
Compressive Video Sensing Based on Intra-

Algorithm 

Yuchen YUE a, Hua LI a,1 and Jianhua LUO 
b 

a
 Department of Armament and Control, Army Academy of Armored Forces, Beijing, 

China 
b

 Center of Maneuver and Training, Army Academy of Armored Forces, Beijing, China 

Abstract. Establishing structured reconstruction models and efficient 
reconstruction algorithms according to practical engineering needs is of great 

concern in the applied research of Compressed Sensing (CS) theory. Targeting 

problems during high-speed video capture, the paper proposes a set of video CS 
scheme based on intra-frame and inter-frame constraints and Genetic Algorithm 

(GA). Firstly, it employs the intra-frame and inter-frame correlation of the video 

signals as the priori information, creating a video CS reconstruction model on the 
basis of temporal and spatial similarity constraints. Then it utilizes overcomplete 

dictionary of Ridgelet to divide the video frames into three structures, smooth, 

single-oriented, or multijointed. Video frames cluster according to the structure 
using Affinity Propagation (AP) algorithm, and finally clusters are reconstructed 

using evolutionary algorithm. It is proved efficient in terms of reconstruction result 

in the experiment. 
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1. Introduction 

Compressed sensing theory [1-2] is a new information acquisition theory proposed by D. 

Donoho, E. Candès, and Chinese scientists T. Tao, which states that as long as a signal 

is compressible or sparse in some domain of mutation, it can be projected into a low-

dimensional space by a measurement matrix, and the measurement data can be 

reconstructed by solving an optimal model. The measurement data can be reconstructed 

into the original signal by solving an optimization model. Currently, compressed 

perception is widely used in the field of video processing [3], and the existing video 

compressed perception reconstruction algorithms [4-7] are mainly divided into two 

categories: frame-by-frame reconstruction, i.e., distributed video compressive sensing 

algorithm, divides the video sequence into group of pictures (GOP), in which the first 

frame of each GOP is the Key frame and the rest are the CS frames. Key frames are 

sampled with high sampling rate to obtain better reconstruction quality through intra-

frame reconstruction, while CS frames are sampled with lower sampling rate and 
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reconstructed with the aid of Side Information generated from Key frames through 

motion compensation to obtain high quality reconstructed video, but the disadvantage of 

this method is that when there are frames with abrupt scene changes in the video, the 

fixed-length GOP does not produce better results when there are frames with abrupt 

scene changes in the video, in addition, the algorithm does not make use of the structural 

prior information of the video. The overall reconstruction class algorithm does not 

distinguish between Key frames and CS frames at the coding end, but uses different 

methods for different types of measurements for reconstruction. The reference [8] points 

out that the structural a priori information of the signal plays a key role in reducing the 

number of measurements required for accurate signal reconstruction and reducing the 

uncertainty of the reconstruction model, and for high-speed videos with drastic scene 

changes, to ensure the efficiency of video acquisition, a structured compressed sensing 

framework to ensure the efficiency of video acquisition, the sparse representation of the 

video signal is achieved by constructing a structured perfect dictionary, and a structured 

measurement scheme suitable for it is formed by using the structural prior information 

of the video signal, and the reconstruction of high-speed video is achieved based on the 

structural prior. 

In this paper, a genetic algorithm video compression-aware reconstruction algorithm 

based on video frame motion classification is proposed using the characteristic of 

relatively single block structure information [9-10]. The algorithm first divides the video 

sequence into a Data Group (DG) consisting of several consecutive video frames. Then 

divides all video frames into blocks, and determined the blocks as change class blocks 

and non-change class blocks based on the judgment of whether the blocks change within 

adjacent video frames, and then, constructs a Ridgelet over-complete dictionary to 

determine the block structure type of all video frames in a single DG, retaining only the 

non-change class block measurements in the previous frame of two adjacent video 

frames, and retaining all change class block measurements in two adjacent frames. Next, 

all the retained block measurements are treated as a Data Unit (DU), based on which the 

DU is clustered using the AP clustering algorithm to make full use of the intra-frame 

correlation and inter-frame correlation of the video sequence, and the clusters are 

reconstructed using the genetic evolution algorithm. Finally, the video reconstruction 

method is trained by video sequence samples, and the reconstruction performance of the 

proposed algorithm is further improved by training. 

2. Block structure classification based on Ridgelet overcomplete dictionary 

Video frames have self-similarity. After the non-overlapping blocking operation of a 

single video frame using the blocking strategy, the obtained blocks contain only a limited 

number of different structural classes, and the measurement vectors of structurally 

similar blocks also have similarity. Therefore, the similarity of the measurement vectors 

of the blocks can be used for metrics and classification can be achieved based on the 

structural properties of the blocks. Each class of blocks can be represented by the same 

set of atoms in the overcomplete dictionary. This imposes two requirements on the 

overcomplete dictionary. First, the overcomplete dictionary should have a redundant 

orientation structure in order to be able to adaptively and sparsely represent texture and 

edge information in an image with arbitrary orientation. Second, the overcomplete 

dictionary should have an efficient search and optimization algorithm that can find the 
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appropriate combination of atoms and corresponding combination coefficients for the 

sparse representation of the signal to be reconstructed in the shortest possible time. 

The overcomplete dictionary B N��D B N  used to represent the block is noted as 

� �1 2, ,..., N�D d d d , 1,2,...,i N� , where di is the atom in dictionary D with ordinal 

number i , generated in the manner of equation (1). 
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��d z B B  is the atom with the same size as the block, and B
i �d B  is 

the vectorized atom. � �
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1 2, 0,1,2,..., 1B� 	� � �� z z z  is the position vector of the atom, and 

1 W  is the normalization factor of the atom. The atom di(z) in the dictionary D 

corresponds to the parameter set �i = (�i, ai, bi), where ai is the scale parameter, bi is the 

displacement parameter, �i is the orientation parameter, ui = (cos�i, sin�i)T. 

After the prototype atoms are selected, the atomic size of the dictionary and the 

sparse representation capability of the video frames also depend on the range of values 

of ai, bi and �i, their respective discrete intervals. Following the Ridgelet dictionary 

construction method of the reference [11], the parameter space is set as equation (2). 
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Where the displacement parameter bi is taken in relation to the orientation parameter 

�i, as shown in equation (3). 
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When using an overcomplete dictionary for the sparse representation of video 

frames, the individual atoms in the dictionary respond only to those blocks that are 

consistent in shape, scale, position and orientation information. Meanwhile, the 

subsequent algorithm wants to determine the block structure characteristics and classify 

them based on the characteristics of the sub-dictionaries. Therefore, the discrete interval 

of the orientation parameters must be small enough when discretizing the Ridgelet 

overcomplete dictionary. 

Since two block sizes, 8×8 and 16×16, are used in the experiment, two Ridgelet 

overcomplete dictionaries are constructed. Setting a [0,3], � [0,179], scale interval 

and displacement interval to 0.2 and 1, respectively, and directional interval to 5. 

Therefore, the constructed Ridgelet overcomplete dictionary for 8×8 blocks have 6271 

atoms, and the Ridgelet overcomplete dictionary for 16×16 blocks have 12032 atoms. 

Ridgelet overcomplete dictionary for 16×16 blocks have a total of 12032 atoms. 

Smoothed blocks are insensitive to the orientation parameter, so the atoms of each 

direction have good reconstruction quality for this type of blocks, and only the sub-
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dictionaries of individual directions have high reconstruction quality for single-direction 

blocks and multi-direction blocks. The process of reconstructing blocks undoubtedly 

increases the difficulty of block structure feature determination, so the analytical 

formula-based method proposed in reference [12]. Firstly, we determine whether the 

block is smooth by the relationship between the variance of the block measurements and 

the mean variance of the block, and then we find the 10 most relevant atoms in the 

directional sub-dictionary over the complete dictionary along the same lines and solve 

the block measurement residuals by the least squares’ method. If the block has the largest 

measurement value residual on a single direction sub-dictionary, the corresponding block 

is marked as a single-direction block, and vice versa as a multi-direction block. To ensure 

the fast convergence of the algorithm and to facilitate the optimal direction statistics of 

multi-directional class blocks, only the three directions with the smallest residuals are 

marked for all blocks marked as multi-directional blocks with the number of directions 

greater than or equal to 3. This method is inaccurate in the determination of block 

structure features at low sampling rate, but the purpose of adopting this method in this 

paper is block structure feature classification, not exact reconstruction, so it can be used 

for determination. 

Smoothed blocks are insensitive to the orientation parameter, and the atoms of each 

direction have good reconstruction quality for this type of blocks. Only the sub-

dictionaries of individual directions have high reconstruction quality for single-direction 

blocks and multi-direction blocks. The process of reconstructing blocks undoubtedly 

increases the difficulty of block structure feature determination, so the analytical 

formula-based method proposed in the reference [12]. Firstly, we determine whether the 

block is smooth by the relationship between the variance of the block measurements and 

the mean variance of the block, and then we find the 10 most relevant atoms in the 

directional sub-dictionary over the complete dictionary along the same lines and solve 

the block measurement residuals by the least square’s method. If the block has the largest 

measurement value residual on a single direction sub-dictionary, the corresponding block 

is marked as a single-direction block, and vice versa as a multi-direction block. To ensure 

the fast convergence of the algorithm and to facilitate the optimal direction statistics of 

multi-directional class blocks, only the three directions with the smallest residuals are 

marked for all blocks marked as multi-directional blocks with the number of directions 

more than or equal to 3. Even though this method is inaccurate in the determination of 

block structure features at low sampling rate, but the purpose of adopting this method in 

this paper is block structure feature classification, not exact reconstruction, so it can be 

used for determination. 

3. Genetic Algorithm-based Compressive Video Sensing Algorithm 

3.1.  The overall framework of the algorithm 

The flow of the genetic algorithm-based compressive video sensing algorithm is shown 

in Figure 1. 
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Figure 1. Genetic algorithm-based compressive video sensing algorithm flow block diagram. 

The proposed genetic algorithm-based compressive video sensing algorithm 

consists of three parts: measurement algorithm, block structure type determination 

algorithm and genetic algorithm. Firstly, a blocking operation is implemented for each 

frame of the input video and a plurality of consecutive video frames are set as one DG, 

and all the blocks in a single DG are compressed and sampled to obtain measurement 

values. The blocks at the same position in two adjacent video frames are classified by 

motion through calculation and divided into change blocks and non-change blocks, and 

a single non-change block and all change blocks are retained. Then the measurements of 

all the retained blocks in DG are treated as a DU and subjected to AP clustering to 

maximize the intra- and inter-frame correlation of the video sequences, and the 

reconstruction is performed uniformly for the same clusters. The reconstruction 

algorithm uses Genetic Evolutionary Algorithm (GA). 

3.2. Measurement Algorithm 

A new video sampling scheme is proposed to make the proposed algorithm have better 

reconstruction quality in the changing part of the video. After the video frames are 

divided into multiple B×B-sized blocks, a Data Unit (DU) is set with n consecutive 

frames, and the l2-norm of the difference between the blocks at the same position in two 

adjacent frames in the DU is calculated, and a threshold � is set. The blocks with the 

difference l2-norm value of the blocks at the same position in two adjacent frames less 

than the threshold �  are marked as non-changing blocks, and then the blocks at the same 

position in the previous video frame in two adjacent frames are kept and recorded; the 

blocks with the difference l2-norm value greater than the threshold � are marked as 

changing blocks. The blocks in the same position in two adjacent frames are marked as 
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non-changing blocks, and then the blocks in the same position in the previous two frames 

are kept and recorded; the blocks with the difference l2-norm value greater than the 

threshold �  are marked as changing blocks, and all the changing blocks in the DU are 

recorded and kept. 

3.3. Population Initialization Algorithm 

After obtaining the measurement vectors of all the reserved blocks in the DU, the block 

structure classification is determined, which lays a solid foundation for the population 

initialization in the subsequent evolutionary algorithm solving. Different types of blocks 

adopt different population initialization strategies. The block structure category 

judgment method adopts the judgment method proposed in section 2: 

Smooth blocks 

Dividing the Ridgelet over-complete dictionary into 16 sub-dictionaries according 

to the scale, and selecting the first 7 scale to form the sub-dictionary of the smoothing 

block, and using this to randomly generate the initial population corresponding to the 

smoothing block. 

Single directional blocks 

Divide the Ridgelet overcomplete dictionary into 36 sub-dictionaries according to 

the direction, select the forward 2 directions and backward 2 directions including the 

dominant direction of the corresponding single direction block, a total of 5 directions to 

form the single direction sub-dictionary, and use this to randomly generate the initial 

population corresponding to the single direction block. 

Multi-directional blocks 

In the process of judging multi-directional blocks, all the most relevant directions in 

the measurement vector of the block are first counted, and then the most dominant 3 

directions are selected, and each direction is selected in the way of single-directional 

blocks in the forward 2 directions and the backward 2 directions, a total of 15 directions 

constitute the sub-dictionary of multi-directional blocks, and the initial populations 

corresponding to multi-directional blocks are randomly generated. 

3.4. Reconstruction based on Genetic Algorithm 

The reconstruction algorithm uses Genetic Algorithm (GA), and GA needs to consider 

the following five issues in the design phase. 

Individual Codes 

An N×N-dimensional Ridgelet overcomplete dictionary is constructed, and a real 

number encoding is adopted to ensure that the atoms of this Ridgelet overcomplete 

dictionary represent the signal x as optimally as possible, while each atom in the 

dictionary is numbered. Let the individual population be P = [�1,��2, …, �K], each gene 

position �i (1  i  N) in P is the number of the over-complete dictionary atoms, and K is 

the signal sparsity. 

Adaptation function 

The fitness function is an index to search for feasible solutions, and its 

mathematical expression is shown in equation (4). 
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where f(Ym) is the fitness of the same clusters, yi is the measurement vector of the 

signal, Ym is the set of measurement vectors of the same clusters, dec(Ym) is the optimal 

set of atoms of Ym, n  is the capacity of Ym, i is the number of individuals within Ym, 

and �� is the measurement matrix.  

Because of the property that there are a large number of inter- and intra-frame 

similar blocks in the video. Using the AP clustering is used to cluster the measurement 

vectors of the blocks separately by the structural characteristics of the blocks Ym, and the 

inverse of the residual sum of the block measurements and the clustered measurements 

is used as the fitness function. The sum of the fitness functions is found to take advantage 

of the constraints between similarly structured measurement data, while effectively 

avoiding possible deviations in the measurement vector search process, resulting in a 

blockier and more accurate search for the optimal combination atoms of Ym. 

Decoding process 

The GA uses a non-convex l0-model for compressed sensory reconstruction. First, 

search for the dec(Ym) that maximizes the f(Ym) in the reconstruction process. Then, 

solves the sparse representation coefficient � for each measurement corresponding to the 

dictionary atom using a least-squares algorithm. The mathematical expression is shown 

in equation (5). 

� �� �dec Ym�
�

� y�  (5) 

Finally, using Ridgelet overcomplete dictionary D to reconstruct the original signal. 

The mathematical expression is shown in equation (6). 

ˆ ��x D  (6) 

Population initialization 

According to Table 1 to initialization the population. 

Table 1. Population initialization algorithm  

Step 1  
Determining the structural category of video blocks, marking smooth blocks and 

single/multi-directional video blocks respectively, with different population initialization 

generation methods for different categories of video blocks. 

Step 2  
The Ridgelet overcomplete dictionary is divided by scale, and the first seven scales are 
selected to form a smooth block sub-dictionary, from which the corresponding initial 

populations are randomly generated. 

Step 3  

The Ridgelet overcomplete dictionary is divided by direction, and after marking the 
dominant direction i of the unidirectional block, a total of five directions {i-2, i-1,i,i+1,i+2} 

in the forward and backward adjacent directions are selected to form the unidirectional block 

sub-dictionary, and the population is initialized. 

Step 4  

Count the most dominant three directions {j,k,l} among the measurement vectors marked as 
multi-directional blocks, and record only the most dominant three when there are more than 

3. Each dominant direction (j) is selected as a single-directional block in the way of 5 
directions {j-2, j-1,j,j+1,j+2} respectively to form a single-directional block sub-dictionary 

and then combined into a multi-directional block sub-dictionary with a total of 15 directions. 

Y. Yue et al. / Compressive Video Sensing 327



Generating individuals for all directions (j,k,l) according to the above operation, and finally 

combining all individuals to become the initialized population of the multi-directional block 

class. 

Genetic operators 

There are three types of genetic operators, crossover, mutation and selection, and 

the specific operators are designed as follows. 

� Crossover operators 

A single-point crossover operation is used, in which a gene locus is randomly 

selected in two randomly paired individuals, and the lower half of the two individuals 

are swapped at the midpoint of the gene locus to create two new individuals. Crossover 

occurs randomly according to a set crossover probability 
cP . 

� Mutation operator 

Using mutation operator based on directional statistics, mutation occurs randomly 

according to a set probability of mutation 
mP , all genetic positions in individuals smaller 

than 
mP  are mutated, and the mutation value used to replace the original value of the 

genetic position comes from the sub-dictionary of individuals with the least directional 

genetic position. 

� Selection operator 

The fitness of the two new individuals generated from the crossover of two paired 

parent individuals is solved by the fitness function respectively, and if the fitness of one 

of the two parent individuals is smaller than that of the individual with larger fitness in 

the new individual, this parent individual is removed from the parent population and the 

new individual is added, otherwise, no operation is performed. 

Finally, the individual with the largest fitness within the population is 

computationally selected as the optimal atomic group for the reconstructed signal 

measurement vector clustering, and the inverse least squares operation is used to 

complete the signal reconstruction. 

The pseudo-code of the genetic algorithm-based compressive video sensing 

reconstruction algorithm is shown in Table 2. 

Table 2. Genetic algorithm-based compressive video sensing reconstruction algorithm  

Input: video Sequence X random Gaussian measurement matrix �� number of iterations

Ridgelet overcomplete dictionary D 

Iteration: 

Measurement of X; 

Determining the blocks as smooth, single directional, multi-directional; 

Extracting structurally identical blocks and AP clustering; 

Set the population size and sparsity. The population initialization is performed using the 

corresponding initialization scheme according to the clustering of the block 
measurement data; 

Crossover and mutation operations on individuals in the population; 

Selecting the best individuals in the population for reconstruction x̂ :  

� �� �dec m�
�

� x y�� ; 

ˆ ��x D ; 

Reconstruct the video sequence x̂  by recombining the estimated signal X̂  according to 

the chunking and coding strategy; 

Output: Reconstructed video X̂  
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4. Performance Analysis of Proposed Algorithm 

In this section, several experiments are designed to verify the performance of the 

proposed evolutionary algorithm-based video compression perception algorithm and to 

optimize the parameter settings involved in the algorithm. The basic configuration of the 

experiments includes: the experimental platform is a laptop-type computer with Inter 

Core i7 2.8GHz CPU, 16GB RAM, and 64-bit Win7 operating system installed. All 

experiments were conducted in MATLAB R2017a. 

4.1. Analysis of the impact of sampling rate on algorithm performance 

The following experiments analyze the performance of the proposed algorithm at 

different sampling rates. 

The experimental object is a 96-frame Traffic video sequence of 256×256, with 

video frame chunk size B = 8. Construct an overcomplete dictionary based on Ridgelet, 

and set the direction range [0,179), direction interval as 5, total 36 directions, scale range 

[0,3], scale interval as 0.2, total 16 scales. The dictionary size as 6172. Set the population 

size of the genetic algorithm is 36, the individual size is 12. Set the crossover probability 

Pc = 0.6 and the mutation probability Pm = 0.01. Let 8 consecutive frames are used as a 

DG, and the number of smooth block iterations is set to 20, the number of single-direction 

block iterations to 50, and the number of multi-direction block iterations to 100. the 

sampling rates are set to 0.125, 0.2, and 0.25, respectively, and the algorithm 

performance evaluation criterion is the average PSNR of the reconstructed frames. 

The comparison experiments are reconstructed using the Gaussian mixture model 

proposed in the reference [13], and to ensure fairness, the algorithm in the reference [13] 

is trained offline in advance to obtain a set of mean and variance as the initial parameters 

of the Gaussian mixture model. When the sampling rate is 0.125, the Gaussian mixture 

model reconstructs the sum of measurement data generated by making {0,1} 

measurements with probability 0.5 for 8 consecutive frames; when the sampling rate is 

0.2, the Gaussian mixture model reconstructs the sum of measurement data generated by 

making {0,1} measurements with probability 0.5 for 5 consecutive frames; when the 

sampling rate is 0.25, the Gaussian mixture model reconstructs the sum of measurement 

data generated by making {0,1} measurements with probability 0.5 for 4 consecutive 

frames.  

The first 8 frames of the Traffic sequence are used as an example for analysis. Figure 

2 shows the consecutive images of the original sequence, and Figure 3 shows the 

enlarged image of the 3rd frame of the first 8 frames.  

 

Figure 2. The first 8 original frames of Traffic sequence. 

The proposed algorithm and the Gaussian mixture model proposed in the reference 

[13] are used to reconstruct the Traffic sequences respectively. When the sampling rate 

is 0.125, the reconstruction results of both for the first 8 frames of Traffic sequence are 

shown in Figure 4, where Figure 4(a) is the reconstruction result of the algorithm of 

reference [13], and Figure 4(b) is the reconstruction result of the proposed algorithm; 

when the sampling rate is 0.2, the reconstruction results of both for the first 8 frames of 
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Traffic sequence are shown in Figure 5, where Figure 5(a) is the reconstruction result of 

the algorithm of reference [13], and Figure 5(b) is the reconstruction result of the 

proposed algorithm. Figure 5(b) is the reconstruction result of the proposed algorithm; 

when the sampling rate is 0.25, the reconstruction results of both for the first 8 frames of 

the Traffic sequence are shown in Figure 6, where Figure 6(a) is the reconstruction result 

of the algorithm of the reference [13] and Figure 6(b) is the reconstruction result of the 

proposed algorithm. 

 

Figure 3. The 3rd original frames of Traffic sequence. 

 
a The results of reference [13] algorithm 

 
b The results of proposed algorithm 

Figure 4. The results of first 8 reconstruction frames when sample rate is 0.125. 

 
a The results of reference [13] algorithm 

 
b The results of proposed algorithm 

Figure 5. The results of first 8 reconstruction frames when sample rate is 0.2. 

 
a The results of reference [13] algorithm 

 
b The results of proposed algorithm 

Figure 6. The results of first 8 reconstruction frames when sample rate is 0.25. 

Figure 7 shows the reconstructed 3rd frame zoomed image of Traffic sequence for 

two algorithms with sampling rates of 0.125, 0.2 and 0.25 respectively. The PSNR of the 
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reconstructed Traffic sequences for the two algorithms at sampling rates of 0.125, 0.2 

and 0.25 are respectively shown in Table 3. 

Combining the results from Figure 4 to Figure 6 and Table 3, it can be seen that 

the average rate distortion performance of the proposed algorithm at all three sampling 

rates is better than that of the Gaussian mixture model proposed by reference [13]. 

sample rate 0.125  

  
(a) reference [13] (b) proposed 

sample rate 0.2  

  
(a) reference [13] (b) proposed 

sample rate 0.25  

  
(a) reference [13] (b) proposed 

Figure 7. Two algorithms to reconstruct the zoomed image of the 3rd frame of Traffic sequence at three 

sampling rate. 

Table 3. The PSNR of two algorithms at sampling rates of 0.125, 0.2 and 0.25  

DG Serial Frame Serial 
SR=0.125 SR=0.2 SR=0.25 

Ref. [13] Proposed Ref. [13] Proposed Ref. [13] Proposed 
1 1-8 20.80 26.40 24.04 26.65 23.38 28.05 

2 9-16 21.21 25.88 23.29 26.40 22.37 27.07 
3 17-24 22.27 25.29 22.41 25.48 22.19 27.15 

4 25-32 23.02 24.61 21.48 25.68 23.20 26.99 

5 33-40 22.76 25.45 21.53 24.75 22.20 26.64 
6 41-48 22.03 25.25 21.41 25.19 22.24 26.78 

7 49-56 21.33 24.37 20.53 25.32 22.52 27.00 

8 57-64 21.58 24.81 20.48 25.89 21.59 26.94 
9 65-72 21.19 24.89 21.26 25.60 21.67 26.14 

10 73-80 22.18 24.29 21.66 26.58 20.89 25.82 

11 81-88 21.62 23.38 20.61 25.57 21.60 26.45 
12 89-96 20.55 24.07 21.13 24.54 22.60 26.81 

Average 21.71 24.89 21.65 25.64 22.20 26.82 

As can be seen from Figure 7, the proposed algorithm not only has a higher PSNR 

value when the sampling rate is 0.125, but also the reconstructed video frames from the 

subjective visual point of view have a good reconstruction effect in the edge part has a 

good reconstruction effect, while the reconstructed image by the Gaussian mixture model 

of reference [13] shows a large blur in the contour of the change region of the adjacent 

frames. When the sampling rate is 0.2, it can be seen from Figures 7 that the proposed 

algorithm demonstrates a better reconstruction detail effect, and the blurring 

phenomenon in the change region of the reconstructed video frames by the Gaussian 
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mixture model reconstruction algorithm proposed in the reference [13] is reduced, but 

the reduction effect is not obvious, and in general the blurring phenomenon in the edge 

of the change region still exists. When the sampling rate is 0.25, both algorithms improve 

in image details and visual effects, and the proposed algorithm still has better 

reconstruction performance. 

4.2. Analysis of the Impact of Generation Number on Algorithm Performance 

The number of evolutionary iterations set in section 4.1 are: the number of 

iterations for the smooth block is 20, the number of iterations for the unidirectional block 

is 50, and the number of iterations for the multi-directional block is 100. Next, the 

influence of generation number on the performance of the proposed algorithm is 

analyzed through experiments. In this experiment, the basic experimental parameters are 

the same as in section 4.1, and the overcomplete Ridgelet dictionary of 16×16 from 

Section 4.1 is used. The dictionary contains 12032 atoms, and the chunk size is 16×16, 

with 8 frames as a DG. The experimental object is a 96-frame Traffic video sequence of 

size 256×256.  

First of all, there are the experiment of smoothing block evolution generations is 

performed. The limit number of iterations is set to 200, and the reconstruction data during 

the evolution process is saved. The average PSNR value of the reconstructed video 

frames is calculated every 10 iterations as the evaluation criterion of the reconstruction 

quality. The change of the average rate distortion performance of the smoothing block 

with the increase of the evolution number is shown in Figure 8(a). The horizontal 

coordinate in Figure 8 is the number of evolutionary generations, and the vertical 

coordinate is the average PSNR value of the smoothed block obtained by the proposed 

algorithm. From the experimental results, the average PSNR value of the reconstructed 

smoothing block reaches the peak when the evolution proceeds for 20 generations, and 

then the average PSNR of the reconstructed smoothing block obtains the minimum value 

when the evolution proceeds for 30 generations, and then the average PSNR value 

increases continuously with the increase of the evolution generations and eventually 

tends to level off. Therefore, the number of iterations of 20 is selected as the optimal 

evolutionary generation of the smoothing block. Similar experiments were also 

conducted to obtain the relationship curves between the number of iterations and the 

average PSNR value for the single-directional block and the multi-directional block as 

shown in Figure 8(b) and Figure 8(c). 

 
(a)                                                                                              (b) 
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(c) 

Figure 8. Number of iterations analysis diagram. (a) smooth blocks (b) single-directional blocks (c) multi-

directional blocks. 

According to Figure 8(b) and Figure 8(c), it can obtain the optimal evolutionary 

generations of 50 for the single-direction block and 100 for the multi-direction block. 

Therefore the values are taken as 20 generations for smooth blocks, 50 generations for 

single-direction blocks and 100 generations for multi-direction blocks, respectively. 

5. Conclusion 

This paper firstly describes the relevant technique used in the proposed video 

compressive sensing reconstruction algorithm based on intra-and-frame and 

evolutionary algorithm - the block structure type determination method based on 

Ridgelet over-complete dictionary, then describes in detail the implementation process 

of the proposed algorithm, designs a series of experiments, and analyzes different Then, 

a series of experiments are designed to analyze the effects of different sampling rates, 

data unit frames, block sizes and iterations on the performance of the algorithm, and 

determine the number of block evolution generations, block sizes and data unit frames 

that make the algorithm perform best. 
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