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Abstract. This work aims at developing a generalized and optimized path loss 
model that considers rural, suburban, urban, and urban high rise environments over 
different frequencies, for use in the Heterogenous Ultra Dense Networks in 5G. Five 
different machine learning algorithms were tested on four combined datasets, with 
a sum of 12369 samples in which their hyper-parameters were automatically 
optimized using Bayesian optimization, HyperBand and Asynchronous Successive 
Halving (ASHA). For the Bayesian optimization, three surrogate models (the 
Gaussian Process, Tree Structured Parzen Estimator and Random Forest) were 
considered. To the best of our knowledge, few works have been found on automatic 
hyper-parameter optimization for path loss prediction and none of the works used 
the aforementioned optimization techniques. Differentiation among the various 
environments was achieved by the assignment of the clutter height values based on 
International Telecommunication Union Recommendation (ITU-R) P.452-16. We 
also included the elevation of the transmitting antenna position as a feature so as to 
capture its effect on path loss. The best machine learning model observed is K 
Nearest Neighbor (KNN), achieving mean Coefficient of Determination (R2), 
average Mean Absolute Error (MAE) and mean Root Mean Squared Error (RMSE) 
values of 0.7713, 4.8860dB, and 6.8944dB, respectively, obtained from 100 
different samplings of train set and test set. Results show that machine learning can 
also be used to develop path loss models that are valid for a certain range of distances, 
frequencies, antenna heights, and environment types.  HyperBand produced hyper-
parameter configurations with the highest accuracy in most of the algorithms.  

Keywords. Path loss, environment, hyper-parameter optimization, feature 
importance 

1. Introduction 

Path loss is the decrease in the strength of radio frequency signal strength as it travels 
from the transmitter to the receiver. For effective design, expansion and monitoring in 
mobile networks, knowledge of the propagation characteristics of radio signals is 
required in order to determine the base station transmitting power and antenna height for 
a given cell radius [1],[2]. Propagation models are used in predicting path loss, which 
are mathematical expressions used in determining path loss based on frequency, antenna 
heights, distance etc. Path loss models are classified as either Deterministic models, 
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Empirical models, or Stochastic models. Empirical models are the most widely used but 
their accuracy may diminish if used in an environment different from the one they were 
developed [3]. Machine learning models are also used to predict path loss and the 
accuracy of such models outperforms that of empirical models. Such models have 
parameters that are set before training and their performances depend on them. These 
parameters are called hyper-parameters and a user might try to use the default setting of 
a software package or try to optimize their values. There are manual [4] and automated 
[5] ways to optimize hyper-parameters. The present study focuses on automated 
optimization of the hyper parameters of a generalized path loss model for multiple 
frequencies and environments.  

Based on analysis of existing machine learning models, it was observed that the 
following optimization approaches were applied: no hyper-parameter optimization [6], 
manual tuning [7] and automated hyper-parameter tuning [8]. In terms of the 
environment type, existing models were developed for urban [9], suburban [10], or rural 
[11] environments individually, while others in combination [12]. The problem is that if 
we choose to work at specific frequencies and environment, then for a wide change in 
frequency another model is required for predicting path loss. As such several models 
must be developed for the unique environments and frequencies. This can limit the 
incorporation of machine models in Radio Frequency Planning tools.  

Automated hyper-parameter optimization is carried out to increase accuracy, reduce 
time to tune hyper-parameters manually and to have consistent repeatability in observed 
results. The traditional way of hyper-parameter tuning is either through Grid search or 
Random search. Grid search has dimensionality curse for large search space and Random 
search has limited accuracy [13]. This work is aimed at developing an automatically 
optimized generalized model that can predict path loss for different environments and 
frequencies. The contributions of this work are: 

a. Development of generalized path loss models that consider various frequencies 
and environments, with a clutter height feature used in differentiating the 
environments. 

b. Use of state-of-the-art hyper-parameter optimization algorithms to 
automatically optimize the hyper-parameters of machine learning models used 
in the prediction of pathloss. 

2. Methodology 

This section describes the dataset used and its preparation, optimization algorithms used 
and the implementation process.  

2.1. Data preparation 

Dataset used in this work is a combination of four datasets from different environments, 
comprising of rural, suburban, urban, and urban high rise terrains, making a total of 
18,720 data points. The datasets are made up of path loss values and eleven features 
namely, latitude, longitude, elevation, distance, frequency, transmitting antenna height 
(ht), receiving antenna height (hr), difference in latitude between transmitting and 
receiving antenna (distance_x), difference in longitude between transmitting and 
receiving antenna (distance_y), elevation at transmitting antenna height position 
(tAntennaElev) and clutter height. Three of the datasets used are public datasets available 
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at [14], [15], and [16], and were originally used in [17], [18] and [19], respectively. The 

fourth dataset is a set of measurements carried out by the authors. The properties of the 

datasets are given in Table 1.  Out of the 9480 data points for the urban area, 3,129 

samples were extracted representing a stratified sample of 33% of the total so as to 

balance the samples per environment. A total 12,369 samples were used. Figure 1 shows 

the distribution of each feature by environment. 

Table 1. Dataset properties 

Dataset Frequency (MHz) Data points Description

1 

[17] 

1835.2, 1840.8, 1864 and 1836 9308 Urban area 

2 

[18] 

868 5624 3349 samples for urban high rise and 

2275 for rural area

3 

[19] 

1800 3616 Sub urban area 

4 2140 172 Urban area

 
Figure 1.  Distribution plots of features with respect to terrains 

2.2. Optimization Algorithms 

Optimization algorithms used are Bayesian optimization, Hyperband and Asynchronous 

Successive Halving (ASHA). Bayesian optimization is a sequential model-based 

optimization technique that takes prior information, use the present sample and then 

produce posterior information based on a criterion set by a utility function, U known as 

the acquisition function. It is used in solving functions in which their computation of 

extrema is expensive, evaluation of their derivative is hard, or they are non-convex. 

Hyberband and ASHA are early stopping approaches that allocate more resources to 

promising hyper-parameter configurations than unpromising ones in order to avoid waste. 

Resources refer to time or number of iterations [13].  
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2.3. Implementation 

The performances of five machine learning algorithms are investigated, namely, KNN, 
RF, a single hidden layer MLP with Adam optimizer as weights updater, Gradient 
Boosting (GB) and Extreme Gradient Boosting (XGB) under their best hyper-parameter 
settings. Six different methods were used for the determination of the hyper-parameters 
which included Random search, Bayesian optimization using three different types of 
surrogates (GP, RF and TPE), HyperBand and ASHA. Eighty percent of the data points 
were used as train set in optimizing the hyper-parameter and twenty percent were used 
to test the performance. The features in both the train and test sets were scaled to have a 
mean of zero and standard deviation of one. The hyper-parameter values were evaluated 
using a 10-fold cross validation with the best score and time taken by each of the 
algorithms recorded. Each of the optimization algorithms was set for 50 trials/evaluations 
from which the best trial was selected. Five python packages were used to implement the 
automated hyper-parameter optimized machine learning process: XGBoost, Scikit-learn 
for the remaining machine learning models and random search, Scikit-Optimize for 
Bayesian search using GP and RF surrogate models, Hyperopt for Bayesian optimization 
using TPE surrogate and Optuna for HyperBand and ASHA.  

The best hyper-parameter configuration from each search method was later used in 
the respective algorithm for performance evaluation. The performances of 100 different 
samplings of the train set and test set were averaged in each case and the mean MAE, 
mean RMSE, and mean R2 were recorded. To examine the improvement in performance 
provided by the optimization processes, each of the algorithms was also run using the 
default hyper-parameter settings in the Scikit-learn package or XGBoost.  

3. Results and Discussion 

The following subsections present the results from various aspects of the study and the 
discussions about the results obtained. For result analysis, Bayesian optimization with 
Gaussian process is abbreviated BGP, BRF as an abbreviation for Bayesian optimization 
with RF surrogate model and BTPE for Bayesian optimization with TPE surrogate model. 

3.1. Hyper-parameter Optimization 

The performance metrics from the evaluation of the hyper-parameters resulting from the 
search algorithms, and the time taken by each of the search algorithms to complete 50 
evaluations are presented in Table 2. Experiments were conducted with an Intel® Core™ 
i7-8700 CPU @ 3.20GHz × 12, with 15.6 GB of Random-Access Memory (RAM) and 
Linux Ubuntu release 20.04 as the operating system. Variations were observed across 
the five machine learning algorithms based on the hyper-parameter optimization 
algorithm that spent the highest and least amount of time to complete 50 iterations of the 
search as well as the algorithm that produced the highest score/least error as presented in 
Table 3. From Table 2, reduction in RMSE of 0.3693dB, 1.6318dB, 0.5681dB, and 
0.922dB in KNN, MLP, RF, and XGB, respectively was achieved by the best 
optimization algorithm with respect to the default setting.  
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Table 2. Results of Hyper-parameter optimization 

Algorithm Time (mins) Mean MAE 

(dB) 

Mean RMSE 

(dB) 

Mean R2 

KNN Default N/A 5.0357 7.2637 0.7460 
Random 4.1552 5.2967 7.5349 0.7270 
BGP 5.7399 5.0954 7.3435 0.7406 
BRF 4.7528 5.1499 7.3850 0.7374 
BTPE 2.8291 5.1739 7.3995 0.7364 
Hyperband 6.7423 4.8860 6.8944 0.7713 

ASHA 4.0985 4.8995 6.9203 0.7694 

MLP Default N/A 7.0158 9.0367 0.6150 
Random 4.1380 6.9376 8.9774 0.6206 
BGP 7.1437 6.7411 8.7105 0.6435 
BRF 31.9863 5.5831 7.4049 0.7415 

BTPE 21.9405 5.9917 7.8796 0.7080 
Hyperband 12.3198 6.4114 8.3240 0.6740 
ASHA 9.8036 6.1387 8.0014 0.6987 

RF Default N/A 6.8148 9.0916 0.6049 
Random 6.6318 7.0879 9.2457 0.5913 
BGP 9.1431 6.7877 8.9476 0.6205 
BRF 14.8185 7.0726 9.2129 0.5938 
BTPE 7.0694 6.9779 9.0628 0.6074 
Hyperband 5.4783 6.4035 8.5235 0.6573 

ASHA 3.4771 6.6433 8.7038 0.6416 

GB Default N/A 7.0895 9.2150 0.5966 

Random 37.2973 7.2513 9.5577 0.5633 
BGP 20.2965 7.2310 9.5234 0.5691 
BRF 32.9644 7.2808 9.6443 0.5582 
BTPE 43.2859 7.1539 9.4587 0.5727 
Hyperband 26.7169 7.2611 9.4831 0.5626 
ASHA 2.6171 8.4016 11.0389 0.3834 

XGB 
 

Default N/A 7.8449 10.4265 0.4842 
Random 3.3760 7.9297 10.5898 0.4688 
BGP 7.3779 7.9464 10.6292 0.4654 
BRF 7.7370 7.7580 10.3710 0.4911 
BTPE 4.3214 7.8279 10.4070 0.4862 
Hyperband 2.5661 7.2991 9.5045 0.5725 

ASHA 3.0020 9.5639 13.1130 0.1695 

Table 3. Summary of performance 

Algorithm Highest Accuracy Highest Speed Lowest Speed 

KNN Hyperband BTPE Hyperband 
MLP BRF Random BRF
RF Hyperband ASHA BRF
GB Default ASHA BTPE
XGB Hyperband Hyperband BRF

KNN is the best algorithm for this problem as it yielded the least values of the error 
metrics and a higher R2 value. This is due to its stability, especially for large number of 
14 neighbors as presented in Table 4. Other algorithms consisting of MLP and Tree based 
algorithms are less stable, and therefore overfit. HyperBand returned hyper-parameter 
values with the highest accuracy in most of the machine learning algorithms. Tables 4 to 
8 present the default hyper-parameter values in the packages and values obtained from 
the various optimization methods. 
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Table 4. Hyper-parameter values of KNN 

Parameter Default Random BGP BRF BTPE Hyperband ASHA 

Number of neighbors 5 4 4 4 4 14 13 
Algorithm auto Ball tree Ball 

tree
Kd 
tree

Kd 
tree

Ball tree Ball 
tree 

Leaf size 30 21 24 34 28 19 40 
Minkowski Distance 
metric power 

2 8 2 4 5 6 6 

Table 5. Hyper-parameter values of RF 

Parameter Default Random  BGP BRF BTPE Hyperband ASHA 

Number of trees 100 214 162 292 192 260 173 
Maximum depth None 39 74 90 49 81 65 
Maximum features per split Auto 6 9 6 4 10 9 
Minimum samples split 2 6 2 18 18 58 73 
Minimum samples leaf 1 6 7 12 2 18 20 

Table 6. Hyper-parameter values of MLP 

Parameter Default Random  BGP BRF BTPE Hyperband ASHA 

Number of neurons 100 108 21 115 96 32 102 
Activation relu relu tanh logistic tanh logistic logistic 
Alpha 0.0001 0.0010 0.0009 0.0031 0.3391 0.1000 0.0080 
Epsilon 1e-8 0.0010 0.2744 0.0059 0.8714 0.8518 0.5340 
Beta_1 0.9 0.1000 0.4420 0.5526 0.8559 0.6329 07819 
Beta_2 0.99 0.9900 0.0225 0.7798 0.8223 0.4865 0.5990 

Table 7. Hyper-parameter values of GB 

Parameter Default Random  BGP BRF BTPE Hyperband ASHA 

Number of trees 100 176 63 188 153 40 215 
Maximum depth 3 55 87 75 69 45 24 
Maximum features per split None 5 6 8 7 4 8 
Minimum samples split 2 47 45 64 60 40 56 
Minimum samples leaf 1 9 9 4 20 26 95 
Loss LS LS LS LS LS Huber LAD 

Table 8. Hyper-parameter values of XGB 

Parameter Default Random  BGP BRF BTPE Hyperband ASHA 

Number of trees 100 68 253 246 281 184 119 
Learning rate 0.3 1 0.2742 0.2755 0.1893 0.2449 0.0476 
Booster gbtree gbtree gbtree dart gbtree gbtree gbtree 

3.2. Feature Importance 

Feature importance from the best KNN model was also considered using the permutation 
importance method as depicted in Figure 2. It was observed that all features are relevant 
in the path loss prediction as none was scored zero in feature importance. A novel feature 
in this model is the “tAntennaElev” that stands for elevation at the location of 
transmitting antenna. The reason for using it is that since a multiple transmitter model is 
considered, the altitude of the transmitting antenna relative to the receiving antenna 
becomes variable also because different transmitting antenna positions have different 
elevation heights above sea level. The model was observed to give the feature a moderate 
priority greater than that of some of the features used in earlier empirical models such as 
frequency and the heights of the antennas. The height of the receiving antenna had the 
least priority.  
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Figure 2. Feature importance of the best KNN model 

3.3. Performance by Environment 

The best optimized machine learning algorithm obtained is KNN. The R2 value, MAE 
and RMSE from each of the environments were computed from the model’s predictions 
on test data as presented in Table 9, with three scenarios. In the first scenario, 100 
different samplings of Train-Test split were used in testing the model with 
unoptimized/default hyper-parameter configuration and results were averaged. In the 
second scenario, a single Train-test split was used while 100 different samplings were 
used in the third scenario as in the first scenario. It was observed that results in the first 
scenario had the least accuracy while the second scenario had the highest accuracy. 
Meanwhile, the third scenario had an accuracy in between the two other scenarios. The 
second scenario had the best accuracy because a single Train-Test split was used. This 
Train-Test split was also used during the optimization of hyper-parameters, while in the 
third scenario, the hyper-parameters obtained using the Train-Test split in the second 
scenario were used in checking performance using 100 different Train-Test splits. Thus, 
results in the second scenario are due to overfitting to the single Training data. Therefore, 
result from the third scenario should be used in estimating the performance of the 
obtained hyper-parameters as it reveals how the hyper-parameter setting responds to 
variations in training and testing data. The prediction plots per environment are shown 
in Figure 3. Figure 3(a) shows the measured path loss and that predicted by the model in 
the rural environment. It will be observed that large distances were covered, especially 
in the rural environment. This is because the dataset used contains measurements carried 
out by [18] from a Long Range Wide Area Network (LoRaWAN) and the distance 
covered in rural environment was larger due to little obstacles or structures. For the urban 
highrise in Figure 3(d), even though the measurements are from a LoRaWAN, the 
distance covered is smaller than in the rural environment due to the presence of high 
density of buildings. Figure 3(b) and Figure 3(c) represents the suburban and urban 
environments, respectively. Low distances were covered in these environments. It was 
observed that the values predicted by the model in suburban environment have the least 
fitting to the actual measured data as reflected in its performance metrics in Table 2. In 
addition to the frequencies in Table 1 in which the model is valid, the range of 
transmitting antenna height for which it is valid is from 0.2m to 53m and that of receiving 
antenna is from 1m to 12m as shown in Figure 1.  
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Figure 3. Predicted and measured path loss for (a) rural (b) suburban (c) urban (d) urban highrise environments 

Table 9. Optimized and un-optimized performance metrics for the best KNN model 

Environment Un-optimized (100 runs) Optimized (1 run) Optimized (100 runs) 

Mean 

R2 

Mean 

MAE 

Mean 

RMSE 

R2 MAE RMSE Mean 

R2 

Mean 

MAE 

Mean 

RMSE 

Rural 0.8952 3.3787 4.9395 0.9491 2.5720 3.4109 0.8875 3.4985 5.1140 

Suburban 0.1918 5.8191 8.3359 0.4704 4.5385 6.4173 0.2704 5.5744 7.9179 

Urban 0.5518 5.2174 7.3314 0.7492 4.3772 5.8047 0.5846 5.1744 7.0588 

Urban High 

rise 

0.7419 

 

5.2329 7.6560 0.8529 

 

4.1689 

 

5.9110 

 

0.7818 5.0031 7.1369 

4. Conclusion 

We developed a novel path loss model valid for various environments, antenna heights, 

and frequencies, using the clutter height recommended in ITU-R P.452-16 as feature that 

differentiates among the environments. The model was obtained by comparing the 

performances of five machine learning algorithms in which state of the art optimization 

techniques were used in optimizing their hyper-parameters. To the best or our knowledge, 

no existing work has applied these techniques in the hyper-parameter optimization of 

machine learning algorithm for path loss models. We demonstrated that HyperBand 

optimization produced much improved results. The performance of each of the hyper-

parameter optimization algorithms was observed to be dependent on the machine 

learning algorithm whose hyper-parameters are being optimized, as expected. Hyper-

parameters obtained using HyperBand gave the best results in most of the algorithms. 

The best machine learning algorithm observed is K Nearest Neighbor resulting in an R2 

value of 0.7713. We demonstrated how machine learning models that consider similar 

properties adopted by the empirical approach, such as range of distances, antenna heights 

and frequencies can be developed, but with much improved results. We also 
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demonstrated that evaluation of hyper-parameters repeatedly with various versions of 
Train-Test splits from the same dataset reveals the adaptive response of the hyper-
parameters to variations in training data. Otherwise, training using only one trainset 
could result in an overfit. Our method improved accuracy, reduced the time for the 
optimization of hyper-parameters and the chance of having an overfitted model. 
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