environments. Cartographer [3] based on graph optimization is different from [2] whose 

back-end adopts a closed-loop detection link based on branch and bound method. 

Cartographer can eliminate errors in robot motion and map large-area scenes. However, 

its optimization is more computationally intensive, and its real-time performance cannot 

be guaranteed. 

2.2. RGB-D SLAM 

Visual SLAM can be divided into sparse and dense maps according to the characteristics 

of mapping. Semi-dense and dense map can be directly used for indoor navigation maps, 

while sparse map cannot provide enough information for robots to navigate. Kinect 

Fusion [19] achieves real-time operation on the GPU.  The system uses voxel grids to 

build maps, and does not restrict the cumulative error generated by the motion, so the 

application range is small, and when the environment is mainly composed of parallel 

planes, ICP Will fail. [20] proposed the Kintinuous system and added loop detection to 

eliminate accumulated errors, which improved the space expansion on the basis of [19]. 

Different from Kintinuou, ElasticFusion [21] uses a direct optimization method for map 

points in order to improve accuracy, and densely reconstructs and repositions the three-

dimensional environment through  the surfel model, making full use of color and depth 

information, but the scope of the map is  However, it is only suitable for reconstruction 

of room-sized scenes. [11] improved on the basis of ORB-SLAM [22], adding two modes 

of binocular SLAM and RGB-D SLAM. [11] adopts monocular and binocular beam 

adjustment optimization (BA), which improves the accuracy but can only create 

relatively simple 3D point clouds. Planer-SLAM [14] can handle low-structure, textured 

indoor scenes, and generate indoor three-dimensional plane environments from sparse 

point clouds. Dense RGBD-SLAM reconstruction can achieve good pose estimation and 

high-quality scene representation, but this requires high computational cost and complex 

equipment, such as high-performance GPU, which limits the platform used in different 

devices. 
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3. System overview 

The schematic diagram of our proposed system is shown in Figure 1. Our work is 

inspired by RGB-D SLAM that generates sparse point cloud maps, such as ORB-SLAM 

2 [11]. The above mentioned RGB-D SLAM can operate in an indoor environment and 

is also robust to strenuous exercise. However, the point cloud map generated by this 

system is sparse and cannot be directly used for indoor navigation. We can use the depth 

information in RGB-D SLAM, convert it into lidar data (See next subsection), and add 

its output pose information to build an indoor two-dimensional grid map. Our system 

first uses the pose provided by RGB-D SLAM as the initial pose, and then predicts the 

next new pose based on scan matching. These two poses obtain a new estimated pose 

through pose fusion. Insert the converted lidar data from the corresponding depth map 

into the final pose. After inserting a certain number of frames of lidar information, a 

submap is generated. We refer to the processing algorithm in [3], and on this basis, 

combined with the loop detection that comes with RGB-D SLAM, which reduces the 

cumulative error of previous submaps and improves the accuracy of mapping 

 

Figure 1.    

3.1. Depth map converted to laser scan 

We first convert each pixel in the depth image (commonly the pixel in the middle 

of the image) into laser data. Refer to the pinhole camera model, the conversion matrix 

from a point M(x, y, z) in the world coordinate system to a pixel point m(u, v) in the 

camera coordinate system can be derived from a camera internal parameter matrix and 

an external parameter  matrix, as shown in Equation 1. 

 (1) 

where  are any coordinate points under the pixel coordinate system,  are 

the central coordinates of the image.  represent the 3D coordinate points under the 

world coordinate system. represents the z-axis value of the camera coordinates, the 

distance from the target to the camera.  are denoted as the unit matrices of 3×3 

rotation and 3×1 translation in the external reference matrix respectively. Since the ICL 
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simulation set and the camera parameters it provides are used, distortions can be 

disregarded. We then project the point cloud data obtained above according to Equation 

3 based on the pose information obtained from RGB-D SLAM, thus converting a point 

cloud derived from non-horizontal depth map information into a horizontal frame of 

point cloud data. We finally obtain the coordinates of the laser point cloud as follow: 

 (2) 

where  represents the pose information obtained by RGB-D SLAM. 

3.2. Pose Optimization 

Our system undergoes a pose optimization to process the initial pose from RGB-D 

SLAM and obtain the final pose. This optimization step starts with the calculation of a 

new pose by scan matching between the current frame of the LIDAR and the submaps, 

then the two poses are fused by Kalman filtering to obtain a more robust pose: 

 (3) 

where  represents the fused poses,  represents the predicted poses obtained 

from RGB-D SLAM,  represents the observed poses obtained from the scan matching, 

Kalman gain K depends on the noise of the sensor, and the higher the camera noise, the 

higher the value of K. 

Referring to the scan matcher in [3], scan matching works on the principle of finding 

the optimal probability value of the scanned points in a grid-based submap. In processing 

laser data and submap matching, a violent search matching algorithm is used to match 

the current laser frame traversing the historical grid map to obtain the position with the 

highest correlation, i.e., the position with the highest confidence. We subjected the grid 

map to bicubic interpolation and then converted the laser frame to map correlation 

matching to the least squares problem as follows

 (4) 

where  is the laser frame transformed into the submap by and is the 

probability-valued bicubic interpolation smoothing filter in the submap. The 

mathematical optimization of this smoothing function is usually higher resolution than 

the grid and has better accuracy. However, because we use local optimization, a good 

initial pose is required that using the pose given by RGB-D SLAM will be a good choice. 

3.3. Loop Closure Detection 

The map created by SLAM is divided into two main parts. The first part is a local 

landmark map called a submap, which is made up of a certain number of laser data. The 

second part is a global map built from a combination of accumulated submaps. The map 
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building process as described above accumulates errors, which are small for a few tens 

of consecutive laser data, but not negligible when building larger scenes or rotating scans 

of an interior. Laser SLAM requires a lot of computation to do loop closure in large map. 

The approach taken in this paper is that the global map is corrected when loop 

closure is identified during the RGB-D SLAM, optimizing the pose of all scans and sub-

maps and reducing the accumulated error in the global map. We directly use the loop 

closure information provided by RGB-D SLAM, making full use of that excellent loop 

closure algorithm to optimize the global pose. The global map optimization problem can 

be formulated as a non-linear least squares problem, using Ceres [23] to calculate 

problem as follow: 

 (5) 

where the submap poses are  and the poses are  

for each frame of laser data are optimized in the world coordinate system. These 

optimized submaps poses and Scan poses give constraints, which are expressed in terms 

of the poses  and the covariance matrix . The residuals  are calculated as follows: 

 (6) 

where the loss function,  (e.g. Huber loss), can be used to reduce the impact of 

outliers, which may occur in similar environments. 

4. Experiment Results 

In order to evaluate the performance of our system, in this section we will validate our 

proposed system using different RGB-D SLAM in two datasets. The first test uses the 

Living Room dataset, and the second test uses the Office Room dataset. There are open 

public datasets developed by Imperial College London [24]. 2D grid maps were 

generated on the ICL-NUIM dataset using different RGB-D SLAM. This paper also tests 

the performance of the system through trajectory comparison experiments. As shown in 

Figure 2, the RGB-D SLAM generates corresponding pose information based on the 

depth image and color image provided by ICL-NUIM, and the system uses the 

corresponding depth map from the dataset, converts it into a laser data and generates a 

2D planar grid map. All experiments were conducted using an Intel Core i5-5200 (with 

@2.20GHz) and without any use of GPU. 
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Figure 2. The image on the left shows the interior of the Living Room scene from the ICL dataset (the colors 

have been removed to highlight the geometry). (a) is a color frame of the Living Room. (b)is the depth frame 

of the Living Room at the same moment. (c) is the 2D grid map being generated. 

4.1. Two-dimensional Grid Map 

We use the ICL-NUIM Living Room dataset and the Office Room through different 

RGB-D SLAM respectively. ORB-SLAM2, Planer-SLAM and Planer-SLAM (with 

HM) were used for the experiments, and the ground truth data from the ICL-NUIM 

dataset were also used to generate 2D grid maps and trajectory maps as a reference. 

Figure 3 shows the experimental results of our system. 

 

Figure 3. Results obtained using different RGB_D SLAM in the ICL dataset: the first row is Living Room  

(a) ORB_SLAM2 (b) Planar-SLAM (c) Planar-SLAM with Manhattan (d) ground truth; the second row is 

Office Room: (e) ORB_ SLAM2 (f) Planar-SLAM (g) Planar-SLAM with Manhattan (h) ground truth. 

As show in Figure 3, we see that with fewer feature points in the image data, the 

ORB-SLAM2 outputs less accurate poses resulting in fewer effective maps being built 

than Planar-SLAM or Planar-SLAM (with HM), which can improve the accuracy of the 

poses by detecting line and surface features. In the next section, we explain quantitatively 

by using the experimental data from the trajectory comparison in next section.  

4.2. Trajectory curves 

We obtained eight different trajectory curves from three different RGB-D SLAM and 

ground truth on the two datasets, as illustrated in Figure 4. We also calculated the 

average Euclidean distance of other trajectories compared with the ground truth to 

judge the similarity, and the results are shown in Table 1. 
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Table 1. Average Euclidean distances of trajectories obtained with different RGB-D SLAM 

      
 0.407 0.454(m) 

 0.309 0.364(m) 

    0.288 0.245(m) 

As can be seen from the table, as the performance of the RGB-D SLAM positioning 

performance gets better, the closer the trajectories obtained are to the true values and the 

more similar the resulting maps are to the ground truth. 

 

Figure 4. Experimental paths (unit meter) in Living Room (left) and Office Room (right) using different 

RGB_D SLAM: ORB_SLAM2 (green), Planar-SLAM (brown), Planar-SLAM with Manhattan (blue), 

ground truth (black). 

5. Conclusion 

We present a method for rapidly generating indoor 2D grid navigation maps by 

combining RGB-D SLAM and laser SLAM systems. The robust localization algorithm 

of RGB-D SLAM is utilized to determine the camera's poses and loops, and a depth map 

to laser data method is used to enable the depth map information to be used for laser 

SLAM, achieving advanced results by fusing pose. The lightness of the sensor and the 

fact that the algorithm does not require the use of large computational performance 

allows us to use the system for a robot with a depth sensor, using an IPC for indoor 

navigation of the robot. As a next step, we hope to make full use of the 3D information 

provided by the depth camera to generate indoor 3D navigation maps, suitable for 

complex indoor environments. 
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