
Krylov Subspace Methods for Big Data
Analysis of Large Computational

Electromagnetics Applications

Bruno CARPENTIERI a,1

a Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bolzano, Italy

Abstract. In this paper we present some computational techniques based on the
class of preconditioned Krylov subspace methods that enable us to carry out
large-scale, big data simulations of Computational Electromagnetics applications
modeled using integral equations. This analysis requires the solution of large
linear systems that cannot be afforded by conventional direct methods (based on
variants of the Gaussian elimination algorithm) due to their high memory costs.
We show that, thanks to the development of efficient Krylov methods and suitable
preconditioning techniques, nowadays the solution of realistic electromagnetic
problems that involve tens of million (and sometimes even more) unknowns, has
become feasible. However, the choice of the best class of methods for the selected
computer hardware and the given geometry remains an open problem that requires
further analysis.
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1. Introduction

Our society is characterized by an unprecedented ability to generate large volume of
data that can be analysed by advanced computer algorithms to produce new knowledge,
and use such information to simulate and reproduce the complex behaviour of real-
world systems. The “big data” paradigm in science is driving the development of novel
scientific methodologies that are opening up new frontiers for advanced discoveries in
many fields of science; see e.g. [1,2,3,4,5,6] for some examples of big data simulations
in computational science. In this paper, we discuss a case study in Computational
Electromagnetics.

Many wave propagation phenomena in science are formulated mathematically
in terms of integral equation models that are defined on the boundary of the
pertinent computational domain. One of the most popular integral equation models
for electromagnetic (EM) scattering applications is known as Electric Field Integral
Equation (EFIE). It solves the integral equation below for the surface current �j
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∫
Γ

∫
Γ

G(|y− x|)
(
�j(x) ·�jt(y)− 1

k2 divΓ�j(x) ·divΓ�jt(y)
)

dxdy=
i

kZ0

∫
Γ
�Einc(x)·�jt(x)dx,

where �jt ’s denote suitable tangential test functions. By symbol div�j(x) we indicate the

divergence operator, and G(|y− x|) = eik|y−x|

4π|y− x| is the Green’s function for scattering

problems. The other symbols are defined as follows: Γ is the boundary of the domain
of interest, by Z0 =

√
μ0/ε0 the impedance of free space, and finally by k, ε and μ the

wave number, the electric permittivity and the magnetic permeability of the medium,
respectively. This model is applicable to generic objects, including those that have
cavities and/or disconnected parts.

The numerical discretization of EFIE by the Method of Moments (MoM) [7] using
a mesh with n edges yields an n-dimensional linear system

Ax = b. (1)

In Eq. (1), the unknowns in vector x represent the vectorial flux of the surface electric
current across the edges of the underlying mesh, A is a dense, complex, symmetric non-
Hermitian matrix containing the contributions to the EFIE singular integrals, while the
right-hand side vector b depends on the characteristics of the illuminating radiation such
as the incidence angle. Scattering analysis may demand very large computer resources
and highly efficient numerical algorithms. For example, accurate modeling of a perfectly
conducting sphere of diameter of 1,800 wavelengths yields systems with more than 3
billion equations, whose storage requires 144,000 petabyte of data [8]. Systems of this
size are not affordable using variants of the conventional Gaussian elimination algorithm.
They can be solved only using matrix-free computational techniques such as the class
of iterative Krylov subspace methods, that can overcome the memory bottlenecks of
Gaussian elimination since they are based on matrix-vector and vector-vector operations.

The Generalized Minumum Residual (GMRES) method introduced by Saad and
Schultz in [9] is a very popular Krylov subspace algorithms. After k iterations it computes
the approximate solution of Eq. (1) that minimizes the 2-norm of the residual over
the Krylov space Kk(A,r0) = span

{
r0,Ar0, ...,Akr0

}
at the cost of O(nk) arithmetic

operations and storage units. On the other hand, nonoptimal Krylov methods are
developed upon three-term vector recurrences and have O(n) complexity in both time
and space. The principal developments of nonoptimal methods include the Conjugate
Gradients Squared (CGS) method by Sonneveld, the Quasi-Minimal Residual (QMR)
and the Transpose-Free Quasi-Minimal Residual methods by Freund and Nachtigal, the
Biconjugate Gradient STABilized (BiCGSTAB) method by van der Vorst, and others.
See [10] for an overview of Krylov subspace methods. Recently, a new class of
Krylov algorithms built upon the Lanczos A-orthonormalization procedure has shown
competitive convergence rates for solving surface integral equations [11].

In many EM applications, including scattering analysis, microwave and millimeter-
wave circuits design, antenna array simulations and others, the pertinent linear systems to
solve have all the same coefficient matrix A and a set of different right-hand side vectors.
In this circumstance, Eq. (1) writes in the form

AX = B, (2)
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where B = [b1,b2, . . . ,bp] ∈ C
n×p is the matrix of the, say p, right-hand side vectors bi,

i = 1,2, . . . , p and X ∈ C
n×p is the solution matrix to be computed. Block variants of

Krylov subspace methods are significantly more robust than standard Krylov algorithms
for solving Eq. (2) as they typically use much larger search spaces and a block
implementation of the matrix-vector product operations that can better exploit the
sophisticate memory hierarchy of modern computers [10].

2. Preconditioning boundary integral equations

The convergence of Krylov subspace methods is often slow and needs to be accelerated
by a technique called preconditioning, which transforms the initial system Ax = b into an
equivalent system that has more favourable eigenvalues distribution, i.e. the vast majority
of its eigenvalues are grouped close to point one of the spectrum. The new transformed
system writes as M−1Ax = M−1b if the preconditioner matrix M is applied from the left,
or AM−1y= b (here x=M−1y) if it is applied from the right. Preconditioning is necessary
on EFIE as the number of Krylov iterations tends to increase as O(n0.5) when the number
of unknowns, n, is related to the wavenumber. An effective preconditioner for solving
surface integral equations should be cheap to compute and easy to combine with the data
structure of fast integral equations solvers, e.g., the Multilevel Fast Multipole Algorigthm
(MLFMA) [12], H -matrices [13], wavelet techniques [14], panel clustering [15] and
similar approaches, so that it can maintain overall O(n logn) complexity. Another
important requirement is that it should scale satisfactorily with the frequency of the
problem and the number of processors, yielding robust convergence across a wide range
of geometries and physical parameters. These requirements often contradict with each
other. However, when an effective preconditioner is available, the selection of the Krylov
algorithm to use is much less critical.

The need to solve large dense linear systems in big data EM simulations has led to
the production of many efficient methods rather than to the specialization in one specific
technology. For memory concerns, many efficient preconditioners for surface integral
equations in EM are constructed from a sparse matrix S that approximates A and is much
easier to invert than A. Initially, the boundary element matrix A is decomposed in the
form

A = Anear +A f ar,

where Anear is the block diagonal and near-diagonal part of A coming from the
interactions of nearby basis functions in the mesh, while A f ar is the far-field part
of A associated with interactions of distant basis functions. Then, it is natural to
define S = Adiag +Anear. In the next sections, we identify some of the most important
classes of preconditioning methods for Krylov subspace solvers constructed from such
approximation S.

2.1. Incomplete LU (ILU) factorization methods

Incomplete LU factorization preconditioners decompose approximately matrix S as
M = L̃Ũ ≈ S, where the factors L̃, Ũ are obtained by applying an incomplete Gaussian
elimination procedure to S. Due to the indefineteness of A, on EFIE it is likely to
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encounter small pivots during the factorization, and to compute ill-conditioned triangular
solves [16]. The problem of ill-conditioning can be remedied by reordering the entries
of S before the factorization, by shifting the diagonal entries of S, or by using numerical
pivoting. A recently developed family of multilevel incomplete LU factorization methods
has yielded robust performance on this problems class (see e.g. some results in [17]).
Incomplete LU factorization algorithms are not inherently parallel. However, good
scalability can be obtained using domain decomposition techniques at the cost of
moderate computational overhead.

2.2. Sparse approximate inverse methods

Considerable attention in the last years in EM have received computational methods
that explicitly approximate and store the inverse of boundary integral equation matrices
[18,19]. The approximate inverse matrix M ≈ S−1 is used as a preconditioner for
Krylov methods. This approach is especially interesting for parallelism because applying
M at every iteration simply requires one (or sometimes two) sparse M-V products
that are easier to implement efficiently than conventional triangular systems solves on
modern distributed memory multiprocessor computers and graphics processing units
(GPUs). Admittedly, an efficient parallel implementation of these methods based on
the Message Passing Interface and Open Multi-Processing paradigms with optimized
parameter setting, runtime environment, load balance and minimised data movement on
the given problem and dataset is a challenge in its own right [18,20]. Due to the highly
localized coupling of the edges in the underlying mesh, boundary element matrices
exhibit a good deal of regularity. As a consequence of this property, A can be effectively
approximated by a very sparse matrix. Figure 1 shows that 1) the distribution of the large
matrix entries in A and A−1 can be very similar because of the exponential decay of the
Green’s function, 2) a sparse matrix can approximate A−1 very effectively, and 3) the
pattern of the sparsified matrix A can be a good choice for the nonzero structure of the
approximate inverse.

The sparse approximate inverse known as SPAI computes the numerical values of
the entries of the preconditioner M by minimizing the Frobenius-norm of the matrix
‖I − SM‖F (in the case of right preconditioning), or ‖I −MS‖F (in the case of left
preconditioning). The computation reduces to solving n separate linear least-squares
problems, one per column or row of M depending whether the preconditioner is
computed from the right or from the left, according to the following equation

‖I−SM‖2
F =

n

∑
j=1
‖e j−Sm• j‖2

2, (3)

where we denote by e j the jth canonical unit vector and m• j is the jth column of M. For
right preconditioning, an analogous relation to Eq. (3), that is

‖I−MS‖2
F = ‖I−ST MT‖2

F =
n

∑
j=1
‖e j−ST m j•‖2

2

holds, where m j• is the jth row of M. Successful experiments with approximate inverse
methods are reported for the solution of both surface and surface-volume integral
equations [18,19,21].
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(a) Distribution of the entries values
in A.

(b) Distribution of the entries values
in A−1.

(c) Pattern of sparsified A. (d) Pattern of sparsified A−1.

Figure 1. Above: typical pattern of the large entries of the coefficient matrix A (on the left) and of its inverse
A−1 (on the right) for boundary element matrices. We depict large to small entries using different colors, from
red to green, yellow and blue. The model problem is a sphere. Below: nonzero structure of A (left) and of A−1

(right) after thresholding all the entries having relative magnitude less than 5.0×10−2.

2.3. Multilevel methods

Due to the sparsity of the local approximation S used to compute the preconditioner
M, some strategies need to be developed to make the preconditioner more robust on
large problems. In the inner-outer two-levels iterative method proposed in [18], for the
preconditioning operation we carry out some iterations of an inner Krylov method, to
balance the locality of the preconditioner with the use of the MLFMA matrix arising from
the discretization. The effectiveness of this approach depends on three main ingredients:
1) the outer solver must accomodate variable preconditioners (e.g., FGMRES [22] and
GMRES� [23, p. 91] are two possibilities), 2) the inner solver needs to be preconditioned
to ensure a significant reduction of the inner residuals in a few iterations, 3) the matrix-
vector operations in the inner solver can be less accurate as they are used for the
preconditioning operation. Another attempt to improve conventional preconditioners for
boundary integral equations “removes” the negative effects that very small eigenvalues
of the preconditioned matrix can have on the convergence [24].

By using a three-levels inner-outer schemes, we solved a rectangular cavity
problem discretized with 12,697,120 unknowns in 58 minutes. The construction of the
preconditioner took 30 minutes on 36 processors, and demanded 96GB memory in total.
On a computer with 120 cores of a computer cluster equipped with 6-core processors,
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Figure 2. Left. A cluster tree in the H -matrix approach. Right. Four levels block cluster tree:
nodes to be refined are coloured light red, admissible leaves are green, inadmissible ones are red.

2.66GHz clock rate, 10 nodes with 48GB of memory each, a 40Gb/s Infiniband network,
we solved a scattering problem from a Cobra geometry modeled with 21,682,980
unknowns in 38 minutes of CPU elapsed time, and a tank with 10,768,581 unknowns in
only 12 minutes.

2.4. H -matrix-based solvers

A more recent approach to build low-complexity data-sparse matrix solvers for EFIE
linear systems is based upon the hierarchical H -matrix representation of A, which
replaces dense blocks of A by low-rank approximants computed without any knowledge
of the underlying kernel. In the original H -matrix formulation [13], the blocks that are
admitted a low-rank representation satisfy the admissibility criterion

min(diam(Bs) ,diam(Bt))≤ η ·dist (Bs,Bt) (4)

for some 0<η . In (4), Bs and Bt are rectangular boxes surrounding two clusters s and t of
nodes in the mesh, whereas the distances (dist) between s and t and the diameters (diam)
of these clusters are computed in terms of the Euclidean norm from the center of gravity
of the box. Upon recursive partitioning of the bounding box into smaller boxes until the
admissibility condition (4) is not satisfied, a cluster tree data structure is obtained, similar
to the left Figure 2. Then, a hierarchical H -matrix block partitioning of A is produced
by associating the matrix block (Ai j)i∈s, j∈t to the cartesian product s× t, as in the right
Figure 2. It has been shown that by means of fast low-rank (k) compression of the
admissable blocks, an almost optimal O(nklogn) memory complexity and O(nk2 log2 n)
arithmetic costs can be achieved for the matrix vector multiply, factorization and inverse
operations using H -matrices [25].

The so-called hierarchical H 2-matrix representation can significantly improve
the efficiency of H -matrices by computing nested low rank factorizations of entire
collections of blocks instead of decomposing each admissible block separately [26]. An
admissible block Ast associated to the cluster of nodes s and t satisfies the admissability
condition

max(diam(Bs) ,diam(Bt))≤ η ·dist (Bs,Bt)

which replaces condition (4) in the theory of H 2-matrices, and is represented
mathematically by the rank-k factorization

Ãst =VsSkV H
t ,
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where Vs of size #s×k and Vt of size k×#t (here symbol # denotes the set cardinality) are
called cluster bases of clusters s and t, while Sk of size k× k is called coupling matrix.
The H 2-matrices variant of H -matrices achieves O(nk) storage complexity for a n×n
boundary element matrix, instead of the O(nk logn) memory complexity of standard
H -matrices, at the cost of only slighly larger error [26]. In Figure 3 we show some
convergence results obtained by the author for solving a radar cross-section calculation
problem on an Airbus aircraft prototype mesh discretized with n = 23676 nodes using
an H 2-matrices-based solver. We can see that fast convergence can be achieved on
this difficult problem using low to moderate sparsity levels for the matrix Anear used to
construct the preconditioner.

(a) Aircraft prototype mesh (23676 dofs).
Courtesy of EADS-CCR Toulouse.

(b) Convergence histories on the Airbus aircraft
prototype mesh.

Figure 3. GMRES convergence histories with H -matrix-based solvers on the Airbus aircraft problem.

3. Conclusions

In this paper we have discussed large-scale simulations of Computational
Electromagnetics applications modeled using integral equations. We have shown that
their rigorous numerical solution requires to process large volumes of data, and thus
it is highly demanding of innovative algorithms. An essential ingredient of the big
data analysis is the numerical solution of high-dimensional linear systems that cannot
be solved by the standard Gaussian elimination method. We have presented low-
complexity iterative solution techniques based on Krylov subspace methods, incomplete
factorizations, sparse approximate inverses, multilevel schemes and H -matrix-based
solvers for this class of problems. An iterative method can solve an n × n dense
linear system arising from the boundary element discretization of integral equations in
O(n logn) arithmetic operations, that is a dramatic improvement compared to the O(n3)
work required by a direct method. Effective preconditioners are mandatory to use to
decrease the total number of iterations from O(n) to O(1). By using Krylov subspace
methods and robust preconditioners, big data analysis of extremely large Computational
Electromagnetics applications with tens of million unknowns, and even more, is
becoming feasible. Some of these techniques can be used in other electromagnetic
simulations, e.g. in fusion energy research [27]. However, the choice of the best class
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of methods for the selected computer architecture and given geometry remains an open
problem that requires further analysis.
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Research Südtirol/Alto Adige 2019 grant (Provincia autonoma di Bolzano/Alto Adige –
Ripartizione Innovazione, Ricerca, Università e Musei, contratto no. 19/34) is gratefully
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