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Abstract. Alzheimer's disease (AD) is a degenerative disease of the nervous system. 

Mild cognitive impairment (MCI) is a condition between brain aging and dementia. 

The prediction will be divided into stable sMCI and progressive pMCI as a binary 

task. Structural magnetic resonance imaging (sMRI) can describe structural changes 

in the brain and provide a diagnostic method for the detection and early prevention 

of Alzheimer's disease. In this paper, an automatic disease prediction scheme based 

on MRI was designed. A dense convolutional network was used as the basic model. 

By adding a channel attention mechanism to the model, significant feature 

information in MRI images was extracted, and the unimportant features were 

ignored or suppressed. The proposed framework is compared with the most 

advanced methods, and better results are obtained. 
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1. Introduction 

Alzheimer's disease is a common brain disorder characterized by the loss of connections 

between neurons in the brain and the shrinkage of the rest of the brain. Studies show that 

more than six million Americans may have Alzheimer's disease, second only to heart 

disease and cancer as the leading cause of death among the elderly [1]. Patients with mild 
cognitive impairment have memory disorder and are more likely to develop Alzheimer's 

disease. Therefore, MCI plays an important role in the early diagnosis and intervention 

of AD [2]. Accurate and efficient prediction of sMCI and pMCI can timely intervene and 

prevent the occurrence of Alzheimer's disease and reduce the potential patient population. 
Due to the success of untreatable Alzheimer's disease, intervention and treatment in 

the early stages of Alzheimer's disease have become critical. Li et al. [3] use principal 

component analysis (PCA) to obtain features, and then use unsupervised deep learning 

training and finally use SVM classification. In addition to SVM, others also commonly 
use logistic regression (LR) [4] and random forest (RF) [5]. Many studies using MRI 

area (ROI) are interested in classification. Calvini et al. [6] around the medial temporal 

lobe and hippocampus were extracted to classify, most based on ROI measures are 

interested in artificial selection area, this inevitably can add human factors in the process 
of feature extraction. Some potential details may be ignored to affect the results. 
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With the continuous development of deep learning, excellent results have been 
achieved in various fields, and it has also been applied to the diagnosis of Alzheimer's 

disease. Qiu et al. [7] connected Fully Convolutional Networks (FCN) and Muti-Layer 

Perception (MLP) to predict AD state by combining MRI data and non-imaging data, to 

achieve visualization of disease risk. Alejandro et al. [8] using transfer learning (TL) 
technology, ResNet feature extractor and SVM classifier were used to identify sagittal 

MRI images. In this paper, DenseNet was used as the basic model to predict AD disease 

by adding channel attention mechanism and extracting significant channel differences 

according to the subtle differences between sMCI and pMCI lesions, and found that 
adding attention mechanism has a good effect on the early prediction of AD. 

2. Related Work 

General Classification of Alzheimer's disease includes methods based on voxel 

morphological measurement and region of Interest measurement (ROI). Klöppel et al. 
[9] segmentation of gray matter images from MRI images, extraction of voxels, and use 

support vector machine to assign weight to voxels. Vemuri et al. [10] added demographic 

information, such as age and gender, to sMR scan information from the structural 

abnormality index (STAND) of tissues in sMR scan, and added genetic information, 
APOE genotype information. Finally, support vector machine SVM was used to optimize 

classification. However, the 3D image data processing method based on voxel is difficult 

to calculate due to its large amount of computation. 

Regions of Interest (ROI) based classification methods generally rely on prior 
knowledge to divide regions, and the hippocampus, entorhinal cortex and medial 

temporal lobe are often used to classify Alzheimer's disease. Zhang et al. [11] combined 

three biomarkers, MRI, PET, and CSF, using an atlas based approach and automatic 

labeling by atlas distortion algorithm. Lauge et al. [12] using hippocampal structure as a 
classification feature, demonstrated that texture is more meaningful for early diagnosis. 

Feature extraction also focuses on the organizations and regions with high correlation 

with classification, but at the same time, some global information will be lost. 

In recent years, deep learning technology has achieved good results in the 
classification of Alzheimer's disease. Kanghan et al. [13] based on the unsupervised 

learning of convolutional autoencoder (CAE) for the classification of AD and NC, 

proposed the end-to-end concept for classification. Lian et al. [14] proposed hierarchical 

full convolutional networks (H-FCN) to identify multi-scale discriminant locations, such 
as differentiated local plaques and regions in the brain. Compared with fixed interest area 

is extracted (ROI). Zhao et al. [15] used 3D multi-information generative adversarial 

network (mi-GAN) to generate predicted MRI images, and then used DenseNet to 

classify pMCI and sMCI. 

3. Materials and Methods 

3.1. Datasets and Preprocessing 

This paper used data from a public data set of Alzheimer's Disease Neuroimaging 

(ADNI) (http://adni.loni.usc.edu/) download. In this study, follow-up data from ADNI 
were used to study the progression of patients with mild cognitive impairment (MCI) 
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over 6 months to 2 year period. Patients who developed and developed Alzheimer's 
disease during this period were considered progressive mild cognitive impairment 

(pMCI), and those who did not deteriorate were considered stable mild cognitive 

impairment (sMCI). T1-weighted MRI rapid gradient echo (MPRAGE) images of 969 

subjects were downloaded from ADNI, including 210 AD, 274 NC, 183 pMCI and 302 
sMCI. The demographic information of all subjects is shown in Table 1. 

 

Table 1. Demographic Information of the Subjects Included in the Studied Datasets 

Group Gender(male/ Female) Age 
AD 210(110/100) 75.68+7.67 

pMCI 183(105/78) 75.07+7.67 

sMCI 302(168/134) 72.90+7.12 

NC 274(129/145) 74.98+6.31 

 
Downloaded from ADNI open source data set of the original MRI image 

preprocessing, use spm8 (https://www.fil.ion.ucl.ac.uk/spm/) software kit pictures into 

the DICOM format NIFTI format, then the skull stripping, cerebellum resection, and the 

MRI images after skull removal were registered into the MNI152 standard space by 
affine matching to eliminate the global linear differences. Finally, all images were 

resampled and cropped to 121×145×121.  

3.2. Methods 

3.2.1. Dense Attention Network 

This section will introduce a 3D dense channel attention network. The structure of the 

network is shown in Figure 1, which is mainly composed of a 3D dense Convolutional 

Network (DenseNet) [16], Coordinate Attention (CA) [17] and Squeeze-and-Excitation 

Attention (SE) [18] network. The problem of gradient explosion occurs when the 
network is too deep. The dense Connection solves this problem well. A densely 

connected convolution network has strong regularization effect and can reduce the 

overfitting on small training sets. From the perspective of feature channels, SE 

automatically obtains the importance of each channel through learning, which enhances 
the model's ability to extract important information. CA aggregates features from the two 

spatial directions and embed location information into channel attention, which can 

obtain not only channel information, but also direction and position information. 

 

 

Figure 1. The architecture of dense attention connected convolution. 
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3.2.2. Dense Convolutional Network 

The dense convolution network [16] does not directly add and fuse feature maps, but 

connects them on feature dimensions. Any input layer is connected with the subsequent 

layer, and the connected feature map is used as the input of the next layer: 

                                                 (1) 

In Eq. (1), L represents the number of network layers, and HL represents a group of 

convolution operations at the L layer. Each layer is composed of batch normalization 

(BN), correction linear unit (RELU), pooling and convolution (CONV). 

  represents the feature graph connection of the previous L-1 layer, and 

XL represents the feature graph obtained after the convolution operation of the L layer. 

The Dense connection structure in a densely connected convolution network needs to 
keep the size of the feature image constant, so the Dense Block and Transition Layer are 

stacked. After the last dense block, the global average pooling layer is used to reduce the 

number of parameters. Each group of dense blocks is composed of the batch 

normalization layer (BN) and the convolution kernel of the RELU activation function is 
1×1×1 and 3×3×3. The number of feature graphs output in each group is R =32, which 

is used to control the number of network parameters. The transformation layer consists 

of a 1×1×1 convolution layer and a 2×2×2 pooling layer to reduce the resolution of 

feature maps. 

3.2.3. Coordinate Attention 

CA [17] proposed a novel attention network by embedding location information into 

channel attention, which decomposed attention into two features in different directions 

by global pooling, and then aggregated features along with these two directions 
respectively. Given the input feature x and compress them into h×1×d and 1×w×d in 

horizontal and vertical directions respectively, as shown in Eq. (2), Eq. (3), h, w, d 

represent the length, width and number of slices of the picture respectively. The 

horizontal and vertical pooling results were connected together, and the feature images 
were obtained through a 1×1×1 convolution. The feature images were then divided into 

two groups of feature images in horizontal and vertical directions. The weight data were 

obtained by 1×1×1 convolution and sigmoid respectively, and finally the obtained 

horizontal and vertical weights were multiplied to obtain the attention output feature. 

                                        (2) 

                                         (3) 

3.2.4. Squeeze and Excitation Attention 

SE [18] is an attention model based on channel dimensions. Fsq, Fex and Fscale are the three 

key operations of the compression activation module. Firstly, the input feature graph is 
compressed to 1×1×1 by Fsq operation to keep the number of feature images unchanged. 

Given the input feature x, the compression formula for channel C is Eq. (4). By activating 

Fex operation, weight from 0 to 1 is generated for each feature graph. Redefine the 

relationship of each channel in the original feature graph, and Fscale adds weight to the 
picture. Channel attention networks often use global pooling to encode spatial 
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information and compress space into channel descriptors, ignoring location information. 
In this paper, SE is placed behind the last Dense Block.  

                                        (4) 

4. Results and Discussion 

4.1. Evaluation Metrics 

We designed the classification of AD and CN and the predictive of sMCI and pMCI in 
two groups of controlled experiments. The performance of the classification is evaluated 

against six commonly used indicators. It includes accuracy, sensitivity, Specificity, 

Precision, Recall and F1 Score. These indicators are defined as Eq. (5) through Eq. (10): 

                                                       (5) 

                                                             (6) 

                                                      (7) 

                                                            (8) 

                                                                        (9) 

                                                  (10) 

TP indicates that the category is positive and the prediction is also positive, FP 

means the prediction is positive and the prediction is wrong, so it's a negative example. 

FN indicates that the prediction is negative and the prediction is wrong, so it is a positive 

example, TN indicates that the category is negative and the prediction is also negative. 

4.2. Experimental Evaluation 

In this part, we compared our experimental results with the most advanced convolutional 

neural networks, such as ResNet18 [19], DenseNet201, DenseNet264, We added 

attention to these networks to study the comparison between attentional mechanisms and 
those without. All experiments were implemented based on PyTorch with python3.8 

programming language, executed on a server with an Intel Xeon Cascade Lake 8255C 

(2.5 GHz), Tesla V100-NVLINK-32G and Ubuntu18.04 operating system. The learning 

rate was attenuated from 0.0001 to 0.000001. In order to optimize the model, Adam was 
used as the optimization algorithm and the batch size was 8. 

In this experiment, two groups of classification experiments will be carried out. 

Since the brain of AD and NC is quite different, it is easy to distinguish the two types. 

MCI is the early stage of AD, and there are only slight brain lesions. There is no 
significant difference in the changes of the lesion areas in the brain. The purpose of 

adding an attention mechanism is to make the model focus on the significant areas in the 

training process, excluding the influence of other organizational structures. sMCI and 

pMCI classification is a difficult task, and their classification accuracy is far lower than 
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that of AD and NC. The experimental results of these two groups of classification on 
different convolution models are shown in Table 2 and Table 3. 

Table 2. Results of Classification for AD vs. NC. 

Model Accuracy Sensitivity Specificity Precision Recall F1 
Score 

ResNet18 0.869 0.825 0.903 0.866 0.845 0.825 

CSE_ResNet18 0.883 0.825 0.927 0.896 0.859 0.825 

DenseNet201 0.876 0.730 0.987 0.978 0.836 0.730 

CSE_DenseNet201 0.890 0.809 0.951 0.927 0.864 0.809 

DenseNet264 0.897 0.825 0.951 0.928 0.873 0.825 

CSE_DenseNet264 0.904 0.920 0.891 0.965 0.892 0.920 

 
Table 3. Results of Classification for sMCI vs. pMCI. 

Model Accuracy Sensitivity Specificity Precision Recall F1 
Score 

ResNet18 0.770 0.740 0.788 0.677 0.707 0.740 

CSE_ResNet18 0.791 0.722 0.833 0.722 0.722 0.722 

DenseNet201 0.791 0.685 0.855 0.740 0.711 0.685 

CSE_DenseNet201 0.812 0.611 0.933 0.846 0.709 0.611 

DenseNet264 0.819 0.740 0.866 0.769 0.740 0.754 

CSE_DenseNet264 0.826 0.796 0.844 0.754 0.774 0.796 

 
As can be seen from the table, the classification accuracy of sMCI and pMCI in our 

experiment is 0.826, the sensitivity is 0.796, and the specificity is 0.844, which is 

superior to other models in overall classification. By adding attention mechanism to other 

models, the accuracy of sMCI and pMCI was improved, indicating that attention 
mechanism has a good effect on the prediction of MCI to AD transformation. 

At the same time, we compare our method with the most advanced method in the 

present paper [20], [21], [14], [22] as shown in Table 4 for MCI to AD conversion of 

prediction of our method is better than the existing methods, and different papers with 
convolution neural network contrast experiment, it shows our network for locating sMCI 

and pMCI lesion area has obvious effect. 

Table 4. Compare with the latest method on ADNI dataset. 

References AD vs NC sMCI vs pMCI 
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Cao et al. 2017 0.89 0.86 0.90 0.70 0.67 0.72 

Liu et al. 2018 0.91 0.88 0.93 0.76 0.42 0.82 

Lian et al. 2020 0.90 0.82 0.96 0.81 0.53 0.85 

Zhu et al. 2021 0.92 0.91 0.93 0.80 0.77 0.82 

Ours 0.90 0.92 0.89 0.83 0.80 0.84 

4.3. Discussion 

In order to understand how the network improves the classification effect, we conducted 
two groups of comparison experiments with and without attention in Densenet264. 

Figure 2 is the visual image of the experiment's features. pMCI and sMCI are the input 

of our model, and Conv1 represents the output of Conv1 without CA. CA Block 

represents the output of CA Block after adding the CA model. It was obvious from the 
images that compared with Conv1 images, CA Block images had more prominent 
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features in the hippocampus and cerebral cortex, while other useless features were 
ignored, which happened to be important diagnostic regions of Alzheimer's disease, 

proving that our model was superior to other models in feature extraction. 

 

Figure 2. Visualization results of Densenet264 and CSE_Densenet264 feature maps. 

5. Conclusion 

In this paper, by adding attention mechanism to the model, significant information of 
MRI images can be extracted and combined with local and global information, so as to 

improve the accuracy of network classification. This method combines CA and SE 

attention and uses a dense attention network to automatically identify MRI lesions, for 

the early diagnosis and intervention treatment of AD, we put forward the method 
compared with the most advanced several methods has a better classification 

performance, especially in predicting the difficult MCI to AD transition task. MRI 

images can provide relatively simple information. In the future, we may add multimodal 

information, such as fluorodeoxyglucose positron emission tomography (FDG-PET), 
apolipoprotein-E (APOE) genotype, and age information as auxiliary information to 

further predict MCI to AD transformation. 
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