
Computing Private International Law

Guido GOVERNATORI , Francesco OLIVIERI a, Antonino ROTOLO b,
Abdul SATTAR a, Matteo CRISTANI c

a Institute for Integrated and Intelligent Systems, Griffith University, Australia
bAlma AI, University of Bologna, Italy

cDepartment of Computer Science, University of Verona, Italy
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1. Introduction

An increasing attention has been paid in the last few years to the interaction among
distinct normative systems with regard to the allocation of jurisdiction and choice-of-law
characterising private international law (henceforth, PIL). PIL consists in the body of
rules and principles governing the choice of law to be applied when there are conflicts in
the domestic law of different countries related to private legal facts and transactions [11].
Of course, this is relevant whenever private individuals exhibit aspects of extraneousness
with respect to a specific domestic system, and these aspects refer to the law of other
countries. The issue of legal pluralism and the fundamental mechanisms of conflict of
laws was consequently been studied through argumentation and logics [3,6,8,9,2]. The
focus was maintained on legal dogmatics or at the level of virtual conflicts between legal
systems, each considered as potentially competent to rule the case, or, again at the level
of conflict among different interpretive solutions: precisely the kind of conflicts that PIL
in fact prevents.

Several problems such as the following ones often arise.

Case 1 (Conflict across Legal Systems and Overriding Mandatory Rules) PIL prin-
ciples may require to apply foreign law and such provisions can be in conflict with do-
mestic law. However, there could exist a domestic piece of legislation that is considered
mandatory. In this way, mandatory rules prevent and override any other rule, including
the possible foreign law they identify, which is ex ante seen as incompatible with the
domestic legal system and its fundamental goals.

Case 2 (Public Policy Exception) The foreign interpretive argument gives an interpre-
tive result whose effects are contrary to the public policy of the domestic legal system.
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Case 3 (Same Interpretive Canons Conflict) The same interpretive argument gives op-
posite interpretive results in the foreign and in the domestic legal systems.

Hence, several formal methods can be used to model how domestic courts should
apply and reason about foreign law.

The cases above in fact show that PIL requires to handle two distinct reasoning
processes:

• Conflict-detection and conflict-resolution among legal rules belonging to different
legal systems;

• Conflict-detection and conflict-resolution among interpretive arguments used in
different legal systems.
As discussed by [3,8,9], such processes lead to different logical solutions. However,

if seen at a more abstract level, all these approaches—and, in fact, any logical model
for PIL, we claim—are based on some common formal intuitions. In this paper we
accordingly develop a new comprehensive computational framework for reasoning about
PIL that encompasses the reasoning patternsmodeled by [3,8,9]: Section 2 discusses some
examples; Section 3 accounts for previous literature; Section 4 presents the intuitions
behind the proposed logic (Section 5.1) and the algorithms to compute the extensions of
normative theories (Section 5.2).

2. Problems and Examples

Methods for conflict of laws may occur when norms of different systems collide, or when
interpretive arguments collide when used in distinct systems. Consider the following two
examples.

Example 1 [Contract Law] “An Italian company and a British one make a contract
according to which the Italian company has to deliver certain goods. A clause says that
the contract is governed by US law. The English company sues the Italian company for
breach of contract. The jurisdiction issue, in both English and Italian laws, has to be
decided on the basis of the Brussels Convention (on Jurisdiction and the Enforcement of
Judgments in Civil and Commercial Matters), which establishes the jurisdiction of the
Italian judge. However, the Italian judge has to apply the law chosen by the parties, i.e.,
US law, on the basis of the Rome Convention (on the Law Applicable to Contractual
Obligations)”. [3]

In this example, it is crucial whether a contract is regulated by Italian or US law: the
two legal systems lead to different outcomes. As argued by [3], the Italian law tends to
limit liability of the diligent defaulting party, while US law is stricter in this regard: in
several cases, if Italian law had to be applied, the diligent defaulting party would not pay
for damages. On the contrary, under US law damages have to be paid. Here, we have a
clear conflict of norms.

Example 2 [Interpretation in PIL] “A woman, Cameroonian citizen, put forward an
Italian court a paternity action with respect to her daughter, also Cameroonian citizen,
underage at the time, on the basis of Art. 340 Cameroonian Civil Code and Art. 33 Law
no. 218/1995. She alleged that the child was born within a relationship she had with
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an Italian citizen, who initially took care of the girl and provided financial support for
her, then refusing to recognise the child. The judicial question is thus the recognition
of the legitimate paternity in favour of the girl, whose main legal consequence would
be to burden the presumed father with the duty to give her due support in the form of
maintenance and education. [. . . ]

Art. 340, Civil Code of Cameroon, states that the judicial declaration of paternity
outside marriage can only be done if the suit is filed within the two years that follow
the cessation, either of the cohabitation, or of the participation of the alleged father in
the support [entretien] and education of the child. At a first glance, it appears crucial to
properly interpret the term entretien for it represents a condition for lawfully advancing
the judicial request of paternity. Different interpretations of this term can be offered in
Cameroon’s law, and may fit differently within the Italian legal system”. [8]

In this second example, once it is made clear which norm has to be applied (Art.
340, Civil Code of Cameroon), we have still a potential conflict to solve because the
Italian judge may interpret such a piece of foreign legislation using different interpretive
standards: here, we rather have a conflict of interpretations.

3. Background

[3] proposed a formal model of the interaction between legal systems based on the
so-called modular argumentation, namely, an argumentation system where reasoning in
regard to different legal contexts is managed by separate knowledge bases (modules).
As expected, the authors assume the existence of different legal systems LS𝑖 , . . . ,LS𝑧 .
Each system LS𝑖 , contains three sets of rules: (a) a set of choice of jurisdiction rules
𝐶ℎ𝐽𝑢𝑟 (LS𝑖); (b) a set of choice of competence rules 𝐶ℎ𝐶𝑜𝑚𝑝(LS𝑖); and (c) a set of
choice of law rules 𝐶ℎ𝐿𝑎𝑤(LS𝑖).

Since a representation of PIL refers to distinct sets of legal rules, modular argumen-
tation offers itself as an appropriate platform for representing PIL and different national
laws as it allows knowledge to be split in separate modules.

Indeed, PIL rules establish, respectively, whether courts of LS𝑖 can decide the case
(jurisdiction), what particular court of LS𝑖 can do that (competence), and what set of
norms, of LS𝑖’s or of another legal system LS 𝑗 , the court should apply (applicable law).

The reasoning mechanism handles such sets of rules. First of all, a court should con-
sider the issue of jurisdiction, thus pointing to a certain system LS𝑖 . Having established
jurisdiction for the courts of its legal system LS𝑖 , the court 𝑘 will have to address com-
petence, i.e., to establish whether 𝑘 itself, among all courts of LS𝑖 , has the task to decide
that case, according to 𝐶ℎ𝐶𝑜𝑚𝑝(LS𝑘 ). Finally, court 𝑘 should apply 𝐶ℎ𝐿𝑎𝑤(LS𝑘 ) in
order to establish according to what legal system LS 𝑗 (that could possibly be different
from LS𝑖) the case should be decided.

[8,9] proposed instead a Defeasible Logic for reasoning about interpretive arguments
or canons. As is well-known, interpretive canons are different doctrinal methods that
are employed in legal systems as patterns for constructing arguments aimed at justifying
certain interpretations [7]. Examples are theArgument by coherence, according towhich a
statutory provision should be interpreted in light of the whole statute it is part of, or in light
of other statutes it is related to, or Teleological argument, according to which a statutory
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provision should be interpreted as applied to a particular case in a way compatible with
the purpose that the provision is supposed to achieve

The logical structure of interpretive arguments must be analysed using a rule-based
logical system. In particular, interpretation canons are represented by interpretation rules,
such as the following:

𝑠 : OBLI
LS 𝑗
𝑠 (𝑛LS𝑖2 , 𝑑) ⇒𝐼 I

LS 𝑗
𝑐 (𝑛LS𝑖1 , 𝑝) (3.1)

Rule 𝑠 states that, if provision 𝑛2 belonging to the legal system LS𝑖 ought to be interpreted
in another system LS 𝑗 by substantive reasons (I𝑠) as 𝑑, then the interpretive canon to be
applied in legal system LS 𝑗 for provision 𝑛1 is the interpretation by coherence (I𝑐), which
returns 𝑝.

Reasoning about interpretive canons across legal systems thus requires to specify
in the formal language to which legal systems legal provisions belong and in which
legal system canons are applied. In addition, we need the introduction of meta-rules to
reason about interpretation rules; such meta-rules support the derivation of interpretation
rules; in other words, the conclusions of meta-rules are interpretation rules, while the the
antecedents may include any conditions. Consider, for instance, the following meta-rule:

𝑟 : (OBLILS𝑖𝑡 (𝑛LS𝑖1 , 𝑝), 𝑎 ⇒𝐶 (𝑠 : OBLI
LS 𝑗
𝑠 (𝑛LS𝑖2 , 𝑑) ⇒𝐼 I

LS 𝑗
𝑐 (𝑛LS𝑖1 , 𝑝)))

Meta-rule 𝑟 states that, if (a) it is obligatory the teleological interpretation (I𝑡 ) in legal
system LS𝑖 of legal provision 𝑛1 belonging to that system and returning 𝑝, and (b) 𝑎 holds,
then the interpretive canon to be applied in legal system LS 𝑗 for 𝑛1 is the interpretation
by coherence, which returns 𝑝 as well, but which is conditioned in LS 𝑗 by the fact that
𝑛2 in this last system is interpreted by substantive reasons as 𝑑. In other words, 𝑟 allows
for importing interpretive results from 𝐿𝑆𝑖 into LS 𝑗 in regard to the legal provision 𝑛1 in
LS𝑖 which can be applied in LS 𝑗 .

4. Logical Intuition

If we abstract from the peculiarities of [3,8,9], both approaches share a number of general
intuitions. On account of the discussion of previous sections, we argue that any formal
system for PIL is expected

• to have a formal language
∗ able to encode the existence of different legal systems LS𝑖 , . . . ,LS𝑧 ;
∗ with propositional expressions representing any piece of information which
is parametrised by legal systems; for example, we may write 𝑎LS𝑖 to mean
that 𝑎 (an obligation, a contract, an interpretive outcome...) holds in the legal
system LS𝑖;

• to have a reasoningmechanism that allows for concluding that, if something holds
in some legal system, then something else holds in this or another legal system,
or that allows for importing in a given system any piece of information holding in
another system; for example, the reasoningmechanism should be based on handling

∗ rules such as
𝑟 : 𝑎LS𝑖 ⇒LS 𝑗 𝑏LS 𝑗
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which may represent, e.g., a norm 𝑟 of LS 𝑗 (this is represented by the fact
that the arrow is labelled accordingly) stating that if 𝑎 holds in another legal
system LS𝑖 , then 𝑏 holds in LS 𝑗 ;

∗ meta-rules such as

𝑠 : 𝑝LS𝑘 ⇒ (𝑟 : 𝑎LS𝑖 ⇒LS 𝑗 𝑏LS 𝑗 )

which are meant to reason about, and across legal systems (for this reason,
the arrow of 𝑠 in not labelled by any legal system); meta-rule 𝑠 means that, if
𝑝 holds in the legal system LS𝑘 , then we can use norm 𝑟 in LS 𝑗 ;

∗ since legal systems can be incompatible, different rules and meta-rules can
collide, so we need to establish a priority orderings.

The above list shows in a nutshell the basic requirements for developing a general
computational framework for reasoning about PIL. The next section will present the
details of it.

5. The Framework

The computational framework for reasoning about PIL we are proposing is based on
Defeasible Logic [1], which is is a simple and efficient rule-based non-monotonic for-
malism that proved to be suitable for the logical modelling of different application areas,
including the law (see [5,4]). The logic is extended as informally discussed in the previous
section. A first result was offered [10]. Here we extend the machinery to handle more
legal systems and all requirements mentioned in Section 4.

5.1. Logic

Let PROP be a set of propositional atoms, LS = {LS𝑖 , . . . ,LS𝑧} a finite set of legal
systems, and Lab be a set of arbitrary labels (the names of the rules). BLit = PROP ∪
{¬𝑙 | 𝑙 ∈ PROP} is the set of basic literals. The complement of a literal 𝑙 is denoted by
∼𝑙: if 𝑙 is a positive literal 𝑝 then ∼𝑙 is ¬𝑝, and if 𝑙 is a negative literal ¬𝑝 then ∼𝑙 is 𝑝.
Hence, Lit = {𝑙LS |𝑙 ∈ BLit, LS ∈ LS} is the set of literals.

The set of rules ismade of two sets: standard rules 𝑅𝑆 , andmeta-rules 𝑅𝑀 . A standard
rule 𝛽 ∈ 𝑅𝑆 is an expression of the type ‘𝛽 : 𝐴(𝛽) ↩→LS 𝐶 (𝛽)’, and consists of: (i) the
unique name 𝛽 ∈ Lab, (ii) the antecedent 𝐴(𝛽) ⊆ Lit, (iii) an arrow ↩→∈ {→,⇒,�}

denoting, respectively, a strict rule, a defeasible rule and a defeater, (iv) a legal system
LS, (v) its consequent 𝐶 (𝛽) ∈ Lit, a single literal. Hence, the statement “Minors are
in Italy persons under the age of 18 years” is formulated through a strict rule (as there
is no exception to it), whilst “EU citizens may visit the USA without green card” is
instead formalised through a defeasible rule as “During pandemic travels to USA might
be prohibited” is a defeater representing an exception to it.

A meta rule is a slightly different concept than a standard rule: (i) standard rules can
appear in its antecedent, and (ii) the conclusion itself can be a standard rule. Accordingly,
a meta rule 𝛽 ∈ 𝑅𝑀 is an expression of the type ‘𝛽 : 𝐴(𝛽) ↩→ 𝐶 (𝛽)’, and consists of:
(i) a unique name 𝛽 ∈ Lab, (ii) the antecedent 𝐴(𝛽) is now a finite subset of Lit ∪ 𝑅𝑆 ,
(iii) the arrow ↩→ with the same meaning as for standard rules, and (iv) its consequent
𝐶 (𝛽) ∈ Lit ∪ 𝑅𝑆 , that is either a single literal or a standard rule (meta-rules can be used
to derive standard rules).
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A defeasible meta-theory (or simply theory) 𝐷 is a tuple (F, 𝑅, >), where 𝑅 =
𝑅𝑠𝑡𝑎𝑛𝑑∪𝑅𝑚𝑒𝑡𝑎 such that 𝑅𝑠𝑡𝑎𝑛𝑑 ⊆ 𝑅𝑆 and 𝑅𝑚𝑒𝑡𝑎 ⊆ 𝑅𝑀 . F is the set of facts, indisputable
statements that are considered to be always true, and which can be seen as the inputs for a
case. As usual in Defeasible Logic, rules in 𝑅 can be of three types: strict rules, defeasible
rules, or defeaters. Finally, we have the superiority > among rules, which is binary and
irreflexive, and is used to solve conflicts. The notation 𝛽 > 𝛾 means (𝛽, 𝛾) ∈>.

Some abbreviations. The set of strict rules in 𝑅 is 𝑅𝑠 , and the set of strict and
defeasible rules is 𝑅sd. 𝑅[𝑋] is the rule set with head 𝑋 ∈ {Lit ∪ 𝑅𝑆}. 𝑅LS is the set
of rules whose arrow is labelled by LS. A conclusion of D is either a tagged literal or
a tagged label (for a standard rule), and can have one of the following forms with the
standard meanings in Defeasible Logic:

• ±Δ𝑙 means that 𝑙 ∈ Lit is definitely provable (resp. refuted, or non provable) in 𝐷,
i.e. there is a definite proof for 𝑙 (resp. a definite proof does not exist);

• ±Δ𝑚𝑒𝑡𝑎𝛼, 𝛼 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 , with same meaning as above;
• ±𝜕𝑙 means that 𝑙 is defeasibly provable (resp. refuted) in 𝐷;
• ±𝜕𝑚𝑒𝑡𝑎𝛼, 𝛼 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 , with the same meaning as above.

The definition of proof is also the standard in DL. Given a defeasible meta-theory 𝐷, a
proof 𝑃 of length 𝑛 in 𝐷 is a finite sequence 𝑃(1), 𝑃(2), . . . , 𝑃(𝑛) of tagged formulas of
the type +Δ𝑋 , −Δ𝑋 , +𝜕𝑋 , −𝜕𝑋 , where the proof conditions defined in the rest of this
section hold. 𝑃(1..𝑛) denotes the first 𝑛 steps of 𝑃.

Derivations are based on the notions of a rule being applicable or discarded.

Definition 1 (Applicability) Given a defeasible meta-theory 𝐷 = (F, 𝑅, >), 𝑅 =
𝑅𝑠𝑡𝑎𝑛𝑑 ∪ 𝑅𝑚𝑒𝑡𝑎, a rule 𝛽 ∈ 𝑅 is #-applicable, # ∈ {Δ, 𝜕}, at 𝑃(𝑛 + 1) iff
1. ∀𝑙 ∈ Lit ∩ 𝐴(𝛽). + #𝑙 ∈ 𝑃(1..𝑛),
2. ∀𝛼 ∈ 𝑅𝑆 ∩ 𝐴(𝛽) either (a) 𝛼 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 , or (b) +#𝑚𝑒𝑡𝑎𝛼 ∈ 𝑃(1..𝑛).

Definition 2 (Discardability) Given a defeasible meta-theory 𝐷 = (F, 𝑅, >), 𝑅 =
𝑅𝑠𝑡𝑎𝑛𝑑 ∪ 𝑅𝑚𝑒𝑡𝑎, a rule 𝛽 ∈ 𝑅 is #-discarded, # ∈ {Δ, 𝜕}, at 𝑃(𝑛 + 1) iff
1. ∃𝑙 ∈ Lit ∩ 𝐴(𝛽). − #𝑙 ∈ 𝑃(1..𝑛), or
2. ∃𝛼 ∈ 𝑅𝑆 ∩ 𝐴(𝛽) such that (a) 𝛼 ∉ 𝑅𝑠𝑡𝑎𝑛𝑑 and (b) −#𝑚𝑒𝑡𝑎𝛼 ∈ 𝑃(1..𝑛)

When 𝛽 is a meta-rule and 𝛼 is not in 𝑅𝑠𝑡𝑎𝑛𝑑 (hence 𝛼 is the conclusion of a meta-rule),
then 𝛽 will stay dormant until a decision on 𝛼 (of being proved/refuted) is made. The
following example is to get acquainted with the concepts introduced.

Example 3 Let 𝐷 = (𝐹 = {𝑎, 𝑏}, 𝑅, ∅) be a theory such that

𝑅 = {𝛼 : 𝑎 ⇒ 𝛽; 𝛽 : 𝑏, 𝛽 ⇒ 𝜁 ; 𝛾 : 𝑐 ⇒LS 𝑑; 𝜑 : 𝜓 ⇒ 𝑑}.

Here, both 𝛼 and 𝛽 are applicable (we will see right below how to prove +𝜕𝑚𝑒𝑡𝑎𝛽), whilst
𝛾 and 𝜑 are discarded as we cannot prove +𝜕𝑐 nor 𝜕𝑚𝑒𝑡𝑎𝜓.

The language of the logic is designed in such a way that all proof tags for literals are the
standard ones for Defeasible Logic, so they are omitted for space reasons [1].

We are finally ready to propose the proof tags to prove (standard) rules.

+Δ𝑚𝑒𝑡𝑎𝛼: If 𝑃(𝑛 + 1) = +Δ𝑚𝑒𝑡𝑎𝛼 then
(1) 𝛼 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 , or (2) ∃𝛽 ∈ 𝑅𝑚𝑒𝑡𝑎

𝑠 [𝛼] s.t. 𝛽 is Δ-applicable.
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Astandard rule is strictly proven if either (1) such a rule is in the initial set of standard rules,
or (2) there exists an applicale, strict meta-rule for it. Since defeasible rule provability
requires to detect and solve conflicts between meta-rules, we need to clarify the meaning
of ∼𝛼, where 𝛼 is a standard rule.

Definition 3 (Rule complement) Let 𝛼 be any rule. Then

𝛽 = 𝛼 : 𝐴(𝛼) ⇒LS 𝐶 (𝛼) ∼𝛽 = {¬𝛼, 𝛾 : 𝐴(𝛼) ↩→LS′ ∼𝐶 (𝛼), 𝛾 ∈ 𝑅sd}

𝛽 = 𝛼 : 𝐴(𝛼) →LS 𝐶 (𝛼) ∼𝛽 = {¬𝛼, 𝛾 : 𝐴(𝛼) →LS′ ∼𝐶 (𝛼)}

𝛽 = 𝛼 : 𝐴(𝛼) �LS 𝐶 (𝛼) ∼𝛽 = {¬𝛼, 𝛾 : 𝐴(𝛼) ↩→LS′ ∼𝐶 (𝛼), 𝛾 ∈ 𝑅sd}
𝛽 = ¬(𝛼 : 𝐴(𝛼) ↩→LS 𝐶 (𝛼)) ∼𝛽 = {𝛼}.

+𝜕𝑚𝑒𝑡𝑎𝛼: If 𝑃(𝑛 + 1) = +𝜕𝑚𝑒𝑡𝑎𝛼 then
(1) +Δ𝑚𝑒𝑡𝑎𝛼 ∈ 𝑃(1..𝑛), or
(2) (1) −Δ𝑚𝑒𝑡𝑎∼𝛼 ∈ 𝑃(1..𝑛), and
(2) ∃𝛽 ∈ 𝑅𝑚𝑒𝑡𝑎

sd [(𝛼 : 𝑎1, . . . , 𝑎𝑛 ↩→ 𝑐)] s.t.
(3) 𝛽 is 𝜕-meta-applicable, and
(4) ∀𝛾 ∈ 𝑅𝑚𝑒𝑡𝑎 [∼(𝜁 : 𝑎1, . . . , 𝑎𝑛 ↩→ 𝑐)], then either
(1) 𝛾 is 𝜕-meta-discarded, or
(2) ∃𝜀 ∈ 𝑅𝑚𝑒𝑡𝑎 [(𝜒 : 𝑎1, . . . , 𝑎𝑛 ↩→ 𝑐)] s.t.
(1) 𝜒 ∈ {𝛼, 𝜁 }, (2) 𝜀 is 𝜕-meta-applicable, and (3) 𝜀 > 𝛾.

A standard rule 𝛼 is defeasibly proven if it has previously strictly proven (1), or (2.1) the
opposite is not strictly proven and (2.2-2.3) there exists an applicable (defeasible or strict)
meta-rule 𝛽 such that every meta-rule 𝛾 for ∼𝜁 (𝐴(𝛼) = 𝐴(𝜁) and 𝐶 (𝛼) = 𝐶 (𝜁)) either
(2.4.1) 𝛾 is discarded, or defeated (2.4.2.3) by (2.4.2.1-2.4.2.2) an applicable meta-rule
for the same conclusion 𝑐. Note that in Condition 2.3 we do not impose that 𝛼 ≡ 𝜁 , whilst
for 𝛾-rules we do impose that the label of the rule in 𝐶 (𝛾) is either 𝛼 or 𝜁 .

The condition for −𝜕𝑚𝑒𝑡𝑎 is omitted for space reasons, since it is simply obtained
from the positive case. Given a defeasible meta-theory 𝐷, we define the set of positive
and negative conclusions of 𝐷 as its meta-extension:

𝐸 (𝐷) = (+Δ,−Δ, +Δ𝑚𝑒𝑡𝑎,−Δ𝑚𝑒𝑡𝑎, +𝜕,−𝜕, +𝜕𝑚𝑒𝑡𝑎,−𝜕𝑚𝑒𝑡𝑎),

where ±# = {𝑙 | 𝑙 appears in 𝐷 and 𝐷 � ±#𝑙} and ±#𝑚𝑒𝑡𝑎 = {𝛼 ∈ 𝑅𝑆 | 𝛼 appears as
consequent of a meta-rule 𝛽 and 𝐷 � ±#𝑚𝑒𝑡𝑎𝛼}, # ∈ {Δ, 𝜕}.

Example 4 Let 𝐷 = (F = {𝑎, 𝑐, 𝑑, 𝑔}, 𝑅, >= {(𝛽, 𝛾) (𝜁, 𝜂)}) be a theory where

𝑅𝑠𝑡𝑎𝑛𝑑 = {𝛼 : 𝑎 ⇒LS1 𝑏, 𝜁 : 𝑔 ⇒LS2 ∼𝑏},

𝑅𝑚𝑒𝑡𝑎 = {𝛽 : 𝑐, (𝛼 : 𝑎 ⇒LS1 𝑏) ⇒ (𝜂 : 𝑑 ⇒LS3 𝑏), 𝛾 : 𝑑 ⇒ ∼(𝜒 : 𝑑 ⇒LS4 𝑏)}.

As 𝑎, 𝑐, 𝑑 and 𝑔 are facts, we strictly and defeasibly prove all of them. Hence, 𝛼, 𝜁 , 𝛽 and
𝛾 are all 𝜕-applicable. As before, 𝛼 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 , thus 𝐷 � +Δ𝑚𝑒𝑡𝑎𝛼 and 𝐷 � +𝜕𝑐 make 𝛽
being 𝜕-applicable as well. As 𝛽 > 𝛾, we conclude that 𝐷 � +𝜕𝑚𝑒𝑡𝑎𝜂, but we prove also
𝐷 � −𝜕𝑚𝑒𝑡𝑎𝜒. Again, 𝑑 being a fact makes 𝜂 to be 𝜕-applicable. 𝜁 has been dormant so
far, but it can now be confronted with 𝜂: since 𝜂 is weaker than 𝜁 , then 𝐷 � +𝜕∼𝑏 (and
naturally 𝐷 � −𝜕𝑏).
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5.2. Algorithms

The algorithms presented in this section compute the meta-extension of a defeasible
meta-theory. The main idea being to compute, at each iteration step, a simpler theory
than the one at the previous step. By simpler, we mean that, by proving and disproving
literals and standard rules, we can progressively simplify the rules of the theory itself.

Let us consider the case of meta-rules. A meta-rule is applicable when each standard
rule in its antecedent is either in the initial set of rules (i.e., in 𝑅𝑠𝑡𝑎𝑛𝑑), or has been proved
later on during the computation and then added to the set of standard rules. This is the
reason for the support sets at Lines 1 and 2: 𝑅𝑎𝑝𝑝𝑙 is the rule set of the initial standard
rules, 𝑅𝛼𝐶 is the set of standard rules which are not in the initial set but are instead
conclusions of meta-rules. As rules in 𝑅𝛼𝐶 are proved/disproved during the algorithms’
execution, both these sets are updated.

At Line 3, we populate the Herbrand Base (HB), which consists of all literals that
appear in the antecedent, or as a conclusion of a rule. As literals not in the Herbrand
base do not have any standard rule supporting them, such literals are already disproved
(Line 4). For every literal in HB, we create the support set of the rules supporting that
particular conclusion (Line 6), and we initialise the relative set used later on to manage
conflicts and team defeater (Line 7).

We need to do the same for those labels for standard rules that are conclusions of a
meta-rule. First, if a label for standard rule is neither in the initial set of standard rules,
nor a conclusion of a meta-rules, then such a rule is disproved (Line 8). We assume
such sets to have empty intersection, as previously motivated. Second, the following
loop at Lines 17–20 initialises three support sets: 𝑅[𝛼] contains the meta-rules whose
conclusion is 𝛼, 𝑅[𝛼]𝑜𝑝𝑝 contains the meta-rules attacking 𝛼 (𝛾-like rules in ±𝜕𝑚𝑒𝑡𝑎),
while 𝑅[𝛼]𝑠𝑢𝑝𝑝 contains the meta-rules supporting 𝛼 (𝜀-like rules in ±𝜕𝑚𝑒𝑡𝑎).

The following for loop takes care of the factual literals, as they are proved without
any further computation. We assume the set of facts to be consistent. Analogously, loop
at Lines 17–20 does the same for rules in the initial set of standard rules that may appear
in the antecedent of meta-rules.

The algorithm now enters the main cycle (Repeat-Until, Lines 21–40). For every
literal 𝑙 in HB (Lines 23–29), we first verify whether there is a rule supporting it, and,
if not, we refute 𝑙 (Line 24). Otherwise, if there exists an applicable rule 𝛽 supporting
it (if at Line 25), we update the set of defeated rules supporting the opposite conclusion
𝑅[∼𝑙]𝑖𝑛 𝑓 𝑑 (Line 26). Given that 𝑅[∼𝑙] contains the 𝛾 rules supporting ∼𝑙, and given
that we have just verified that 𝛽 for 𝑙 is applicable, we store in 𝑅[∼𝑙]𝑖𝑛 𝑓 𝑑 all those 𝛾s
defeated by 𝛽. The next step is to check whether there actually exists any rule supporting
∼𝑙 stronger than 𝛽: if not, ∼𝑙 can be refuted (Line 27).

The idea behind the if at Lines 28–29 is the following: if 𝐷 � +𝜕𝑙, eventually the
repeat-until cycle will have added to 𝑅[∼𝑙]𝑖𝑛 𝑓 𝑑 enough rules to defeat all (applicable)
supports for ∼𝑙. We thus invoke Prove on 𝑙, and Refute on ∼𝑙.

Similarly, when we prove a rule instead of a literal, but we now use 𝑅[𝛼]𝑜𝑝𝑝 and
𝑅[𝛼]𝑠𝑢𝑝𝑝 in a slightly different way than 𝑅[𝑙]𝑖𝑛 𝑓 𝑑 , to reflect the differences between +𝜕
and +𝜕𝑚𝑒𝑡𝑎. Every time, a meta-rule 𝛽 for 𝛼 is applicable (if at Lines 34–38), we remove
from 𝑅[𝛼]𝑜𝑝𝑝 all the 𝛾s defeated by 𝛽 itself (Line 35). If now there are enough applicable
𝜀 rules supporting 𝛼 (if check at Line 36), then: (i) we prove 𝛼, and (ii) we refute all 𝜁
rules conclusion of 𝛾 rules in 𝑅[𝛼]𝑜𝑝𝑝 .
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Input: Defeasible meta-theory 𝐷 = (F, 𝑅, >) , 𝑅 = 𝑅𝑠𝑡𝑎𝑛𝑑 ∪ 𝑅𝑚𝑒𝑡𝑎

Output: The defeasible meta-extension 𝐸 (𝐷) of 𝐷
1 ±𝜕 ← ∅; ±𝜕𝑚𝑒𝑡𝑎 ← ∅; 𝑅𝑎𝑝𝑝𝑙 ← 𝑅𝑠𝑡𝑎𝑛𝑑

2 𝑅𝛼𝐶 ← {𝛼 ∈ 𝑅𝑆 | ∃𝛽 ∈ 𝑅𝑚𝑒𝑡𝑎 . 𝐶 (𝛽) = 𝛼}

3 𝐻𝐵 = {𝑙 ∈ Lit | ∃𝛽 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 . 𝑙 ∈ 𝐴(𝛽) ∪𝐶 (𝛽) } ∪ {𝑙 ∈ Lit | ∃𝛽 ∈ 𝑅𝑚𝑒𝑡𝑎 .∃𝛼 ∈ 𝑅𝑆 (𝛼 ∈

𝐴(𝛽) ∪𝐶 (𝛽)) ∧ (𝑙 ∈ 𝐴(𝛼) ∪𝐶 (𝛼)) }
4 for 𝑙 ∈ Lit ∧ 𝑙 ∉ 𝐻𝐵 do −𝜕 ← −𝜕 ∪ {𝑙 };
5 for 𝑙 ∈ 𝐻𝐵 do
6 𝑅 [𝑙 ] = {𝛽 ∈ 𝑅𝑆 |𝐶 (𝛽) = 𝑙 ∧ (𝛽 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 ∨ ∃𝛾 ∈ 𝑅𝑚𝑒𝑡𝑎 . 𝛽 ∈ 𝐶 (𝛾)) }
7 𝑅 [𝑙 ]𝑖𝑛 𝑓 𝑑 ← ∅

8 for 𝛼 ∉ 𝑅𝑠𝑡𝑎𝑛𝑑 ∪ 𝑅𝛼𝐶 do −𝜕𝑚𝑒𝑡𝑎 ← −𝜕𝑚𝑒𝑡𝑎 ∪ {𝛼};
9 for

(
𝛼 : 𝐴(𝛼) ↩→ 𝐶 (𝛼)

)
∈ 𝑅𝛼𝐶 do

10 𝑅 [𝛼] ← {𝛽 ∈ 𝑅𝑚𝑒𝑡𝑎 | 𝛼 = 𝐶 (𝛽) }

11 𝑅 [𝛼]𝑜𝑝𝑝 ← {𝛾 ∈ 𝑅𝑚𝑒𝑡𝑎 |𝐶 (𝛾) = ∼
(
𝜁 : 𝐴(𝛼) ↩→ 𝐶 (𝛼)

)
}

12 𝑅 [𝛼]𝑠𝑢𝑝𝑝 ←
{
𝜀 ∈ 𝑅𝑚𝑒𝑡𝑎 |

(
𝐶 (𝜀) = (𝜒 : 𝐴(𝛼) ↩→ 𝐶 (𝛼))

)
∧

(
∃𝛾 ∈ 𝑅 [𝛼]𝑜𝑝𝑝 . 𝜀 > 𝛾

)
∧

(
𝜒 =

𝛼 ∨ (∃𝛾 ∈ 𝑅 [𝛼]𝑜𝑝𝑝 .𝐶 (𝛾) = ∼(𝜁 : 𝐴(𝛼) ↩→ 𝐶 (𝛼)) ∧ 𝜒 = 𝜁 )
)}

13 for 𝑙 ∈ F do
14 +𝜕 ← +𝜕 ∪ {𝑙 }
15 𝑅 ← {𝐴(𝛽) \ {𝑙 } ↩→ 𝐶 (𝛽) | 𝛽 ∈ 𝑅} \ {𝛽 ∈ 𝑅 | ∼𝑙 ∈ 𝐴(𝛽) }

16 > ← > \ {(𝛽, 𝛾) , (𝛾, 𝛽) ∈> | ∼𝑙 ∈ 𝐴(𝛽) }

17 for 𝛼 ∈ 𝑅𝑠𝑡𝑎𝑛𝑑 do
18 +𝜕𝑚𝑒𝑡𝑎 ← +𝜕𝑚𝑒𝑡𝑎 ∪ {𝛼}
19 𝑅𝑚𝑒𝑡𝑎 ← {𝐴(𝛽) \ {𝛼} ↩→ 𝐶 (𝛽) | 𝛽 ∈ 𝑅𝑚𝑒𝑡𝑎 } \ {𝛾 ∈ 𝑅𝑚𝑒𝑡𝑎 | {∼𝛼} ∈ 𝐴(𝛾) }
20 > ← > \{(𝛽, 𝛾) , (𝛾, 𝛽) ∈> | {∼𝛼} ∈ 𝐴(𝛽) }

21 repeat
22 𝜕± ← ∅

23 for 𝑙 ∈ 𝐻𝐵 do
24 if 𝑅 [𝑙 ] = ∅ then Refute(𝑙);
25 if ∃𝛽 ∈ 𝑅 [𝑙 ]. 𝐴(𝛽) = ∅ then
26 𝑅 [∼𝑙 ]𝑖𝑛 𝑓 𝑑 ← 𝑅 [∼𝑙 ]𝑖𝑛 𝑓 𝑑 ∪ {𝛾 ∈ 𝑅 [∼𝑙 ] | 𝛽 > 𝛾 }
27 if {𝛾 ∈ 𝑅 [∼𝑙 ] | 𝛾 > 𝛽 } = ∅ then Refute(∼𝑙);
28 if 𝑅 [∼𝑙 ] \ 𝑅 [∼𝑙 ]𝑖𝑛 𝑓 𝑑 = ∅ then
29 Prove(𝑙); Refute(∼𝑙)
30 ±𝜕 ← ±𝜕 ∪ 𝜕±

31 ±𝜕𝑚𝑒𝑡𝑎 ← ∅

32 for
(
𝛼 : 𝐴(𝛼) ↩→ 𝐶 (𝛼)

)
∈ 𝑅𝛼𝐶 do

33 if 𝑅 [𝛼] = ∅ then Refute(𝛼);
34 if ∃𝛽 ∈ 𝑅 [𝛼]. 𝐴(𝛽) = ∅ then
35 𝑅 [𝛼]𝑜𝑝𝑝 ← 𝑅 [𝛼]𝑜𝑝𝑝 \ {𝛾 ∈ 𝑅𝑚𝑒𝑡𝑎 | 𝛽 > 𝛾 }

36 if
(
𝑅 [𝛼]𝑜𝑝𝑝 \ {𝛾 ∈ 𝑅 [𝛼]𝑜𝑝𝑝 | 𝜀 ∈ 𝑅 [𝛼]𝑠𝑢𝑝𝑝 ∧ 𝐴(𝜀) = ∅ ∧ 𝜀 > 𝛾 }

)
= ∅ then

37 Prove(𝛼)
38 for 𝛾 ∈ 𝑅 [𝛼]𝑜𝑝𝑝 . 𝐶 (𝛾) = ∼(𝜁 ) do Refute(∼𝜁 );
39 ±𝜕𝑚𝑒𝑡𝑎 ← ±𝜕𝑚𝑒𝑡𝑎 ∪ 𝜕±𝑚𝑒𝑡𝑎

40 until 𝜕+ = ∅ and 𝜕− = ∅ and 𝜕+𝑚𝑒𝑡𝑎 = ∅ and 𝜕−𝑚𝑒𝑡𝑎 = ∅;
41 return 𝐸 (𝐷) = (+𝜕, −𝜕, +𝜕𝑚𝑒𝑡𝑎 , −𝜕𝑚𝑒𝑡𝑎)

Algorithm 1. Existence
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Procedures Prove and Refute are the same as in [10] and are invoked when a literal
or a standard rule is proved/refuted.

In order to discuss termination and computational complexity, we start by defining
the size of a meta-theory 𝐷 as Σ(𝐷) to be the number of the occurrences of literals plus
the number of occurrences of rules plus 1 for every tuple in the superiority relation. Thus,
the theory 𝐷 = (F, 𝑅, >) such that F = {𝑎, 𝑏, 𝑐}, 𝑅𝑠𝑡𝑎𝑛𝑑 = {(𝛼 : 𝑎 ⇒LS1 𝑑), (𝛽 : 𝑏 ⇒LS2

∼𝑑)}, 𝑅𝑚𝑒𝑡𝑎 = {
(
𝛾 : 𝑐 ⇒ (𝜁 : 𝑎 ⇒LS3 𝑑)

)
}, >= {(𝜁, 𝛽)}, has size 3 + 6 + 5 + 1 = 15.

Note that, by implementing hash tables with pointers to rules where a given literal
occurs, each rule can be accessed in constant time. We also implement hash tables for the
tuples of the superiority relation where a given rule appears as either of the two element,
and even those can be accessed in constant time.

Theorem 1 Algorithm 1 Existence terminates and its complexity is 𝑂 (Σ2).

6. Summary

This paper presented a new computational framework for reasoning about PIL. The system
in abstracts from the peculiarities of approaches such as [3,8,9]. The formal language
assumes the existence existence of different legal systems and of propositional expressions
such as 𝑎LS𝑖 to mean that 𝑎 holds in the legal system LS𝑖 . Also, the reasoning mechanism,
through meta-rules, allows for concluding that, if something holds in some legal system,
then something else holds in this or another legal system, or that allows for importing in
a given system any piece of information holding in another system. Finally, since legal
systems can be incompatible, different rules and meta-rules can collide, so we make use
of priority orderings among rules as in standard Defeasible Logic. The resulting system
simply extends [10] and preserves the same nice computational properties.
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