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Abstract. RBF metamodels, which are commonly used in expensive optimization
problems, rely on a hyperparameter which affects their prediction. The optimal hy-
perparameter value is typically unknown and hence needs to be estimated by addi-
tional procedures. As such this study examines if this overhead is justified from an
overall search effectiveness perspective, namely, if changes in the hyperparameter
yield significant performance differences. Analysis based on extensive numerical
experiments shows that changes are significant in functions with low to moderate
multimodality but are less significant in functions with highly multimodality.
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1. Introduction

Simulation-driven design optimization which is common in engineering and science de-
fines presents unique challenges such as non-analytic ‘black-box’ functions, compu-
tationally expensive evaluations, and complicated function features [1]. A framework
which has been extensively used for the solution of such problems is the metamodel
(or surrogate) assisted evolutionary algorithm (EA) where the former is an interpolant
trained based on sampled vectors (candidate designs). A common metamodel variant is
the radial basis functions (RBF) predictor which is an aggregation of basis functions.
The latter rely on a hyperparameter which defines their shape and therefore varying this
parameter affects the metamodel prediction accuracy and possibly the overall search ef-
fectiveness. The optimal hyperparameter value is typically unknown and hence needs to
be estimated. This raises the question if the required computational overhead is justified,
namely, does it yield significant performance gains. Previous studies have examined the
impact of hyperparameter calibration solely on the metamodel prediction accuracy [2,3].
However, the overall search effectiveness is affected in an intricate manner in which
metamodel accuracy is just one component [4]. Accordingly this study takes a different
approach and examines the impact of hyperparameter variation on the overall search ef-
fectiveness. The remainder of this paper is organized as follows: Section 2 surveys rel-
evant studies, Section 3 describes the algorithm and numerical experiments, Section 4
presents the results and analysis, and lastly Section 5 concludes this paper.
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2. Previous Studies

Metamodel-assisted EAs have been used extensively in problems ranging from drug for-
mulation to aircraft design [1]. Extensions ensembles of multiple metamodels [5] and [6]
for incorporation of machine learning techniques.

The issue of the RBF hyperparameter calibration has been explored in multiple
studies. Early examples include [7] which used a heuristic fixed value and [8] which
used RMS error minimization. Related studies also used calibration based on error min-
imization but with a leave-one-out estimation approach [9,10,11]. Calibration based on
a training-testing approach was explored by [2,12]. The studies mentioned have gauged
the parameter calibration based solely on the metamodel prediction accuracy.

3. Experiments Layout

To study the impact of the hyperparameter numerical experiments were performed with
an RBF metamodel-assisted EA with different hyperparameter settings. A representative
EA was used which begins by sampling a random set of vectors and it then repeatedly:
i) ranks the vectors by fitness, ii) selects parents by stochastic universal selection (SUS)
and recombines them with a uniform crossover operator (probability of 0.7) to produce
offspring, and iii) mutates the offspring (Breeder genetic algorithm operator, probability
of 0.1) [13]. The population size was 20 and the generations limit was 1000.
Also a standard RBF metamodel was used which is defined as
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where ¢;(¥) are Gaussian basis functions , k is the hyperparameter, and X;, i = 1...n
are the sampled vectors. The coefficients ¢; are obtained from the Lagrange interpolation
conditions m(X;) = f(X;) , namely
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The complete RBF-EA algorithm operates as follows: it begins by sampling an ini-
tial random set of vectors and uses them to train an RBF metamodel. Next the main loop
begins where the EA uses the metamodel predictions. Every g generations the best s vec-
tors in the EA population are evaluated with the true objective function. The metamodel
is then retrained and the EA population is re-evaluated with the new metamodel. The
process stops when the limit of true (expensive) function evaluations or maximum EA
generations has been reached. Following [14] the settings g = 4 and s = 20% were used.
To complete this description Algorithm 1 gives the full pseudocode.
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sample an initial random population and evaluate;

repeat

train an RBF metamodel based on sampled vectors;

run one generation of the EA;

foreach g generation do
evaluate the best %s vectors with the true function;
retrain the metamodel and re-evaluate the population;

end

until max true (expensive) evaluations or max generations,
Algorithm 1: The implemented RBF-EA algorithm.

4. Experiments

The above algorithm was applied to an established set of test functions (Ackley,
Griewank, Powell, Rastrigin, and Rosenbrock) in dimensions 5 and 10 [15]. Four
hyperparameter settings were tested: 0.01, 0.1, 1, and 10, and for each function—
hyperparameter combination 30 runs were repeated yielding a total of 5 x 4 x 30 = 600
runs.

Tables 1 and 2 show the resultant statistics (mean, median, standard deviation, min,
max) of the best true function value found. The Mann-Whitney p-value is also included
where the null hypothesis examined was P(b > r) > 0.5 and b are the results of the variant
with the best mean and r are the results of one of the other variants in turn. Statistical
significance is accepted for p < 0.05. From analysis of the results it follows that:

* Changing the hyperparameter yielded statistically significant performance differ-
ences for the Griewank, Powell, and Rosenbrock functions both in the 5D and 10D
cases.

* Changes were not statistically significant for the Ackley and Rastrigin functions
both in the 5D and 10D cases.

* The k¥ = 0.1 setting was the best performing in 6 cases, followed by k¥ = 0.01 and
Kk = 1 settings in 2 cases each.

If follows that changes to the hyperparameter were had a significant impact with low—
medium multimodality functions. This is attributed to their simpler shape which allowed,
given a suitable hyperparameter, for an adequate approximation. In contrast, high multi-
modality functions (Ackley, Rastrigin) hyperparameter changes had a markedly smaller
impact on performance. This is attributed to their complex shape and consequentially
poor metamodel accuracy which is less sensitive to different hyperparameter values. Fig-
ure 1 shows the median p-value by function (out of the three Mann-Whitney tests) and
the division between the low and high multimodality functions is evident. Also, moder-
ate hyperparameter values (k = 0.1) typically yielded the best results since this avoided
generating basis functions which are too narrow or too flat and hence cannot adequately
approximate the test functions. Lastly, in the 10D cases the metamodel accuracy also
degraded due to the higher dimension, namely it had a similar impact as multimodality.

To augment the analysis additional tests were performed with an application of air-
foil shape optimization as a representative real-world simulation-driven problem. The
goal is to find an airfoil which maximizes its lift to drag ratio
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Table 1. Statistics for the SD functions
Function Statistic kK =0.01 k=0.1 k=1 k=10
Mean 1.675¢+01 1.813e+01 1.815e+-01 1.728¢+01
SD 3.202¢+00 1.802¢+00 1.544e 400 2.135¢+00
Ackley-05 Median 1.768e+01 1.838¢+01 1.845¢+01 1.785¢+01
cxley- Min 7.716e400 1.300e 401 1.304e+01  1.109e401
Max 2.066e+01 2.027e+01 2.005e+01 2.015e+01
p value 9.918e—02 8.689¢ —02 4.238e—01
Mean 3.916e+01 3.084e+01 2.480e + 01 3.267¢+01
SD 1.884e+01 1.522¢+401 1.353e+01 1.486e+01
Gri .05 Median 3.961e+01 2.750e+01 2.167e+401 2.907e+01
rewank- Min 7.940e 400 8.968e+00 5.288¢4+00  9.673e+00
Max 8.665¢+01 7.769¢+-01 6.050e+01 7.108e+-01
p value 1.281e—03 3.926e—02 5.497e—03
Mean 2.885e+01 1.540e+01 1.364e+02 1.227e+-02
SD 2.523e+401 1.357e+01 1.225e+02 1.211e+02
Powell-05 Median 2.116e+01 8.740e+00 9.514e+01 7.374e+-01
owell- Min 1.129¢ 400 4.463¢—01 1.281e+00  2.206e401
Max 1.073e+02 4.944e+01 5.200e+02 5.196e+02
p value 1.279e—02 1.607e —08 2.658e—10
Mean 4.263e+01 3.902¢ + 01 4.299¢+01 4.212e+01
SD 1.136e+01 1.103e+01 1.311e+401 9.976e+00
Rastrigin-05 Median 4.243e+-01 4.025¢+01 4.409¢+01 4.073e+01
astrigin- Min 1.966¢4-01 1.706e 401 7.767e+00  2.78%+01
Max 6.739¢+01 5.802e+-01 6.808e+01 6.398¢+-01
p value 1.306e—01 1.044e—01 1.797e—01
Mean 3.900e+01 9.920e + 00 9.758e+-01 1.902e+02
SD 5.200e 401 1.293e+01 9.729¢+-01 7.089¢+01
Rosenbrock-05 Median 1.857e+01 4.961e+00 8.194e+01 1.964e+02
osenbrock Min 3.040e+00 3.772e - 01 3.574e+00  7.153e+01
Max 2.396e+02 5.355e+-01 3.977e+02 3.336e+02
p value 2.108e—05 7.188e—07 1.436e—11
The best mean is emphasized.
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Figure 1. The median p-values of comparisons for each function.
cL
f=—= (€)]
¢D

where the lift (c¢z) and drag (cp) coefficients were obtained from the XFoil numerical
aerodynamic simulation code [16]. Airfoils were represented with the NACA 4 digit
parameterization and standard flight conditions were used (Mach number=0.7, Reynolds
number=107, angle of attack=2°) and Figure 2 shows the problem layout and all other

algorithm parameters were as before.

Table 3 shows the resultant statistics from which it follows that changes to the hyper-
parameter were not statistically significant (as with some of the test functions in the pre-
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Table 2. Statistics for the 10D functions

Function Statistic k=0.01 k=0.1 k=1 k=10
Mean 1.973e+01 2.011e+01 1.972¢+ 01 1.983e+01
SD 1.217e+00 4.317e—01 5.775e—01 4.632¢—01
Ackley-10 Mgdian 2.004e+01 2.016e+01 1.965e+01 1.985e+01
Min 1.498e+01 1.923e+01 1.800e+01 1.824e+01
Max 2.095e+01 2.083e+01 2.055e+01 2.059+01
p value 6.964e —02 3.118¢—03 2.577e—01
Mean 1.482e+02 1.129¢ + 02 1.156e+02 1.244e+02
SD 3.170e+01 3.293e+01 3.056e+01 3.174e+01
Griewank-10 M‘_sdia.n 1.529e+02 1.046e+02 1.093e+02 1.313e+02
Min 8.037e+01 5.000e+01 6.540e+01 5.481e+01
Max 1.979¢+02 1.939e+02 2.057e+02 1.710e+02
p value 6.429¢ —05 3.894e—01 5.194e—-02
Mean 6.392e+01 6.374e + 01 1.482e+02 8.858e+01
SD 5.593e+01 6.411e+01 9.066e+01 7.040e+01
Powell-10 Median 5.303e+01 4.660e+01 1.514e+02 6.497e+01
Min 8.446e+00 7.498e-+00 1.346e+01 5.057e+00
Max 2.532e+02 3.408e+02 3.492e+02 2.581e+02
p value 4.941e—01 2.717e—05 6.208e —02
Mean 1.057e+ 02 1.190e+02 1.232e+02 1.093e+02
SD 1.925e+01 1.618e+01 1.582e+01 1.734e+01
Rastrigin- 10 Median 1.083e+02 1.184e+02 1.240e+02 1.091e+02
Min 6.402e+01 8.002e+01 7.702e+01 6.161e+01
Max 1.310e+02 1.564e+02 1.532e+02 1.441e+02
p value 5.733e—03 1.461e—04 4.008e—01
Mean 1.427e+02 1.162e + 02 1.231e+03 1.107e+03
SD 1.132e+02 6.780e+01 4.217e+02 3.513e+02
Rosenbrock-10 Mc_sdia.n 1.263e+02 1.037e+02 1.227e+03 1.019¢+03
Min 3.131e+01 2.922e+01 2.908e+02 4.837e+02
Max 6.257e+02 3.315e+02 2.141e+03 1.954e+03
p value 1.997e—-01 1.588e—11 1.436e—11

The best mean is emphasized.
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NACA 4 Digits Parameterization (HLTT)

Figure 2. The airfoil problem with the NACA 4 digit parameterizaiton.

vious section) which indicates that the objective function has a complicated landscape.
This was confirmed during the tests by the fact that the simulation failed to evaluate
numerous candidate airfoils, namely, the function is discontinuous and possibly highly
multimodal. Results also show that the best performance was observed with k¥ = 0.01
which is consistent with the earlier results.

5. Conclusion

The RBF metamodel-assisted EA has been widely used in the literature with simulation-
driven optimization problems. This metamodel relies on a hyperparameter which affects
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Table 3. Statistics for the airfoil problem

Statistic kK =0.01 Kk=0.1 k=1 k=10

Mean —1.896e+02 —1.81le+02 —1.728¢+02  —1.682e+02
SD 5.471e+01 5.700e +01 6.368e+01 5.712e+01
Median —2.084e+02  —1.931e+02 —1.939¢+02  —1.60le+02
Min —2.586e4+02  —2.564e+02  —2.662¢+02  —2.564e+02
Max —7.424e 401 —5.714e +01 —1.436e 401 —8.499¢ 401
p value 1.976e — 01 1.855¢ — 01 8.457e — 02

its prediction. This study examined if changes to the hyperparameter affected the overall
search effectiveness and therefore if calibration is justified. Results from an extensive
set of numerical experiments show that hyperparameter changes had a significant im-
pact with low—medium multimodality functions and lesser impact in high multimodality
functions. Moderate hyperparameter values (around 1) typically performed best.
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