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Abstract. In this paper, we propose for the 16 quadrature amplitude modulation
(QAM) input case, a dual-mode (DM), decision directed (DD) multimodulus algo-
rithm (MMA) algorithm for blind adaptive equalization which we name as DM-
DD-MMA. In this new proposed algorithm, the MMA method is switched to the
DD algorithm, based on a previously obtained expression for the step-size param-
eter valid at the convergence state of the blind adaptive equalizer, that depends on
the channel power, input signal statistics and on the properties of the chosen al-
gorithm. Simulation results show that improved equalization performance is ob-
tained for the 16 QAM input case compared with the DM-CMA (where CMA is the
constant modulus algorithm), DM-MCMA (where MCMA is the modified CMA)
and MCMA-MDDMA (where MDDMA is the modified decision directed modulus
algorithm).
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1. Introduction

Data transmission over band-limited communication channels requires the application
of equalizers to remove intersymbol interference (lSI) caused by the channel properties
[1]. We deal in this paper with the blind adaptive equalization issue where the CMA [2]
and the MMA [3], [4] are involved in updating the equalizer’s coefficients. According to
[1] and [5]-[11], the CMA algorithm is one of the most widely used blind equalization
algorithm and according to [12], it has become the workhorse for blind equalization. The
CMA [2] is a computationally simple algorithm with outstanding equalization perfor-
mance for source signals such as M-Ary Phase Shift Keying (MPSK). But, for input sig-
nals belonging to the 16QAM constellation, it reaches at the steady state a non negligible
residual ISI which may not be sufficient for the system to obtain adequate performance.
Thus, the idea proposed by [9] was to switch this computationally simple algorithm to a
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DD algorithm based on the output decision error calculated from the equalizer’s output.
In other words, the CMA algorithm [2] was used for the initial acquisition phase for re-
moving the heavy ISI and then switched to a tracking algorithm, namely to the DD algo-
rithm in order to obtain a faster convergence speed with a lower residual ISI compared
to the algorithm that does not involve the DD algorithm. Indeed, according to [9], the
equalization performance was seen improved with the DM-CMA algorithm compared
with the CMA method [2] for the 16QAM source constellation input. According to [5],
the fact that the CMA is carrier phase independent, is actually considered as an advan-
tage of the CMA since no carrier synchronization is required before blind equalization.
According to [7], the constellation seen at the equalized output sequence suffers from
an arbitrary phase rotation. Thus, a phase rotator is required at the convergence state
of the equalizer in order to rotate the constellation back in the right position. In order
to eliminate the need for a rotator to perform separate constellation-phase recovery in
steady-state operation, [3], [4] proposed the MMA algorithm that indeed eliminates the
need for a phase rotator. Moreover, according to [1], the MMA compensates also minor
frequency errors. The advantage of the MMA is due to a separate error-calculation, that
is, for real and imaginary part of the received signal, individually [1].
When the equalizer has converged to a relative low residual ISI level, the convolutional
noise seen at the equalizer’s output is also relative low and considered as Gaussian [13].
But, this is not the case at the beginning of the equalization process. At the beginning
of the equalization process, the ISI is usually high and the convolutional noise sequence
is more uniform than Gaussian [13], [14]. Please note that the convolutional noise ex-
ists at the equalized output in addition to the input signal. The convolutional noise ex-
ists since the values for the equalizer’s coefficients are not the optimal ones leading to
zero residual ISI. The author in [15], considered the case of input signals where the real
and imaginary parts of the input signal are independent and where the error involved in
the update mechanism of the equalizer is a polynomial function of order three. Please
note that the 16QAM source input belongs to this case and that the error involved in
the MMA algorithm can be modeled as a polynomial function of order three. Accord-
ing to [15], if the equalizer converges to a very low residual ISI, the convolutional noise
probability density function (pdf) can be considered approximately as Gaussian if the
step-size parameter complies on some constraints depending on the input constellation
statistics, channel power, chosen equalization method and equalizer’s tap-length. Based
on this outcome, [16] obtained a novel algorithm for a blind adaptive equalizer that sup-
plies the time it takes the equalizer entering the steady state operation without the knowl-
edge of the initial ISI, depending on the input signal statistics and properties of the cho-
sen equalizer. The main idea used in [16] was looking at the squared error obtained by
the difference between the step-size parameter obtained from [15] that does not contain
any convolutional noise, to the step-size parameter obtained from [15] that involves the
convolutional noise by using in the step-size parameter calculation, the equalized output
signal statistics instead of the input signal statistics. Please note that for the noiseless
case, the equalized output signal statistics are equal to the input signal statistics when the
convolutional noise (namely the ISI) tends to zero.
In this paper, we propose a dual-mode, decision directed multimodulus algorithm (DM-
DD-MMA) for blind adaptive equalization, where the MMA algorithm is switched to the
DD algorithm. The switching mechanism is based on [16] and [15] where we use the
normalized squared error obtained by the difference between the step-size parameter ob-
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Figure 1. The considered system.

tained from [15] that does not contain any convolutional noise to the step-size parameter
obtained from [15] that involves the convolutional noise by using in the step-size param-
eter calculation, the equalized output signal statistics instead of the input signal statistics.
Simulation results will show that for the high SNR case, the new algorithm (DM-DD-
MMA) achieves better equalization performance from the convergence speed point of
view compared with the DM-CMA,DM-MCMA and MCMA-MDDMA methods while
leaving the system with the lowest residual ISI that is approximately obtained also by the
DM-MCMA algorithm which has almost the slowest convergence speed compared to all
the other methods.

2. System Description

The system under consideration is a linear system, given in Figure 1, where we want to
recover its input using an adjustable linear filter (equalizer). In addition, we apply the
following assumptions:

• A 16QAM source is used for x[n] where the real and imaginary parts of x[n] are
denoted as x1[n] and x2[n] respectively.

• The channel h[n] is modeled as a finite impulse response (FIR) filter with channel
tap length of R̃.

• The equalizer c[n] is a FIR filter with equalizer’s tap length of N.
• w[n] is modeled as a Gaussian white noise process.
• The real part of the equalized output sequence is denoted as z1[n].
• The output sequence of the decision device is denoted as d[n].

The equalizer’s output is given by:

z[n] = y[n]∗ c[n] = x[n]∗ s[n]+w[n]∗ c[n], (1)

where “∗” stands for the convolutional operation, y[n] = x[n]∗h[n]+w[n] and,

s[n] = c [n]∗h [n] = δ [n]+ξ [n] (2)

where δ [n] is the Kronecker delta function and ξ [n] stands for the error not having per-
fect equalization. By perfect equalization we mean that s[n] = δ [n] which leads for the
noiseless case to z[n] = x[n]. Now, based on (1) and (2) we may write:

z[n] = y[n]∗ c[n] = x[n]∗ (δ [n]+ξ [n])+w[n]∗ c[n] = x[n]+ p[n]+w[n]∗ c[n], (3)
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where p[n] is named as the convolutional noise and is given by p[n] = x[n] ∗ ξ [n]. The
equalizer’s performance is measured via the ISI, given by:

ISI =
∑t |st [n]|2 −|s|2max

|s|2max
, (4)

where t = N + R̃−1 and |s|max is the maximal absolute value of s[n], given in (2). Based
on [9], the equalizer’s coefficients are updated for the DM-CMA algorithm by:

e[n] = sign{z [n]} [|z [n] |−R] ; eD[n] = z [n]−d [n] ; Rq =
E[|x[n]|2q]
E[|x[n]|q]

if sign{Re [e [n]]} �= sign{Re [eD [n]]} or sign{Im [e [n]]} �= sign{Im [eD [n]]} then
c[n+1] = c[n]−μDM−CMA1

[
z [n]

(|z [n] |2 −R2
)]

y∗[n]
if sign{Re [e [n]]}= sign{Re [eD [n]]} or sign{Im [e [n]]}= sign{Im [eD [n]]} then

c[n+1] = c[n]−μDM−CMA2

[
z [n]

(|z [n] |2 −|d [n] |2)]y∗[n]

(5)

where |(·) |, sign{(·)} and (·)∗ are the absolute operator, signum function and conjugate
operator respectively on (·). μDM−CMA1 and μDM−CMA2 are step size parameters, d[n] is
the output sequence of the decision device, Re [·] and Im [·] are the real and imaginary
parts of [·] respectively and the vector c[n] holds the equalizer’s coefficients. The input
vector y[n] is of length N which is the equalizer’s tap length. Please note that Rq is a
constant modulus depending on the input signal statistics where for q = 1 and q = 2
we have R and R2 respectively. Based on (5), when sign{Re [e [n]]} �= sign{Re [eD [n]]}
and sign{Im [e [n]]} �= sign{Im [eD [n]]}, the CMA algorithm [2] is used to remove the
ISI which means that for that case, the probability of correct decisions from the decision
device is not very high. Otherwise, the equalizer’s coefficients are updated based on the
output of the decision device. It should be pointed out that it is assumed in [9], that when
sign{Re [e [n]]} = sign{Re [eD [n]]} or sign{Im [e [n]]} = sign{Im [eD [n]]}, the update of
the equalizer’s coefficients has the right direction and contributes to convergence. Ac-
cording to [1], the equalizer’s coefficients are updated for the MCMA-MDDMA algo-
rithm by:

eR[n] = Re [z [n]]
[
|Re [z [n]] |2 − E[|x1[n]|4]

E[|x1[n]|2]

]
+Re [z [n]]

[|Re [z [n]] |2 −|sign{Re [z [n]]}|2]

eI [n] = Im [z [n]]
[
|Im [z [n]] |2 − E[|x2[n]|4]

E[|x2[n]|2]

]
+ Im [z [n]]

[|Im [z [n]] |2 −|sign{Im [z [n]]}|2]
Re [c[n+1]] = Re [c[n]]−μMCMA−MDDMA

[
eR[n]Re

[
y[n]

]
+ eI [n]Im

[
y[n]

]]
Im [c[n+1]] = Im [c[n]]+μMCMA−MDDMA

[
eR[n]Im

[
y[n]

]− eI [n]Re
[
y[n]

]]
(6)

where μMCMA−MDDMA is the step size parameter. Please note that according to [1], the
MCMA-MDDMA algorithm belongs to a group of algorithms named as joint algorithms.
This group additively combines two single algorithms which in our case are the MCMA
and MDDMA algorithms. Based on [1], we denote DM-MCMA as the algorithm that
updates the equalizer’s coefficients according to:

if sign{eR[n]} �= sign{Re [eD [n]]} or sign{eI [n]} �= sign{Im [eD [n]]} then
Re [c[n+1]] = Re [c[n]]−μDM−MCMA1

[
eR[n]Re

[
y[n]

]
+ eI [n]Im

[
y[n]

]]
Im [c[n+1]] = Im [c[n]]+μDM−MCMA1

[
eR[n]Im

[
y[n]

]− eI [n]Re
[
y[n]

]]
if sign{eR[n]}= sign{Re [eD [n]]} or sign{eI [n]}= sign{Im [eD [n]]} then

c[n+1] = c[n]−μDM−MCMA2

[
z [n]

(|z [n] |2 −|d [n] |2)]y∗[n]

(7)
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where μDM−MCMA1 and μDM−MCMA2 are the step-size parameters. The expression for
eD [n] is given in (5) and those for eR[n] and eI [n] are given in (6). Please note that
based on (7), when sign{eR[n]} �= sign{Re [eD [n]]} and sign{eI [n]} �= sign{Im [eD [n]]},
the MCMA-MDDMA algorithm is used to remove the ISI which means that for that
case, the probability of correct decisions from the decision device is not very high. Oth-
erwise, the equalizer’s coefficients are updated based on the output of the decision de-
vice. According to [1], [3], [4], [6], the equalizer’s coefficients for the MMA algorithm
are updated by:

c[n+1] = c[n]−μMMA

[
Re [z [n]]

[
|Re [z [n]] |2 − E[|x1[n]|4]

E[|x1[n]|2]

]
+ j [Im [z [n]]]

[
|Im [z [n]] |2 − E[|x2[n]|4]

E[|x2[n]|2]

]]
y∗[n] (8)

where μMMA is the step size parameter. As was already mentioned earlier in this paper,
the MMA algorithm eliminates the need for a phase rotator due to the fact that it uses
a separate error-calculation, that is, for real and imaginary part of the received signal,
individually, which is not the case in the CMA algorithm [2].

3. The New Proposed Algorithm

In this section we propose a dual-mode, decision directed multimodulus algorithm
(DM-DD-MMA) for blind adaptive equalization, where the MMA algorithm [3], [4] is
switched to the DD algorithm [9], based on a previously obtained expression for the step-
size parameter [15] valid at the convergence state of a blind adaptive equalizer where
the error involved in the update mechanism of the equalizer is a polynomial function of
order three. According to [15], the Gaussian model holds for the convolutional noise pdf
at the steady state operation if the step-size parameter complies to:

μ � 2|a1+3a3n2|
3
(

σ2
x N ∑R̃−1

k=0 |hk[n]|2
)
|a2

1+12a3a1n2+15a2
3n4| (9)

where na = E[xa
1[n]] (a = 2,4 and E[(·)] is the expectation operator) and the values for

a1 and a3 are given by a1 =−E[|x1[n]|4]
E[|x1[n]|2] and a3 = 1 respectively for the MMA algorithm

[3], [4]. Now, for the noiseless case we have that the equalized output (z[n]) tends to the
input signal (x[n]) when p[n]→ 0. Thus, if we consider the following expression:

norerr =
err

max(err) ; err[n] = (μp[n]−μx)
2

μp[n] =
2|a1+3a3ñ2|

3
(

σ2
x N ∑R̃−1

k=0 |hk[n]|2
)
|a2

1+12a3a1ñ2+15a2
3ñ4| ; μx =

2|a1+3a3n2|
3
(

σ2
x N ∑R̃−1

k=0 |hk[n]|2
)
|a2

1+12a3a1n2+15a2
3n4|

(10)

where ña =
1
L ∑b=L−1

b=0 za
1 [n−b], err is a vector (an error vector) containing the elements

defined by err[n], max(err) contains the maximal value of err and norerr is the normal-
ized error vector. Please note that for the noiseless case, when p[n] → 0 we have that
μp[n]→ μx which leads to err[n]→ 0. Thus, based on (10) we have some indication on
how far away we are from the convergence state of the equalizer. Now, based on (10), the
equalizer’s taps of our new algorithm, denoted as the DM-DD-MMA method are updated
according to:
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if norerr[n] < 0.01 then

c[n+1] = c[n]−μ2
[
z [n]

(|z [n] |2 −|d [n] |2)]y∗[n]

if norerr[n] ≥ 0.01 then

c[n+1] = c[n]−μ1

[
Re [z [n]]

[
|Re [z [n]] |2 − E[|x1[n]|4]

E[|x1[n]|2]

]
+ j [Im [z [n]]]

[
|Im [z [n]] |2 − E[|x2[n]|4]

E[|x2[n]|2]

]]
y∗[n]

(11)

and μ1 and μ2 are the step size parameters. Please note that according to (11), the MMA
algorithm [3], [4] is used to remove the ISI when norerr[n]≥ 0.01 which means that for
that case, the probability of correct decisions from the decision device is not very high.
Otherwise, the equalizer’s coefficients are updated based on the output of the decision
device.

4. Simulation Results

In this section we compare our new proposed equalization method (11) for the 16QAM
input case with three different equalization methods (with the MCMA-MDDMA (6),
DM-MCMA (7) and DM-CMA (5) methods) for three different channel cases and dif-
ferent values for the SNR (30 dB down to 10 dB). In this work we considered three chan-
nels:
Channel1 [17]: hn =

{
0 for n < 0; −0.4 for n = 0; 0.8(0.4n−1) for n > 0

}
.

Channel2 [18]: hn = (0.4851,−0.72765,−0.4851).
Channel3 based on [19] where we down decimated the channel parameters by 32 and
normalized them so that hT h = 1: hn = (0.6069,−0.2023,−0.6069,−0.2529,−0.1517,
0.0506,0.1011,0.1517,0.2023,0.1517,0.1517,0.1011,0.0506)
In this work, we use the tap-centering initialization strategy where the equalizers’ taps
were initialized by setting the center tap equal to one and all others to zero. For Chan-
nel1, Channel2 and Channel3 we used an equalizer with 13, 15 and 57 taps, respectively.
The step-size parameters μ1, μ2, μDM−CMA1 , μDM−CMA2 , μDM−MCMA1 , μDM−MCMA2 ,
μMCMA−MDDMA, were chosen for fast convergence with low steady state residual ISI
(please refer to Figures 2-9). Figures 2-4 describe the ISI as a function of the iteration
number obtained by our new proposed method (DM-DD-MMA) compared to the DM-
CMA, DM-MCMA and MCMA-MDDMA methods for the 16QAM constellation in-
put sent via Channel1 and with SNR values of 30dB, 20dB and 10dB. Please note that
the iteration number describes the number of updating the equalizer’s coefficients dur-
ing the equalization process. According to Figures 2-3, (SNR = 30dB and SNR = 20dB
cases), our new proposed method (DM-DD-MMA) achieves the fastest convergence
speed while leaving the system with the lowest residual ISI that is approximately ob-
tained also by the DM-MCMA method which has almost the slowest convergence com-
pared to all the other methods. According to Figure 4, (the SNR = 10dB case), our
new proposed method (DM-DD-MMA) has similar equalization performance with the
MCMA-MDDMA method and both algorithms lead to a faster convergence speed and to
a lower residual ISI compared to the DM-CMA and DM-MCMA methods. Figures 5-7
describe the ISI as a function of the iteration number obtained by our new derived method
(DM-DD-MMA) compared to the DM-CMA, DM-MCMA and MCMA-MDDMA meth-
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ods for the 16QAM constellation input sent via Channel2 and with SNR values of 30dB,
20dB and 10dB. As was the case with Channel1, for SNR values down to 20dB, our
new proposed method (DM-DD-MMA) achieves the fastest convergence speed while
leaving the system with the lowest residual ISI that is approximately obtained also by
the DM-MCMA method which has almost the slowest convergence speed compared to
all the other methods (please refer to Figures 5-6). For the SNR = 10dB case (Figure
7), our new derived method (DM-DD-MMA) has similar equalization performance with
the MCMA-MDDMA method and both algorithms lead to a faster convergence speed
and to a lower residual ISI compared to the DM-CMA and DM-MCMA methods. Fig-
ures 8-9 describe the ISI as a function of the iteration number obtained by our new de-
rived method (DM-DD-MMA) compared to the DM-CMA, DM-MCMA and MCMA-
MDDMA methods for the 16QAM constellation input sent via Channel3 and with SNR
values of 30dB and 20dB. As was already seen with Channel1 and Channel2 for the
SNR = 30dB case, our new derived method (DM-DD-MMA) achieves also for Chan-
nel3 the fastest equalization convergence speed while leaving the system with the lowest
residual ISI that is approximately achieved also by the DM-MCMA algorithm which has
almost the slowest convergence speed compared to all the other methods (please refer
to Figure 8). For the SNR = 20dB case (Figure 9), our new derived method (DM-DD-
MMA) has similar equalization performance with the MCMA-MDDMA algorithm and
both algorithms lead to a faster convergence speed and to a lower residual ISI compared
to the DM-CMA and DM-MCMA methods. Figures 2-9 clearly show the effectiveness
of the switching mechanism involved in our new proposed algorithm (DM-DD-MMA)
that is responsible to switch to the update mechanism of the equalizer’s taps based on
the decisions made by the decision device, when relative reliable decisions can be done
by the decision device. As already was noted earlier in this paper, μp[n] tends to μx (for
the noiseless case) when the convolutional noise (namely the residual ISI) tends to zero.
Thus, for the noiseless case, where μp[n] is very close to μx, reliable decisions can be
obtained by the decision device. In this paper, we switched to the decision directed algo-
rithm when norerr[n] < 0.01 (where μp[n] is not equal to μx but is also not too far away
from it) in order to get improved equalization performance improvement from the resid-
ual ISI as well as from the convergence rate point of view. Since μx was obtained for the
noiseless case, it is not a surprise that our proposed algorithm does not show the same
equalization performance improvement for the very low SNR case as it does for the high
SNR situation. It is possible that better equalization performance can be obtained for the
very low SNR case if we set norerr[n]< tr where tr �= 0.01 or if a new expression for μx
is obtained that is applicable also for the noisy case.

5. Conclusions

We proposed in this work a dual-mode, decision directed multimodulus algorithm (DM-
DD-MMA) for blind adaptive equalization, where the MMA algorithm is switched to
the DD algorithm, based on a previously obtained expression for the step-size parame-
ter valid at the convergence state of the equalizer for which the convolutional noise pdf
can be considered approximately as Gaussian. The new proposed algorithm (DM-DD-
MMA) was compared with the DM-CMA,DM-MCMA and MCMA-MDDMA methods
with three different channel cases and with SNR values down to 10dB. Simulation results
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Figure 2. Simulation results (averaged results with 100 trials) with Channel1 for the DM-D-
D-MMA, DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 30dB, μ1 = 0.0002,
μ2 = 0.0001, μDM−CMA1 = 0.000025, μDM−CMA2 = 0.0002, μDM−MCMA1 = 0.000005, μDM−MCMA2 = 0.0001,
μMCMA−MDDMA = 0.00005
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Figure 3. Simulation results (averaged results with 100 trials) with Channel1 for the DM-D-
D-MMA, DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 20dB, μ1 = 0.0002,
μ2 = 0.0001, μDM−CMA1 = 0.000025, μDM−CMA2 = 0.0002, μDM−MCMA1 = 0.000002, μDM−MCMA2 = 0.0001,
μMCMA−MDDMA = 0.00003
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Figure 4. Simulation results (averaged results with 100 trials) with Channel1 for the DM-D-
D-MMA, DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 10dB, μ1 = 0.00004,
μ2 = 0.00002, μDM−CMA1 = 0.00005, μDM−CMA2 = 0.00005, μDM−MCMA1 = 0.00002, μDM−MCMA2 = 0.00005,
μMCMA−MDDMA = 0.00002
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Figure 5. Simulation results (averaged results with 100 trials) with Channel2 for the DM-D-
D-MMA, DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 30dB, μ1 = 0.0002,
μ2 = 0.0001, μDM−CMA1 = 0.000027, μDM−CMA2 = 0.0002, μDM−MCMA1 = 0.000005, μDM−MCMA2 = 0.0001,
μMCMA−MDDMA = 0.00004
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Figure 6. Simulation results (averaged results with 100 trials) with Channel2 for the DM-DD-MMA,
DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 20dB, μ1 = 0.0002, μ2 = 0.0001,
μDM−CMA1 = 0.000027, μDM−CMA2 = 0.0002, μDM−MCMA1 = 0.0000027, μDM−MCMA2 = 0.0001,
μMCMA−MDDMA = 0.00004
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Figure 7. Simulation results (averaged results with 100 trials) with Channel2 for the DM-D-
D-MMA, DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 10dB, μ1 = 0.00005,
μ2 = 0.00001, μDM−CMA1 = 0.00005, μDM−CMA2 = 0.00004, μDM−MCMA1 = 0.00005, μDM−MCMA2 = 0.00005,
μMCMA−MDDMA = 0.00003
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Figure 8. Simulation results (averaged results with 100 trials) with Channel3 for the DM-DD-MMA,
DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 30dB, μ1 = 0.00005, μ2 = 0.00005,
μDM−CMA1 = 0.00003, μDM−CMA2 = 0.00003, μDM−MCMA1 = 0.000007, μDM−MCMA2 = 0.00003,
μMCMA−MDDMA = 0.00002
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Figure 9. Simulation results (averaged results with 100 trials) with Channel3 for the DM-DD-MMA,
DM-CMA, DM-MCMA and MCMA-MDDMA methods. SNR = 20dB, μ1 = 0.00005, μ2 = 0.00005,
μDM−CMA1 = 0.00003, μDM−CMA2 = 0.00003, μDM−MCMA1 = 0.000007, μDM−MCMA2 = 0.00003,
μMCMA−MDDMA = 0.00002

has confirmed that for the three channel cases with SNR = 30dB as well as for the first
two channel cases (Channel1 and Channel2) with SNR = 20dB , a faster convergence
speed is obtained with our new derived algorithm (DM-DD-MMA) compared with the
DM-CMA,DM-MCMA and MCMA-MDDMA methods while leaving the system with
the lowest residual ISI that is approximately obtained also by the DM-MCMA algorithm
which has almost the slowest convergence speed compared to all the other methods. For
the SNR = 10dB case, simulation results have shown that for the first two channel cases
(Channel1 and Channel2), our new proposed method (DM-DD-MMA) has similar equal-
ization performance with the MCMA-MDDMA algorithm and both algorithms lead to a
faster convergence speed and to a lower residual ISI compared to the DM-CMA and DM-
MCMA algorithms. As already mentioned earlier, the new proposed algorithm (DM-DD-
MMA) is based on a previously derived expression for the step-size parameter valid at
the convergence state of the equalizer. This expression for the step-size was obtained for
the noiseless case. Thus, this may be the reason that our new proposed method (DM-DD-
MMA) achieved the best equalization performance for SNR values above 20dB com-
pared to the DM-CMA,DM-MCMA and MCMA-MDDMA methods. Therefore, our fu-
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ture direction will be deriving a new expression for the step-size parameter valid at the
convergence state of the equalizer that is suitable also for the very noisy case.
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