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Abstract. Strict demands for very tight tolerances and increasing complexity in the 

semiconductors’ assembly impose a need for an accurate parametric design that 
deals with multiple conflicting requirements. This paper presents application of the 

advanced optimization methodology, based on evolutionary algorithms (EAs), on 

two studies addressing parametric optimization of the wire bonding process in the 
semiconductors’ assembly. The methodology involves statistical pre-processing of 

the experimental data, followed by an accurate process modeling by artificial neural 

networks (ANNs). Using the neural model, the process parameters are optimized by 
four metaheuristics: the two most commonly used algorithms - genetic algorithm 

(GA) and simulated annealing (SA), and the two newly designed algorithms that 

have been rarely utilized in semiconductor assembly optimizations - teaching-
learning based optimization (TLBO) and Jaya algorithm. The four algorithm 

performances in two wire bonding studies are benchmarked, considering the 

accuracy of the obtained solutions and the convergence rate. In addition, influence 
of the algorithm hyper-parameters on the algorithms effectiveness is rigorously 

discussed, and the directions for the algorithm selection and settings are suggested. 

The results from two studies clearly indicate superiority of the TLBO and Jaya 
algorithms over GA and SA, especially in terms of the solution accuracy and the 

built-in algorithm robustness. Furthermore, the proposed evolutionary computing-

based optimization methodology significantly outperforms the four frequently used 
methods from the literature, explicitly demonstrating effectiveness and accuracy in 

locating global optimum for delicate optimization problems.  

Keywords. Integrated circuit assembly, parametric process optimization, 
evolutionary algorithms (EAs), teaching-learning based optimization (TLBO) 

algorithm, Jaya algorithm, artificial neural networks (ANNs) 

1. Introduction 

An accurate design of process parameters is of utmost importance in semiconductor 

industry, due to extremely tight tolerances and zero-defect demands for the process 

outputs (i.e. device characteristics). The objective of parametric optimization is to find 

an optimal process parameters set that meets requirements for the response mean and 

reduce its variability. There is a variety of optimization approaches from literature, but 

not all of them are fully efficient and objective for a multi-response case. The approaches 

based on statistical techniques are mainly unable to locate a global optimum, since they 

consider only discrete (local) process parameter values utilized in experimental trials or 
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data sets. The exception is response surface methodology (RSM), the most common 

optimization method that applies a hill climbing or descending tools over a combined 

response plot [1]. However, it has a tendency to be trapped into local optima for a highly 

non-linear process with a large number of control factors, and it does not explicitly 

address correlations among responses and the response variation. The Taguchi’s robust 

parameter design simultaneously assesses both the response mean and variability, taking 

into account the response specification by using signal-to-noise ratio (SNR) or quality 

loss (QL) function; the latter shows a loss encountered by the user if the product response 

deviates from the target [2]. But, the traditional Taguchi method has been designed for a 

single response. Various approaches have been developed to integrate multiple responses 

in Taguchi method. Some approaches used principal component analysis (PCA) over 

SNR or QL data to obtain uncorrelated variables, where only components with 

eigenvalue higher than 1 are considered [3], thus considering only a part of the original 

data variability. An improved approach that considered all components was applied to 

optimize wire bonding process [4]. In [5] PCA was applied directly on the response data, 

considering all independent components, but giving misleading results since the response 

specifications are not examined. A number of works applied grey relational analysis 

(GRA) over SNR data to integrate multiple responses by assuming that all responses are 

of the same significance [6]; however, the response weights are allocated in a subjective 

manner. For optimizing wire bonding parameters vs. two responses, conflicting response 

specifications were addressed by the fuzzy logic [7]. Although it resulted with improved 

process responses, this approach considered only local solutions.   

Approaches based on soft computing, including evolutionary computing techniques, 

present a viable alternative due to a search across a continuous multi-dimensional space 

of solutions. There are a few soft computing-based approaches that address parametric 

optimization problems from the semiconductor industry. For wire bonding process, 

multiple responses were integrated via GRA, and the process was mapped and optimized 

using combination of artificial neural networks (ANNs) and genetic algorithm (GA) [8]. 

The lithography process with two responses was modeled using ANNs and parameters 

were optimized by particle swarm optimization (PSO) [9]; however, the response 

specifications and correlations are not explicitly addressed. For the hi-power LED 

packaging, multiple responses were transformed into QL values and their sum presented 

the objective function; process was mapped by genetic programming and optimized by 

PSO [10]. But, the integration of QLs into a single objective was not performed in a 

totally objective manner. In overall, although effective in addressing various 

optimization problems, EAs have been frequently criticized due to a significant effect of 

their hyper-parameters on the accuracy of the obtained solutions.  

This work briefly presents an advanced methodology for parametric process 

optimization, including four metaheuristic algorithms whose performances are 

benchmarked to obtain the most accurate solution. Its implementation in semiconductor 

industry, where accuracy is of paramount importance for the device quality and reliability, 

is illustrated in two use cases showing integrated circuit assembly process (wire bonding). 

2. Evolutionary computing-based optimization methodology 

The proposed optimization methodology involves three major stages: data pre-

processing by statistical methods, process modeling and optimization. In the first stage, 

experimentally obtained response data are converted into quality loss (QL) values, 
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according to the type of response. The QL directly shows a response financial 

significance for the user without imposing any assumptions, as defined by Taguchi [2]: 

    (1) 

Since responses from the same process are correlated, it is necessary to obtain 

independent variables by applying PCA on the normalized QL data (NQLs). In the 

proposed approach, the number of independent principal components – PCs ((j=1,..., p) 

corresponds to the number of responses (i=1,..., p). For each experimental trial (k=1,..., 

m), the PC sores (Yj(k)) are obtained based on the elements of the corresponding 

eigenvector (Vij) and the NQL data, as follows:  

    (2) 

GRA is applied over Yj(k) data to integrate multiple Yj, i.e. to obtain a grey relational 

grade ( ) using a previously calculated grey relational coefficient (εj(k)) and PC 

weights (ωj) obtained from PCA:  

    (3) 

The γ value is adopted as a process performance measure: the higher the γ, the better 

is the process. The details of PCA could be found in [11], and of GRA in [12].  

In semiconductor industry the mathematical model of a process if typically unknown. 

Hence, back propagation (BP) ANNs are engaged to identify the relationship between 

process parameters (input) and γ (output), using the tangent sigmoid and linear transfer 

functions. The number of neurons in the hidden layer is varied to obtain the best topology 

with minimal mean square error (MSE) and maximal coefficient of correlation (R) 

between original and predicted data. The procedure is explained in detail in [13]. 

The optimization stage aims to obtain optimal process parameters that maximize 

process performance (γ). Since metaheuristic effectiveness highly depends on the hyper-

parameters, four algorithms are tested: the most frequently used ones (GA and SA) that 

are highly affected by their settings, and two recent algorithms (TLBO and Jaya) that are 

free of the algorithm specific hyper-parameters. For the TLBO and Jaya, the only factors 

to be specified are common for all EAs: population size and total iterations count. In this 

work, the population size of 5n (n is number of design variables, i.e. process parameters) 

is adopted for all four algorithms, with the total iterations count of 2000.  

The GA is the most frequently used metaheuristic in process optimizations. It 

searches throughout the continual space of solutions using a population, so it belongs to 

EAs [14]. To improve the current members, it employs several genetic operations: 

selection, crossover, mutation, migration. Members with the highest objective function 

are adopted for the next iteration, and iterative procedure is repeated until a total 

iterations count is met. In this work, three values of the two major operators are tested: 

(i) selection: stochastic uniform, roulette wheel and tournament, (ii) crossover: single 
point, two points and arithmetic. Hence, in total 9 GAs are developed for each 

optimization problem.  

The SA algorithm does not belong to EAs, since it is based on a point-to-point search. 

It mimics the metal annealing process: heating a material to the melting point and slowly 

decreasing the temperature to maintain a thermal equilibrium. Starting with a sufficiently 
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high initial temperature, new points are generated using an annealing function. The 

probability of a new point acceptance is defined by the expression [15]:  

  (4) 

where ΔE is the difference of energy, i.e. difference of the objective function between a 

new and the old point, T is the current temperature and K is the Boltzmann constant. The 

temperature decrease is controlled by a temperature function. When a temperature is very 

low, a reannealing is performed (controlled by reannealing interval) to raise up the 

temperature. The above procedure continues until a specified number of iterations is 

reached. Different values of the four major parameters are tested: (i) initial temperature: 

10, 100 and 500, (ii) temperature function: exponential, fast and Boltzmann function, (iii) 

annealing function: fast and Boltzmann algorithm; (iv) reannealing interval: 10 and 100. 

Therefore, 36 SA algorithms with heterogeneous settings are run for each problem. 

The TLBO algorithm is EA that mimics the teaching-learning behavior in a 

classroom: the population is composed from students; the design variables are teaching 

subjects; the student’s knowledge (grade) refers to the objective function. First, students 

are learning from the teacher to improve their knowledge. For the jth subject (j = 1, … n) 

in the kth teaching-learning cycle (k = 0, 1, … Imax ; Imax is the total iterations count), the 

updated solution for the ith student is [16]: 

     (5) 

where TGj
k is the teacher grade, LGj

k is the average students’ grade, r is a random 

number between 0 and 1, and TF is the teaching factor between 1 and 2. If a new solution 

is better than the old one, it is adopted for the next stage where student knowledge is 

further improved by interacting with other fellows. Assuming that uth student learns from 

the vth student (u ≠ v), the updated solution in this stage is computed based on the 

objective functions f(Xu
k) and f(Xv

k) of uth and vth students, respectively [16]: 

 

else       (6) 

Based on the objective function assessment for an updated solution, the students 

with the best knowledge are involved in the next iteration. The process is repeated until 

a termination condition (i.e. the total number of iterations) is met. 

The Jaya algorithm is a very simple EA, based on a straightforward principle: the 

optimal solution is obtained by approaching the best and moving away from the worst 

solutions. For the ith design variable (i = 1, … n) of the kth population member (k = 1, … 

m) in the lth iteration, the candidate solutions are calculated according to the design 

variables of the best (Xi,best,l) and the worst (Xi,worst,l) members in the population [17]:  

  (7) 

where r1,k,l and r2,k,l are random numbers between 0 and 1. The objective functions 

of updated solutions are evaluated; solutions that enhance the objective are adopted for 

the next iteration. The process is reiterated until the specified iterations count is reached.   

Effectiveness of the four algorithms are compared in respect to the accuracy of the 

obtained solution (the highest objective function) and the convergence rate (minimal 

number of iterations needed to locate the global optimum). 
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3. Implementation of optimization methodology in semiconductor industry  

3.1. Use case 1: Thermosonic copper wire bonding 

Aiming to ensure a reliable performance of a microelectronic device assembled using a 

copper wire, the objective was to establish a solid bond between copper wire (diameter 

50 μm) and aluminum pads at the die that contains integral circuitry, in a thermosonic 

wire bonding of the power amplifier device. The following control parameters were 

varied at two levels: contact power (CPCu), contact force (CFCu), base force (BFCu), base 

power (BPCu). Two responses were observed at the output: (i) the average ball shear test 

(BS) showing the average strength of the intermetallic connections between Cu wires 

and Al die pads (in a device with 41 ball bonds), and (ii) the number of oxide damages 

(NoOD) found as a failure mode after shear tests in a device. The objective is to find an 

optimal parameters set to achieve the nominal BS value of 160 10-2 N and to minimize 

NoOD occurrence that indicates corrosion micro cracks inside the die pad. 

The experimental plan was based on the orthogonal array (OA) L8 including five 

added replicates [18] (Table 1). The responses were converted into QLs as per formula 

(1). Application of PCA over NQLs resulted with two independent PCs, integrated in the 

process performance (γ) using weights obtained from PCA: [0.684; 0.316]. The best BP 

ANN with topology 4-7-1 established an accurate process model (process parameters vs. 

γ), with minimal error (MSE=4.4 10-4) and maximal R (99.8).  

Four algorithms were employed in the optimization stage. As seen from Table 2, 

TLBO found a marginally better solution than Jaya; their solutions are significantly 

better than the solution obtained by SA; the maximal objective found by GA is lower 

that the best SA algorithm result. Figure 1 shows convergence of the best algorithms 

(ones that found maximal objectives, as presented in Table 2), i.e. change in the objective 

function along iterations. It could be seen that GA converged in 260th iteration, SA in 

20th iteration, TLBO in 1876th iteration and Jaya in 276th iteration. Therefore, SA was the 

fastest algorithm followed by GA, but both failed to locate the global solution. TLBO 

was the slowest; Jaya convergence rate is comparable to GA. Although TLBO was the 

slowest algorithm, it is important to note that TLBO and Jaya obtained the global or near-

to-global solution contrary to GA and SA. The most disperse results are obtained by GA; 

TLBO and Jaya showed a narrow range of results obtained in multiple runs since they 

do not have algorithm specific hyper-parameters to be tuned, contrary to GA and SA. 

Table 1. Use case 1: experimental results, NQLs and process performance measure 

trial 
no. 

Control parameters Responses NQLi (k) i=1,2; k= 1,...,13 γk 
k=1,.,13 CPCu CFCu BFCu BPCu BS NoOD NQLBS NQLNoOD 

1 0 250 200 40 110.15 1 0.846 0.01 0.3830 

2 0 250 200 80 175.81 10 0.129 1.00 0.3536 

... … … … … … … … … … 
13 30 250 350 40 146.57 0 0.112 0.00 0.8235 

Table 2. Use case 1: results of four metaheuristic algorithms 

Metaheuristic algorithm GA SA TLBO Jaya 
Objective function range  0.9255�0.9687 0.9702�0.97054 0.97351�0.97362 0.97351�0.97361 

Optimal parameters range 
[15�30.1; 400; 

299.2�306.4; 40�45.5] 

[39.3�40; 395.1�400; 

380.2�395.6; 62�69] 

[23.3�23.4; 400; 

261.1�264; 40] 

[23.3�23.8; 400; 

261.1�264.5; 40] 

Maximal objective 0.96870 0.97054 0.97362 0.97361 

Optimal parameters [28; 400; 299; 40] [40; 400; 385; 66] [23.4; 400; 264; 40] [23.3; 400; 264.4; 40] 

Iterations to max. objective 260 20 1876 276 

T. Sibalija / Parametric Optimization of Integrated Circuit Assembly Process 243



 
Figure 1. Use case 1 - algorithms convergence: a.) GA, b.) SA, c.) TLBO, d.) Jaya algorithm. 

3.2. Use case 2: Thermosonic gold wire bonding 

From the control charts it has been detected that behavior of a smaller group of machines 

in gold wire (75μm) bonding significantly deviates from the common machine outputs, 

i.e. the gold ball bond characteristics. Therefore, an experiment was performed to 

establish an optimal process parameters for the whole group of machines, considering a 

gold bond formation at the aluminum die pads. Machine M1 was selected as a 

representative of a major group with common performance, while machine M2 

represented a smaller group of machines with deviant outputs. Two major control 

parameters were considered at three levels: base power (BPAu: 55, 65 and 75 mW), and 

base force (BFAu: 85, 100 and 115 10-2 N). Three responses were observed at the output, 

with the objective to reach a nominal (target) value: the average ball shear test value (BS; 

target=270 10-2 N), the average ball diameter (D; target=193 μm), and the average ball 

height (H; target=50 μm) in a device with 42 bonds. Responses were measured for each 

individual bond to obtain mean values and assess variability needed to compute QLs. 

The experiment was based on OA L9 with five replicates [19] (Table 3). PCA was 

applied over NQLs, for M1 and M2 separately. The obtained PCs were synthesized into 

the process performance (γ) using weights from PCA: [0.667; 0.246; 0.087] for M1, and 

[0.915; 0.066; 0.019] for M2. In the modeling phase, BP ANN models with topology 2-

9-1 showed the best performance for both machines (M1: MSE=1.9 10-4, R=0.97; M2: 

MSE=1.5 10-4, R=0.97). In optimization, all algorithms found the global optimum for 

M1; GA failed to locate the global solution for M2. GA showed a high dispersion of 

results obtained by different tunings, while SA results were more homogenous. TLBO 

and Jaya obtained identical results in multiple runs, showing a high repeatability and 

robustness. TLBO and Jaya displayed a rapid convergence, slightly faster, in average, 

than SA; SA converged faster than GA (Table 4). In overall, TLBO and Jaya showed 
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remarkable performance due to full repeatability of results and fast convergence, while 

GA and SA results were dispersed (caused by different algorithm specific hyper-

parameters), and GA get trapped into a local optimum for M2.   

Table 3. Use case 2: experimental results, NQLs and process performance measure  

 trial 
no. 

Control parameters Responses NQLi (k) i=1,2,3; k= 1,...,14 γk 
k=1,..,14  BFAu BPAu BS D H NQLBS NQLD NQLH 

M

1 

1 55 85 229.6 182 58.9 0.96 0.89 0.95 0.5263 

2 65 85 260 187 54.8 0.17 0.51 0.38 0.5871 

… … … … … … … … … … 
14 65 115 277.4 201 43.3 0.14 0.52 0.56 0.6362 

M
2 

1 55 85 232.2 180 58.7 0.99 0.90 0.99 1.0000 

2 0 85 262.4 188 55.8 0.17 0.27 0.56 0.3733 
… … … … … … … … … … 

14 65 115 281.7 199 43.85 0.18 0.21 0.49 0.5769 

Table 4. Use case 2: results of four metaheuristic algorithms 

 Metaheuristic algorithm GA SA TLBO Jaya 
M1 Objective function range 0.8807�0.88120 0.8810�0.88120 0.88120 0.88120 

 Optimal parameters range [85; 99�100] [85; 99�99.5] [85; 99] [85; 99] 

 Maximal objective 0.88120 0.88120 0.88120 0.88120 

 Optimal parameters [85; 99] [85; 99] [85; 99] [85; 99] 

 Iterations to max. objective 8 21 8 15 

M2 Objective function range 0.7081�0.71280 0.7578�0.75801 0.75801 0.75801 

 Optimal parameters range [85; 95�100] [85; 98.5�99] [85; 99] [85; 99] 

 Maximal objective 0.71280 0.75801 0.75801 0.75801 

 Optimal parameters [85; 95] [85, 85] [85, 85] [85, 85] 

 Iterations to max. objective 710 3 3 3 

3.3. Comparison with optimization methods from the literature 

Benefits of the suggested evolutionary-based optimization methodology are 

demonstrated in comparison with the four frequently used methods from the literature: 

RSM [1], methods proposed by Fung&Kang [3], Liao [5] and Yang et al. [6]. The 

proposed methodology (with any of the four metaheuristics) surpasses the benchmarked 

methods in both studeis (Table 5), due to: (i) search over a continous space to detect a 

global solution; (ii) weaknesses of the methods from literature in terms of adressing 

correlations among responses, developing a process performance in a completely 

objective manner or a tendency towards local solutions, as discussed in the introduction. 

Table 5. Use cases 1 and 2: comparison of results obtained by different optimization methods  

Use 
case 

Optimization 
methodology RSM [1] 

Fung & 
Kang 

(2005) [3] 

Liao 
(2006) [5] 

Yang et 
al. (2014) 

[6] 

Proposed 
method 
with GA 

Proposed 
method 
with SA 

Proposed 
method 

with TLBO 

Proposed 
method 

with Jaya 

1 

Maximal objective 

(process performance) 
0.8514 0.9613 0.9286 0.9613 0.96870 0.97054 0.97362 0.97361 

Optimal parameters 
[20; 350; 

300;45] 

[30; 400; 

350; 40] 

[30; 400; 

350; 80] 

[30; 400; 

350; 40] 

[28; 400; 

299; 40] 

[40; 400; 

385; 66] 

[23.4; 400; 

264; 40] 

[23.3; 400; 

264.4; 40] 

2 – 

M1 

Maximal objective 

(process performance) 
0.6303 0.5637 0.5768 0.5637 0.88120 0.88120 0.88120 0.88120 

Optimal parameters [65;100] [65; 115] [75;115] [65; 115] [75; 100] [85; 99] [85; 99] [85; 99] 

2 – 

M2 

Maximal objective 

(process performance) 
0.6379 0.6379 0.5876 0.5876 0.71280 0.75801 0.75801 0.75801 

Optimal parameters [65;100] [65;100] [75;115] [75;115] [85; 95] [85, 85] [85, 85] [85, 85] 
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4. Conclusion 

Application of the four algorithms, within the proposed methodology, in two wire 

bonding studies demonstrated superior results of TLBO and Jaya over GA and SA, 

especially for the solution accuracy. The GA showed the worst performance, due to 

inability to find a global optimum, high dispersion of the results obtained with different 

hyper-parameters and slow convergence. The stochastic uniform selection with single or 

two point crossover gave better results than the other combinations. The SA performed 

better than GA; the most beneficial SA settings are: initial temperature 100 or 500 with 

reannealing interval 10, with Boltzmann annealing and Boltzmann or fast temperature 

function. The TLBO and Jaya algorithms showed remarkable results, demonstrated also 

in a recent optimization study [20]. Therefore, they could be recommended for future 

applications. In this work they were applied with 5n population size (n is the number of 

design variables) and 2000 iterations, so these setting could be recommended for future 

applications for medium-size problems. Since TLBO needed a large number of iterations 

to reach the global solution in the first study, a higher iterations count might be demanded 

for more complex problems with a bigger number of design variables.  
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