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Abstract. We propose a concise approach to facilitate the deep learning model for 
medical image classification of knee osteoarthritis severity. The characteristics of 

the input X-ray images are sharpened by a modified 5�5 mask before training and 

testing in this work. We compare the inference accuracies of two experiments using 
the same architecture with images sharpened and not sharpened respectively. And 

we find it tangible that the former performs much better than the latter. This 

technique could also be helpful when applied onto the edge devices for object 
detection and image segmentation. 
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1. Introduction 

Image classification has been inspiring the rapid development of deep learning these 

years. And it also becomes as important as to adapt the applications to various fields, 

such as medical treatment, traffic analysis, automated optical inspection, etc. 

For medical image diagnosis employing artificial intelligence measures, the 

preparation of the dataset is sometimes demanding owing to the limited patient cases. In 

the meanwhile, the detected objects in the input images are subject to be confined within 

merely several classes. In consequence, there is no need to adopt large size neural 

network to fulfill the training and testing. A concise model with delicate structure might 

not only be adequate but easier to install in the edge devices. 

However, the challenge is that the differences among the designated classes are 

usually quite small or even subtle. This inherent nature makes the inference accuracy of 

the medical deep learning schemes tend to dwell at an unacceptable level. 

In this study, we would like to establish a compact model to achieve a sensible 

precision for classifying knee osteoarthritis severity. The datasets were originally 

downloaded from the website provided by Chen Ping-jun etal. [1]. We use a much 

simpler architecture to accomplish the similar accuracy by introducing a novel image 

sharpening technique. 
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Most of the well-known contributions made to develop the deep neural networks 

focus on the construction of model layers [2-4]. While in this work we’ll emphasize the 

importance at the data preprocessing stage. 

The prevalent image preprocessing approaches consist of Gray-scale conversion, 

Gamma adjustment, Contrast-limited adaptive histogram equalization (CLAHE), etc. 

These methods mainly improve the global or local contrast of the original images to tell 

apart objects with distinct appearances. However, the processing of fine characteristics 

might help more when deciphering the classified objects with similar look. In this article, 

we demonstrate one unique image sharpening technique to uncover such importance. By 

applying our algorithm upon the input images for the neural network, the model precision 

is liable to be evidently escalated with less computing resource consumption. 

The commonly used Laplacian is often considered a second-order derivative to 

sharpen an image’s edges. This operator is regarded isotropic because of its rotation 

invariant for enhancement. But our previous work has proven that the mask filtering is 

actually a superposition of directional elements [5-13]. It seems promising to exploit this 

concept onto the image classification scope, in which a number of images had better be 

preprocessed in order to acquire sensible training weights. 

2. Algorithm 

It is common to use 3�3 masks to process image objects. While in this work, three masks 

derived from a 5�5 one is developed to flexibly enhance images. 

For a 5�5 mask of [0 -1 0 -1 0; -1 -1 -1 -1 -1; 0 -1 16 -1 0; -1 -1 -1 -1 -1; 0 -1 0 -1 

0], there are sixteen coefficients environing the central pixel at coefficient 16. When 

sharpening an image f (i, j), the second derivative is now formulated as the following: 
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The result of Eq. (1) is supposed to be imposed on the original image to obtain an 

enhanced one g (i, j) as the following: 
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referring to our previous works, it is reasonable to divide Eq. (1) into three parts as 

the following [14,15]: 
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Eq. (3) means that a traditional 5�5 mask with 17 coefficients can now be 

dissembled into three masks, of which the second derivatives are just like summations 

of first derivatives along different directions as the following Eqs. (4), (5) and (6): 
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Eq. (4) denotes the mask with four coefficients along the vertical and horizontal 

directions, Eq. (5) denotes the mask with four coefficients in the diagonal directions, and 

Eq. (6) is another one that has eight coefficients along other eight different directions. 

The three masks shown on the right-hand side of Fig. 1(a) essentially have different 

intrinsic properties due to the different distances from their coefficients to the target pixel, 

which is indicated in Fig. 1(b). Eq. (4) could extract the finest characteristics from the 

original image, Eq. (5) implies the higher spatial frequencies, and Eq. (6) contains more 

high-intermediate spatial frequencies. In order to flexibly adapt to different image 

compositions, Eq. (3) is more sensible to be modified as the following:  

 
(a) 

 
(b) 

Figure 1. (a) The 5�5 mask divided into three masks with assigned weights. (b) The distances to the target 

pixel from different mask coefficients. 
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And Eq. (2) could be rewritten as 
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The above enhancement technique is developed here to preprocess the datasets used 

in this work. Then we subsequently build a neural network similar to Lenet-5 to illustrate 

the merit of our proposed method. 

3. Experiment 

Fig. 2 shows our entire neural network architecture. Images with and without sharpening 

are about to be input to the model respectively for comparison. Every two convolutions 

are followed by a maxpooling. The flattening converts the image matrix to a one-

dimensional full connection layer. Afterward, a dropout processing is combined with the 

hidden layer to help reduce the over-fitting phenomenon. The output layer performs the 

classification of five classes. 

The intended input data in Fig. 2 are all gray-scale images with a single channel. 

The first two convolutions containing 3�3 masks are with 64 and 32 output channels 

respectively. And the last two are both with 16 output channels. Because the two 

maxpoolings totally rescale an image to one sixteenth its original size, the flattened layer 

would contain the same pixels number as the input image of 128�128 = 16384. 

 

Figure 2. The CNN model and its parameters used in this work. 

The images in the original datasets were all rescaled to be with the same size of 

128�128 in this work. The severity of knee osteoarthritis is classified with five levels 

from 0 to 4. Images in the folders were rearranged so that every level contains 1500 

images, with the exception that the folder labelled 4 only has 500 images. This is because 

that patients with most severe knee osteoarthritis are fewer than others. And the fewer 

images don’t seem to degrade the experiment results too much. 

Then we complete the desired datasets from all the labelled images. The training 

dataset includes 80% of them, the testing 10%, and the validation 10%. For comparison, 

we proceed twice the experiment. The first time is with datasets not sharpened, and the 

second time with datasets sharpened in advance by our method. Both of them exploit the 

same neural network model with identical parameters. 
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The constants used for sharpening images at the second time are (	, �, �) = (0.4, 1.6, 

0.15) in Eq. (8). In real practice, f (i, j) in Eq. (8) can be multiplied by a constant near 1 

to slightly adjust the brightness of the final image. We emphasize the weight of � as to 

magnify more higher spatial frequencies, which are considered important for revealing 

the characteristics of the knee osteoarthritis. All the constants are decided by empirical 

trial and error. 

4. Result 

Fig. 3(a) shows that the acquired inference accuracy is about 56% after 130 epochs of 

training at the first time. And it is about 71% at the second time. These outcomes were 

calculated by implementing Keras 2.4 and TensorFlow 1.14.0 in Python 3.7. Although 

the inference accuracy is possible to get higher after more epochs, Fig. 3(b) tells that the 

cross-entropy loss is also increasing in the meantime. In this situation, we have to take 

into account the cost of sacrificing the prediction confidence in case of running more 

epochs. 

 
(a) 

 
(b) 

Figure 3. (a) The prediction accuracy diagram of the knee testing dataset for the two experiments. (b) The 

prediction loss diagram for the same two experiments. 

At last, we load the trained weights trying to predict 50 labelled images in the testing 

dataset. Fig. 4 shows those images without enhancement and Fig. 5 shows the same 

images with enhancement. Table 1 elaborates the confusion matrices of these two 

experiments. It is conspicuous to observe the improvement in the matrix by our method. 

( )
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Figure 4. The 50 labelled knee testing images without enhancement. 

 
Figure 5. The same 50 labelled knee testing images with enhancement. 

g g
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Table 1. The confusion matrices of the two experiments. (a). With images not enhanced. (b). With images 

enhanced. 

predicted 0 1 2 3 4 

labelled 

0 5 1 2 0 0 

1 3 2 5 1 0 

2 2 6 7 0 0 

3 0 0 1 10 0 

4 0 0 0 2 3 

(a) 

predicted 0 1 2 3 4 

labelled 

0 6 0 2 0 0 

1 2 5 4 0 0 

2 3 3 9 0 0 

3 0 0 1 10 0 

4 0 0 0 0 5 

(b) 

5. Discussion and Conclusion 

 
(a) 

 
(b) 

Figure 6. (a) The prediction accuracy diagram of the liver testing dataset for the two experiments. (b) The 

prediction loss diagram for the same two experiments. 
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To ensure the merit of our proposed method, we employ other datasets to train the model 

and also observe the improvement after the image enhancement. The practiced data are 

acquired from liver-cancer MRI scanning by Tungs’ Taichung MetroHarbor Hospital in 

Taiwan. Livers inside patients’ abdomens were scanned from top to bottom with image 

separation of several millimeters. The images had been with pseudonymization and de-

identification when adopted in this work. We built the datasets by use of the separated 

scanned images, which are labelled 1 or 0 representing images with or without cancer 

focal area. Totally 664 images are labelled 0 and 336 images are labelled 1, for that the 

images with focal areas are fewer than those without. 

Figure 6 shows the accuracy and loss curves for the training. The accuracy has been 

elevated from 90% to 95%. Figure 7 are the testing images without enhancement, and 

Figure 8 are the same images after enhancement. The constants used for Figure 8 are (	, 

�, �) = (1.5, 0.1, 0.1). We emphasize the weight of 	 in this place because liver is 

composed of soft tissue with more sophisticated structures. 

 
Figure 7. The 50 labelled liver testing images without enhancement. 
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Figure 8. The same 50 labelled liver testing images with enhancement. 

In conclusion, the image sharpening technique mentioned in this article is mainly 

based on mask-filtering approach, which has some similarity with the convolution 

operation in deep neural networks. Although one of them is with fixed coefficients and 

the other with trained coefficients in multi-channels, both of them extract features of the 

image. 

Along with the emerging demand for edge computing software embedded in smaller 

devices, it seems promising that the recommended strategy serves as a preferential 

alternative. The proposed tactic not only reduces computing consumption, but provides 

the flexibility to accommodate to variant image compositions. 
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