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Abstract. Within their mental and social processes, humans often learn, adapt and 

apply specific mental models of processes in the world or other persons, as a kind 

of blueprints. In this paper, it is discussed how analysis of this provides useful 

inspiration for the development of new computational approaches from a Machine 

Learning and Network-Oriented Modeling perspective. Three main elements are: 

applying the mental model by internal simulation, developing and revising a mental 

model by some form of adaptation, and exerting control over this adaptation in a 

context-sensitive manner. This concept of controlled adaptation relates to the 

Plasticity Versus Stability Conundrum from neuroscience. The presented analysis 

has led to a three-level computational architecture for controlled adaptation. It is 

discussed and illustrated by examples of applications how this three-level 

computational architecture can be specified based on a self-modeling network and 

used to model controlled learning and adaptation processes based on mental models 

in a context-sensitive manner. 

Keywords. Mental model, Adaptive network, Control of adaptation, Self-modeling 

network 

1. Introduction 

Historically, analysis of human neural, mental and social processes often has provided 

inspiration for interesting new methods and techniques in AI and Machine Learning. In 

this paper, the focus is on how in their mental and social processes, humans often learn, 
adapt and apply specific mental models as a kind of blueprints, schemas or maps. 

Although a vast majority of the large amounts of publications on mental models in 

multiple disciplines is informal and not computational, it is shown how analysis of them 

still can be used as inspiration for the development of new computational approaches 
from an AI and Machine Learning perspective. Three elements came out of this analysis: 

(1) applying a mental model by internal (mental) simulation, (2) to develop and maintain 

a mental model, adaptation of it takes place (which usually involves learning, extinction 

or forgetting, and revision), and (3) in a context-sensitive manner, control is exerted over 
this adaptation. Here in particular (3) is an interesting topic. In a wider neuroscientific 

context, for example, in [1], this topic is discussed in relation to what is called the 

Plasticity Versus Stability Conundrum and to the notion of metaplasticity; e.g., [2]. It has 
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been found that in the brain plasticity is not constant and various neural mechanisms 
have been discovered by which the extent of plasticity varies by being controlled in a 

context-sensitive manner; [1, 2, 3, 4]. Also, within an AI-context, in machine learning 

examples of this conundrum and controlled adaptation to address it are known, such as 

the (decreasing) temperature parameter in simulated annealing and the sensitive 
balancing between exploration and exploitation in reinforcement learning, also called the 

explore-exploit dilemma [5, 6, 7]. This is explained in [7] as follows. 
‘When you go to your favourite restaurant, do you always order the same thing, or do you 
try something new? Sticking with an old favourite ensures a good meal, but if you are 
willing to explore you might discover something better. This simple conundrum, deciding 
between something you know and something you do not, is commonly referred to as the 
exploration– exploitation dilemma.’  

This quote also illustrates that on the one hand decision making based on known 

mental models can be very efficient (like navigating based on a well-known map), but 

on the other hand this may prevent someone from learning even better decisions (like 
exploring still unknown territory). The analysis of how humans use mental models in 

their mental processes has led to a three-level computational architecture for context-

sensitive controlled adaptation where at the base level internal simulation based on a 

mental model takes place, at the next level adaptation of this mental model and at the 
second-next level context-sensitive control over this adaptation. In this paper, it is 

pointed out and illustrated by examples how this three-level computational architecture 

can be modeled as a self-modeling network: a network in which parts of the network’s 

own structure characteristics are represented by nodes within the same network. 

2. How Humans Use Mental Models 

In their mental processes, humans use mental models in three different ways: for internal 

simulation, for learning, and for (self-)control; these uses are explained as follows. 

Simulation: Mental Models Simulate. Mental models are often used for internal 
simulation. This can take place in different forms, for example, visualisation or 

flashbacks (in sport or in PTSD). In his often cited book [8], Kenneth Craik describes a 

mental model as a small-scale model that is carried by an organism within its head: 
‘If the organism carries a “small-scale model” of external reality and of its own 
possible actions within its head, it is able to try out various alternatives, conclude 
which is the best of them, react to future situations ….’ ([8], p. 61) 
‘…it is a physical working model which works in the same way as the process it 
parallels…’ ([8], p. 51). 

Internal simulation is assumed to be based on causal relations for world processes; e.g., 

[9, 10, 11, 12]. For example, in [13], the functioning of a car in interaction with its driver 

is simulated based on a person’s mental model, and in [14] a flashback experience of a 
course of events is addressed as internal simulation based on a mental model of this 

course of events. 

Adaptation: Mental Models Adapt. Mental models are adapted often (e.g., 

learning, revising, forgetting); for example:  
‘Model-based learning is a dynamic, recursive process of learning by building mental 
models. It incorporates the formation, testing, and subsequent reinforcement, revision, or 
rejection of mental models of some phenomenon.’ [15] 

Observational learning concerns observation of others or of oneself while ‘learning by 

doing’ or ‘learning by discovery’. Learners may see someone perform a behavior and 
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then start to imitate it; e.g., [16, 17]. Mirror neurons are a basis for learning by 

observation; e.g., [18, 19, 20]. On the other hand, instructional learning is a useful 

addition as only learning based on observation may be not very efficient; e.g., [21].  

Control:  Mental Models Respond to Control. For learning mental models, 
control is exerted; see also [22, 23, 24]. Such control is also referred to as metacognition; 

e.g., [25, 26, 27, 28]. Also, the term self-regulation is used [28].   

Overall architecture. Based on the processes for mental models summarized above, 

a cognitive architecture for handling mental models has been designed covering the three 
types of processes in an integrated manner as depicted in Figure 1.  

 

 

 
 

 

 

 
 

 

 

Figure 1. A cognitive architecture for mental model handling.  

 

Here, mental models are addressed through multiple representations: they can be 

viewed from three levels of representation according to the three planes depicted in 

Figure 1. At the base level depicted by the lower (pink) plane, a mental model, which 
essentially is considered to be a relational structure, is represented by its nodes and the 

relations between the nodes. For internal simulation, the nodes have activation levels that 

vary over time: based on the relations these activation levels affect each other over time. 

Next, at the adaptation level depicted in Figure 1 by the middle (blue) plane, it is 
represented how the mental model relations change over time by some adaptation 

specification. Finally, at the top level depicted by the upper (purple) plane in Figure 1 it 

is indicated how the adaptation at the middle level is controlled. For more details of this 

architecture and its application, see [29]. 

3. Modeling by Self-Modeling Networks 

The Network-Oriented Modelling approach based on adaptive temporal-causal networks 

as self-modeling networks from [30, 31] is a suitable modeling approach to represent in 

an adaptive and controlled manner the causal relations and the way they can be processed 
to generate mental processes. Using this approach, adaptive networks of multiple orders 

can be modelled relatively easily. Network nodes X have state values indicated by real 

numbers X(t) that vary over time t; nodes are also called states. The characteristics 

defining a network are: 

� Connectivity characteristics: connections from states X to Y, having connection 
weights ��X,Y specifying their strengths  

� Aggregation characteristics: each state Y has a combination function cY that 

specifies how impact from all incoming connections on Y is aggregated. Based on 

   
 

   Control of adaptation of mental models 
 

 
 
 

     
 

          Adaptation of mental models 
 

 
 

     
 

    Internal simulation by mental models 

R. Bhalwankar et al. / Context-Sensitive Control of Adaptation 559



a list of basic combination functions bcfi (each with some parameters) provided by 

an available library, such a combination function can be specified by weights ��i and 

parameters �  i,j for these basic combination functions bcfi 

� Timing characteristics: each state Y has a speed factor �Y specifying how fast Y 
changes 

 

The numerical representation created by the available dedicated software 
environment is based on the following equations based on the above network 

characteristics (where X1, …, Xk are the states from which state Y gets incoming 

connections): 

 
impactX,Y(t) = �X,Y X(t)     (1) 

aggimpactY(t) = cY(impactX1,Y(t),…, impactXk,Y(t)) = cY(�X1,YX1(t), …, �Xk,YXk(t))   (2) 

Y(t+�t) = Y(t) + �Y [aggimpactY(t) - Y(t)] �t 
= Y(t) + �Y [cY(�X1,YX1(t), …, �Xk,YXk(t)) - Y(t)] �t              (3) 

 

A computational network engine developed within this software environment based on 

the generic equations (3) takes care for the processing of all network states thereby using 

their connections and other network characteristics.  
Self-modeling networks to model adaptivity and control. To design network 

models that are adaptive, the concept self-modeling network (also called reified network) 

introduced in [30, 31] has turned out to be very useful. A self-modeling network is 

obtained if for some of the network characteristics �, �, �, � as introduced above, 
network states are added to the network that represent their value. For example, for a 

connection weight �X,Y an additional state WX,Y (called a first-order self-model state) is 

added to the network that represents the value of this weight �X,Y and is indeed used as 
value for that weight in the processing. For such an additional network W-state, also 

additional network characteristics are added to get an adequate embedding in the 

obtained self-modeling network. For example, for Hebbian learning [32] a specific 

combination function hebb�(V1, V1, W) from the library can be used involving a 

persistence parameter �:  

 

hebb�(V1, V2, W) = V1V2 (1-W) + � W   (4) 

 

Here, V1,V2 are activation levels of the connected states and W is the activation level of 

the self-model state WX,Y for the connection weight. As a simpler alternative, sometimes 
the function  

 

smin	(V1, V2) = min(V1, V2)/	    (5) 
 

is used for Hebbian learning, where 	 is a scaling factor; e.g., see [33]. 
As an example at a next (second-order self-model) level, for the combination 

function hebb�(V1, V1, W) of a self-model state WX,Y, the persistence parameter � can be 
represented by another self-model state MWX,Y. The latter network state is a second-order 
self-model state as it represents a network characteristic related to (first-order) self-model 

state WX,Y. Another example of a second-order self-model state is a state HWX,Y that 

represents the speed factor (learning rate) � of (first-order) self-model state WX,Y. These 
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two types of self-model states can be used in an adaptive network model to control the 
learning of mental models: if the activation level of MWX,Y gets lower, more extinction 

takes place which occurs when mental models are forgotten. Moreover, decreasing 

activation values of HWX,Y model make the learning slow down, and a value 0 causes a 

complete freezing of the learning (no plasticity).  
These first- and second-order self-model states directly relate to the three levels in 

the architecture depicted in Figure 1. Within the lowest (pink) plane the base network 

states are depicted, within the middle (blue) plane the first-order self-model states (such 

as states WX,Y), and within the upper (purple) plane the second-order self-model states 
(such as states MWX,Y and HWX,Y). 

4. Examples of Self-Modeling Network Models for Mental Models 

In this section, as illustrations two examples of self-modeling network models for mental 

models are briefly discussed. They are both instantiations of the generic three-level 
architecture discussed in Section 2. 

Using metaphors as mental models. This example (described in more detail in [34]) 

addresses the use of metaphors as mental models to support joint decision making; see 

Figure 2 for a part of this network model. At the base levels two different metaphor 
options are modeled: cooperative metaphor state metcoo and competitive metaphor state

metcom; see the lower (pink) plane in Figure 2. The incoming and outgoing connections 

for these metaphor states are adaptive, modeled by the first-order self-model W-states; 

see the middle (blue) plane. The control of the adaptation of all these W-states is modeled 
by the second-order self-model HW-state; see the upper (purple) plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Connectivity of a part of an adaptive network model for mental models for metaphors with their 

activation and effect connections at the base level, their learning at the first-order self-model level and the 

control of the learning at the second-order self-model level. 

The two W-states for the incoming connections for the metaphor states determine 
when the metaphor should be activated. These connections are learnt by Hebbian 
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learning, which has as effect that the more often they are used in a certain context 
(represented by stimulus representation srss), the stronger their activations become when 

that context occurs. The four W-states for the outgoing connections from the metaphor 

states determine the effect of the metaphor states on the self-owner states; they are 

adapted based on whether the other person tends to go for action ac, and whether the 
other person has a good feeling bo about it (states srsB,ac and srsB,bo). For each of these 

six W-states, its adaptation is controlled through the second-order self-model HW-state 

which represents the learning rate of the related W-state. This form of second-order 

adaptation is based on the second-order adaptation principle ‘adaptation accelerates with 
increasing stimulus exposure’ [4]. 

 
Learner-controlled learning. The second example (described in more detail in [35]) 

addresses how a learner controls at what times instruction by a teacher takes place; see 
Figure 3 for a representative part of this model. Here the three RW-states in the middle 

(blue) plane represent the weights of the connections in the mental model (that is learned) 

depicted at the (pink) base level plane. For example, state RWSwitch,TurnSwitch within the 

first-order self-model plane, also indicated by X31, represents the weight of the 
connection in the base plane from state BSSwitch to state BSTurnSwitch (the arrow from X1 to 

X2). 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
Figure 3. Connectivity of a part of an adaptive network model for mental models for 

learner control of a teacher’s instruction.
 

These RW-states are based on input from observational learning (modeled by the 

corresponding LW-states) and instructional learning (modeled by the corresponding IW-

states). For example, state RWSwitch,TurnSwitch has incoming connections from 
LWSwitch,TurnSwitch and IWSwitch,TurnSwitch. The LW-states are adaptive based on Hebbian 

learning; to this end they use combination function (4) from Section 3. For this scenario, 

they are not (explicitly) controlled. In contrast, for the IW-states, their incoming 

connections from the IS-states (representing the communication channel from the 
information source IS-state, which is the teacher) are controlled. This control is modeled 

by the second-order self-model CTW-states at the upper (purple) level; these are also 

denoted as WW-states. For example, state CIWSwitch,TurnSwitch in the (purple) second-order 

self-model plane controls the connection from ISSwitch,TurnSwitch to IWSwitch,TurnSwitch, which 
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models the communication from instructor to learner about the connection from BSSwitch 
to state BSTurnSwitch. Such a control state CIWSwitch,TurnSwitch is activated once the 

corresponding LW-state LWSwitch,TurnSwitch  has a sufficient action level: the learner has 

(partially) learnt it based on observation and asks the teacher for confirmation. So, these 

CIW-states determine when the communication channels have to be opened for the 
instructional learning. 

 

Learning by counterfactual thinking. A third case to illustrate the approach is adopted 

from [36]; it addresses learning by counterfactual thinking; see Figure 4. Here after a 
negatively evaluated experience modelled by the red box in the base plane, the person 

considers internal simulation of mental models for alternative action options and their 

expected results (see the orange box in the base plane). The counterfactual status of this 

is modelled by the process modelled in the middle blue plane and that process is 
controlled by the upper level CS-states in the purple plane. See [36] for more details. 

 

 

Figure 4. Connectivity of the controlled adaptive network model for counterfactual thinking. 

5.  Options for Control of Adaptation using Self-Modelling Networks 

In Section 4, some examples of adaptation control for mental models were discussed, for 

two cases within the context of self-modelling networks used as a vehicle. In this section, 

a more systematic overview is discussed of different ways in which control over mental 

models and their adaptation can be exerted, thereby again making use of the network 
structure provided by self-modelling networks. In a controlled adaptive network model 

for mental models based on a self-modelling network, adaptation is modelled by a first-

order self-model. There are a number of network characteristics involved in the first-

order self-model states used for the adaptation. In particular, by systematically going 
through all possible network characteristics, the following examples of network 

characteristics for adaptation to be controlled can be distinguished and are illustrated by 

various examples: 
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� Control by adaptive connectivity characteristics of first-order self-model states 
o Adaptive connections of the causal pathways to the self-model states and their weights ��; 

for example: 
� Choosing a mental model to be applied. For example, a decision to use a specific metaphor-based 

mental model as in the model in Section 4 taken from [34] or a decision to use a geometric mental 

model to support learning of an arithmetic mental model, as described in [37] 

� Opening a communication channel from an information source to enable instructional learning of 

a mental model (decision to ask), as in the model in Section 4 taken from [35] and in the model 

described in [38] 

� Opening an observation channel to enable observational learning of a mental model (decision to 

observe), as in the model described in [38] 
o Adaptive connections of the causal pathways from the self-model states to other states and 

their weights �; for example: 
� Modelling the effects of a chosen metaphor as in the model in Section 4 taken from [34] 

� Control by adaptive aggregation characteristics of first-order self-model states 
o Adaptive choice of combination function; for example: 

� For Hebbian learning of mental model connections a weighted average of  
hebb�(V1, V2, W) and smin	(V1, V2), with adaptive weights �1 and �2. 

o Adaptive parameters of chosen combination functions; for example: 
� Adaptive values for the persistence factor � of hebb�(..) as in the self-modelling network model 

for shared mental models described in [38] or for the scaling factor 	 of smin	(V1, V2). 
� Control by adaptive timing characteristics of first-order self-model states 

o Adaptive adaptation speed (learning rate) �; for example: 
� Addressing the Plasticity Versus Stability conundrum [1] based on some context factors 

indicating when plasticity is needed fully and when plasticity should be limited or frozen.  

� Accelerating adaptation speed upon increased stimulus exposure [4], for example as applied in 

the example model in Section 3 taken from [34] 

In Table 1 an overview is given of a large number of applications of such self-models to 

model human processes based on mental models as brought together in book [29].  

Recall from Section 3 how at some level self-model states can be introduced to 

represent network characteristics from a lower level. The naming is as follows: self-

model state WX,Y represents connection weight �X,Y from the lower level, HY represents 

speed factor �Y from the lower level, and so on. Such self-model states can be generally 

called W-states or H-states, for example. By iterating this, for example, second-order 

self-model state HWX,Y represents the adaptation speed of first-order self-model state 

WX,Y and second-order self-model state MWX,Y represents the persistence parameter �WX,Y 

of first-order self-model state WX,Y. Similarly, second-order self-model state WZ,WX,Y 

represents the weight �Z,WX,Y of the connection from some state Z to state WX,Y. Such 
second-order self-model states can be generally called HW-states, MW-states, or WW-

states. Note that in most cells in Table 1 further references are included, but for those 

cells where no references are included, in general this means that these options are yet to 

be addressed in detail. 
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Table 1 Overview of different types of controlled adaptation for example mental models as collected in [29] 

6. Discussion 

This paper addressed how in mental and social processes, humans often apply specific 

mental models and learn and adapt them in a controlled manner. It was explored how 

analysis of such processes may provide useful inspiration for the development of 
computational approaches from an AI, computational intelligence and machine learning 

Learning by Control of adaptation  
via connectivity 

Control of adaptation  
via aggregation 

Control of adaptation  
via timing 

Observation and 

monitoring 

Controlled learning by 

observation for a mental model 

W-state for bonding via a WW-

state ([29], Ch 13; formation of a 

mental model of another person; 

see also [33]) 

Hebbian mental model 

learning W-state persistence 

control via an MW-state 

([29], Ch 14; controlled 

forgetting of a mental model 

relation; see also [39]) 

Hebbian mental model learning W-

state speed control via an HW-state: 

adaptation accelerates with 

increasing exposure ([29], Ch 5, Ch 

7, Ch 10, Ch 11, Ch 12; e.g., 

learning mental models for flashback 

experiences [14], analysis and 

support tasks [40], metaphors [34], 

God-models [41], self- and other- 

models [33]) 

Excitability 

adaptation 

Incoming connection for an 

adaptive mental model 

excitability T-state control via a 

WT-state ([29], Ch 7; learning 

excitability [42, 43] of a mental 

model’s states; see also [40]) 

Excitability mental model 

learning T-state aggregation 

control, for example through 

adaptive (steepness 

 and 

threshold �) parameters of a 

logistic combination 

function used for the T-state 

represented by ST- and TT-

states 

Excitability mental model learning 

T-state speed control via an HT-state 

([29], Ch 7; learning excitability [42, 

43] of a mental model’s states; see 

also [40]) 

Communication 

Learner-controlled instructional 

learning of a mental model W-

state via a WW-state ([29], Ch 9; 

opening a communication 

channel with the instructor by 

asking; see also [35]) 

Controlled learning by 

communication for a mental 

model W-state for bonding via a 

WW-state ([29], Ch 13 opening a 

communication channel with the 

other person by asking; see also 

[38]) 

Learner-controlled 

instructional learning of a 

mental model W-state via a 

TW-state for excitability [42, 

43] of the W-state (opening 

a communication channel 

with the instructor by more 

sensitive listening) 

Learner-controlled instructional 

learning of a mental model W-state 

via an HW-state (controlling the 

timing of a communication channel 

with the instructor) 

 

Other mental 

models 

Controlled connection W-state 

for counterfactual activation of a 

mental model via a WW-state 

([29], Ch 6; see also [36]) 

Controlled connection W-

state for counterfactual 

activation of a mental model 

via a TW-state addressing 

excitability [42, 43] of the 

W-state 

Controlled inter mental model 

exchange connection W-state via 

HW-state ([29], Ch 4; exchange from 

arithmetic mental model to 

geometric mental model; see also 

[37]) 

Contextual 

factors 

Controlled connection W-state 

for activation of mental model via 

a WW-state ([29], Ch 6; activation 

of a mental model for possible 

future action; see also [36]) 

Controlled connection W-

state for activation of mental 

model via a TW-state 

addressing excitability of 

the W-state based on 

contextual factors 

Controlled adaptive mental model 

effect connection W-state via an 

HW-state ([29], Ch 10; adapting the 

own choices based on the context 

given by the other person; see also 

[34]) 
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perspective. It was discussed how controlled adaptation relates to the Plasticity Versus 
Stability Conundrum in neuroscience [1]. From the analysis a three-level computational 

architecture for controlled adaptation was obtained. It was discussed how this three-level 

computational architecture can be modeled as a self-modeling network [30, 31], 

illustrated by a number of examples. 
The work discussed here can be considered as part of the area of human-like machine 

learning. Also, within machine learning in general there are a few approaches that do 

(explicitly) address control of adaptation. A simple example is Simulated Annealing, 

where the temperature parameter can be considered an adaptive adaptation control 
parameter. Another example is the Explore-Exploit Dilemma in reinforcement learning, 

where the challenge is to find criteria on the context that can be used to decide in a 

context-sensitive manner between explore or exploit; e.g., [5, 6, 7]. Two limitations of 

the current state of the presented work that may be identified are: 

� The approach has only been explored yet for deterministic models. In principle, 

probabilistic models are possible when combination functions are added to the 

library with some probabilistic or random effects, but this still has to be explored 
in more detail 

� Analysis of the wider domain of human-like approaches to control of adaptation, 

in particular for mental model adaptation as discussed here, may provide 
inspiration for further development of machine learning methods. This is also an 

area that has not yet been explored in more detail. 

It may be noted from this paper that for human-like controlled adaptation much input 

and inspiration was obtained from the area of neuroscience; for example, in [1, 2, 3, 4] 
and many other papers on metaplasticity several second-order adaptation principles for 

context-sensitive control of adaptation can be found. This is in strong contrast with the 

area of social science. Literature on adaptive social relations or adaptive social networks 

is available including computational models for it, such as [44, 45], but although 
adaptation control is certainly also in this area a very relevant factor, approaches 

addressing the control of adaptation seems to be lacking in such literature, where only 

just a few more or less incidental exceptions can be found such as [6, 30, 34, 38, 39, 46, 

47] and [31], Ch 6. Much progress would become possible for social science by explicitly 
addressing this issue more systematically and on a much larger scale like it was already 

done within neuroscience. 
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