
Multi-Step Low-Rank Decomposition
of Large PageRank Matrices

Zhao-Li SHEN a Bruno CARPENTIERI b,1

a College of Science,
Sichuan Agricultural University, Ya’an, Sichuan 625000, P.R. China

b Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bolzano, Italy

Abstract. The PageRank model, initially proposed by Google for search engine
rankings, provides a useful network centrality measure to identify the most
important nodes within large graphs arising in several applications. However, its
computation is often very difficult due to the huge sizes of the networks and the
unfavourable spectral properties of the associated matrices. We present a novel
multi-step low-rank factorization that can be used to reduce the huge memory cost
demanded for realistic PageRank calculations. Finally, we present some directions
of future research.

Keywords. PageRank model, network centrality computation, matrix pre-
processing algorithms, low-rank factorization.

1. Introduction

The PageRank model proposed by Google in a series of papers [1,2] can quantify the
importance of each Web page efficiently from the linking structure of the World Wide
Web. In this model, the linking structure is represented by a binary matrix G ∈ Rn×n

(where n denotes the number of hyperlinked pages) such that G(i, j) is nonzero (being 1)
only when there is a hyperlink pointing from the jth to the ith page. Then the stationary
distribution of a random walk on this structure represents the importance of each page.
An important assumption of the model is the equal probability of each hyperlink to be
selected on a given page. Accordingly, the transition matrix P of this random process is
defined as

P(i, j) =

1

n
∑

k=1
G(k, j)

, if G(i, j) = 1,

0, otherwise.
(1)

To ensure that the process will not stagnate when the surfer visits a node with 0 out-
degree, matrix P is usually modified as P̄ = P+ vdT , where d ∈ Nn×1 is a binary vector
such that d(i) = 1 when the ith node has 0 out-degree. Meanwhile the irreducibility of

1Corresponding Author: Bruno Carpentieri; E-mail: bcarpentieri@gmail.com. This author is a member of
the Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM)
and this work was partially supported by INdAM-GNCS under Progetti di Ricerca 2020.

Fuzzy Systems and Data Mining VII
A.J. Tallón-Ballesteros (Ed.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210212

397

the Markov chain is needed for a unique solution, hence P̄ is often modified into a matrix
P̃ defined as follows

P̃ = αP̄+(1−α)veT , (2)

where α ∈ (0,1) is called the damping factor, v∈Rn×1 is a probability distribution vector,
and e = [1,1, · · · ,1]T . Finally, the PageRank model can be stated as finding the stationary
distribution vector x such that

P̃x = x, ‖x‖1 = 1, x > 0. (3)

The eigen-problem (3) is mathematically equivalent to the solution of the nonsingular
linear system [3]

Ax = v, A = (I−αP), x > 0. (4)

The PageRank model depends solely on the graph topology of G and on the
user-defined damping factor α and distribution vector v. Therefore, it represents a
general network centrality measure that can be used to analyze large graphs arising in
many computational science and engineering applications [4]. The assumption that the
relevance of a node is determined by the number and by the importance of the nodes
pointing directly to it is appropriate for many classes of networks arising in applications.
Indeed, the model is broadly used far beyond search engine rankings, e.g., in feature
selection of intelligent systems [5], in large micro-array experiments of computational
biology such as the GeneRank [6] and the ProteinRank [7] problems, in ranking authors
from co-citation networks [8], to name only a few examples. Recently, the model has
been generalized to analyze multiplex networks as well [9].

In the past decade or so, considerable research attention has been devoted to the
efficient solution of problems (3)-(4), especially when n is very large. Nowadays Web
page ranking often deals with over billion pages and social networks graphs may consist
of more than 100 millions nodes. Solving eigen- or linear systems of such huge sizes
is a computational challenge that demands large costs in hardware and time. Direct
solvers based on matrix factorizations are clearly not affordable to solve problems of
this dimension in linear time and space. Iterative solvers based on sparse matrix-vector
products and dense vector operations are thus mandatory to use. In applications where
the damping factor α approaches 1, the convergence rate of classical iterative solvers
such as the Power method, the Jacobi method and the Gauss-Seidel method will seriously
deteriorate, and more robust algorithms need to be used. For example, the Power method
initially used by Google for computing PageRank vectors converges about 10 times
slower in the case when α = 0.99 compared with α = 0.9. Because the size of PageRank
problems keeps growing, the development of more sophisticated and efficient solvers
for this problem class are an active research topic of computational mathematics. In
this paper, we present a new multi-step low-rank factorization method that can be used
to significantly reduce the memory costs required for realistic PageRank calculations.
Throughout the paper, we adopt MATLAB notation and write A(i, :) to denote the ith row
of matrix A, while A(:, j) represents the jth column of A, and A(i1 : i2, j1 : j2) is the block
of A from row i1 to row i2 and from column j1 to column j2.

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices398

2. Multi-step low-rank factorization of PageRank matrices

An iterative method for solving the nonsingular PageRank linear system Ax = v needs to
store only the coefficient matrix A and the right-hand side v, plus a few extra temporary
vectors. By using sparse storage formats, such as the Compressed Sparse Row (CSR)
or the Compressed Sparse Column (CSC) formats, the storage costs mainly depend
on the number of nonzeros nnz(A) of A. The algorithmic complexity also depends on
nnz(A), since the most expensive operation of an iterative method is the sparse matrix-
vector multiplication Au 2. Therefore, for very large values of n, significant memory
and time efforts could be saved by reducing nnz(A). For this purpose, we recall below
two important properties of the transition matrix P that determines the structure of
A = I−αP.

Property 2.1 (Property 2.1 in [10]) The nonzero entries in each column of the transition
matrix P defined in (1) are positive and have the same value.

For example, the transition matrix P corresponding to the Web matrix G below has the
following form:

G =

1 1 1 1
0 1 1 0
0 0 1 1
1 1 1 1

→ P =

1
2

1
3

1
4

1
3

0 1
3

1
4 0

0 0 1
4

1
3

1
2

1
3

1
4

1
3

 . (5)

Property 2.2 (Property 2.2 in [10]) Same patterns in the rows of G define identical
subrows in P.

For instance, in the previous example, the last two rows of G have a common pattern in
the last two columns. Consequently, the corresponding subrows in P are identical and
have values

(1
4 ,

1
3

)
. Property 2.2 indicates that any two rows of P with similar nonzero

pattern contain many identical entries that can be zeroed out by substracting one row
from the other [10], and full blocks of P consisting of rows with same pattern can be
suitably compressed by a low-rank matrix representation. For example, in the matrix
below

P =

0 ∗ ∗ 0 ∗
∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
0 0 ∗ 0 ∗

 , (6)

the 2nd , 3rd and 4th rows of P have nonzero entries in the 1st , 2nd and 4th

columns. Therefore, we can compress those nonzero entries by the following low-rank
decomposition:

2Hereafter, u means an arbitrary vector with appropriate size.

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices 399

P =

0 ∗ ∗ 0 ∗
0 0 0 0 ∗
0 0 ∗ 0 0
0 0 ∗ 0 0
0 0 ∗ 0 ∗

+

0 0 0 0 0
∗ ∗ 0 ∗ 0
∗ ∗ 0 ∗ 0
∗ ∗ 0 ∗ 0
0 0 0 0 0

=

0 ∗ ∗ 0 ∗
0 0 0 0 ∗
0 0 ∗ 0 0
0 0 ∗ 0 0
0 0 ∗ 0 ∗

+

0
1
1
1
0

 [∗,∗,0,∗,0] = PR + f hT . (7)

The latter form enables to save the storage of three matrix elements. Any submatrix of P
consisting of rows with the same nonzero pattern can be compressed. The same operation
can be applied to the remaining matrix PR, recursively, until no more nonzero elements
can be further compressed. In practice, such low-rank factorizations will be implemented
on the matrix αP to produce a matrix decomposition of the form αP = D̄+ F̄H̄, where
D is the final remaining matrix, F and H are respectively formed by the columns and
the rows generated by the low-rank factorizations. Note that since A = I−αP = (I−
D̄)− F̄H̄, we can also write A = D+FH, where D = I− D̄ is a nonsingular M-matrix,
F = −F̄ and H = H̄. Therefore, matrix A can be compressed as well and our goal is to
maximimize the degree of compression of A.

We define a metric, hereafter referred to as the compression number, that counts the
reduction of nonzero matrix elements to be stored after compression, i.e. Comp(A) =
nnz(A)− nnz(D)− nnz(H)− nnz(F). Note that the larger the compression number, the
more efficient the algorithm. To start, we select the, say ith, row of P that can maximize
the compression number. According to Property 2.2, the largest amount of nonzero
matrix elements that can be saved due to compressions on the ith row is given by the sum
of number of nonzeros in the columns of P corresponding to the nonzero elements of
this row. In the given Example (6), the compression of any block of P that contains the
first row, P(1, :), can save at most all the nonzeros in the three columns P(:,2), P(:,3)
and P(:,5). Therefore, an upper bound on the compression number obtained by a rank-1
factorization of any block of P that contains P(1, :) is given by nnz(P(:,2))+ nnz(P(:
,3))+ nnz(P(:,5)), that is equal to 11. For the ith row, we denote such upper bound on
its maximum achievable compression number as maxcom(i).

Motivated by these considerations, we adopt the following strategy: initially, we
select the row of P with the largest maxcom value. Suppose that it is the ith row P(i, :) of
P. Then, we traverse the pattern of P to find other rows that can be merged with P(i, :)
to form a suitable block that can be effectively compressed by a rank-1 decomposition.
Clearly, P(i, :) should be merged with rows that have the most similar sparsity patterns,
as this may potentially lead to a higher compression number. Referring to Example (6),
the 3rd and 4th rows P(3, :) and P(4, :) have both the largest maxcom value. We select
P(3, :) as a reference row. The row with the highest pattern similarity with P(3, :), that is
the largest number of nonzero elements in the same column indices, is P(4, :) followed
by P(2, :), P(1, :) and P(5, :). The traverse follows this order. The rank-1 factorization
of the block P(3 : 4,1 : 4) will increase the compression number by 2 since P(3, :) and
P(4, :) have nonzero elements in their first four columns. However, it is convenient to
merge P(4, :) and P(3, :) also with P(2, :), because the rank-1 factorization of the nonzero

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices400

block P(2 : 4, [1,2,4]) increases the compression number by 3 and therefore a better
compression can be achieved. On the other hand, if P(1, :) is merged with P(2, :), P(3, :
) and P(4, :), the rank-1 matrix factorization of the block P(1 : 4,3) can not increase
further the compression number, since these four rows are all nonzero only at column 2.
Therefore, P(1, :) is not merged with the other three selected rows, the search procedure
is stopped, and the rank-1 factorization P = PR + f hT is computed as (7). The same
process can be repeated on matrix PR. As mentioned above, such multi-step low-rank
factorization in practice is implemented on the matrix αP, yielding the decompositions
αP = D̄+ F̄H̄ and A = D+FH.

Two important amendments need to be introduced in the above algorithm, in order
to limit the time cost of the compression procedure without sacrificing considerably the
number of reduced nonzeros. At first, prior to the multi-step low-rank factorization, the
rows of αP are permuted in density increasing order, by moving the most sparse ones
to the top and the most dense ones to the bottom of the matrix. For costs reduction, the
most sparse rows with a number of nonzero elements equaling to θ ·nnz(A) are excluded
from the traverses, where θ is a user-defined ratio. Besides, we set a maximum number
of implementations of rank-1 decomposition for the multi-step low-rank factorization.
We suggest setting this upper-limit as 1%-15% of the matrix dimension. The reason
is twofold: 1) at each step, the algorithm selects and compresses the rank-1 block that
may increase most the compression number; as the compression increase is expected
to decrease with the number of rank-1 factorizations, a relatively small number of such
factorizations should be preferred; 2) the number of rank-1 factorizations is equal to the
dimension of the dense capacitance matrix I +HD−1F when preconditioner based on
the Woodbury formula are constructed from the decomposition A = D+FH as in [11].
Finally, the whole algorithm of the multi-step low-rank factorization is presented as
Algorithm 1, where Matlab functions and their calling methods are used for description.

3. Numerical experiments

We investigate the performance of the multi-step low-rank factorization strategy on
several Web adjacency matrices G extracted from the matrix repository of [12] and the
Laboratory for Web Algorithmics [13,14,15]. The characteristics of each matrix G are
reported in Table 1. The PageRank matrix A is constructed using the damping factor
α = 0.9. All numerical experiments are carried out in MATLAB R2018b on a 64-bit
windows 7 computer equipped with an Intel core i3-8100 processor and 24GB RAM
memory.

Table 1. Characteristics of the Web adjacency matrices G, where n is the dimension, and nnz is the number of
nonzero elements.

Name n nnz nnz/n2

uk-2007-100000 100,000 3,050,615 3.1e-4
cnr-2000 325,557 3,216,152 3.0e-5
in-2004 1,382,908 16,917,053 8.8e-6

We set the values of θ as 0.1,0.2,0.3,0.4, and the upper-bound r on the number
of rank-1 factorizations divided by n as 0.01,0.05,0.1,0.15,0.2. For each matrix and

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices 401

for each pair of parameter setting, we run the multi-step low-rank factorization on the
matrix αP and report the time cost Time in seconds and the compression ratio Comr =
(nnz(F ∗H)−nnz(F)−nnz(H))/nnz(A). The results are reported in Table 2.

Table 2. The time cost and the compression ratio of the multi-step low-rank factorization.

Problem: uk-2007-100000

θ → 0.1 0.2 0.3 0.4
r ↓ Time Comr Time Comr Time Comr Time Comr

0.01 1.64 67.2% 0.95 65.9% 0.80 59.9% 0.70 51.9%
0.05 3.57 72.1% 1.60 67.4% 1.07 60.1% 0.76 51.9%
0.10 5.05 73.1% 2.28 67.4% 1.08 60.1% 0.77 51.9%
0.15 6.28 73.4% 2.47 67.4% 1.09 60.1% 0.76 51.9%
0.20 7.33 73.4% 2.49 67.4% 1.08 60.1% 0.76 51.9%

Problem: cnr-2000

θ → 0.1 0.2 0.3 0.4
r ↓ Time Comr Time Comr Time Comr Time Comr

0.01 11.4 51.9% 6.65 52.8% 4.02 51.9% 2.68 45.9%
0.05 33.6 59.0% 15.4 58.4% 8.34 53.1% 3.86 45.9%
0.10 58.3 60.4% 24.6 58.2% 8.19 53.1% 3.89 45.9%
0.15 81.8 60.5% 26.7 58.2% 8.22 53.1% 3.90 45.9%
0.20 104.9 60.1% 26.5 58.2% 8.05 53.1% 3.98 45.9%

Problem: in-2004

θ → 0.1 0.2 0.3 0.4
r ↓ Time Comr Time Comr Time Comr Time Comr

0.01 122 56.4% 45.3 58.6% 16.5 56.6% 9.95 49.7%
0.05 478 66.3% 131 63.2% 30.6 56.9% 10.7 49.7%
0.10 872 67.1% 195 63.1% 30.6 56.9% 10.7 49.7%
0.15 1284 66.8% 196 63.1% 30.9 56.9% 10.7 49.7%
0.20 1632 66.4% 197 63.1% 30.9 56.9% 10.7 49.7%

In our experiments, both the time cost and the compression ratio of the multi-step
factorization generally decrease with θ while they increase with r. Consistently with
our analysis, a small value of r can guarantee a good compression ratio that tends to
raise very slowly with r. In Table 2, the compression ratio is almost constant for each θ

and for values of r in the range between 0.05 to 0.20. This observation suggests that a
suitable setting for the value of r can be r ≤ 0.05. Besides, when θ increases, the time
cost decreases much faster than the compression ratio, and setting θ = 0.3 or 0.4 is an
advisable choice. In such cases, the compression ratio tends to increase little when r
increases from 0.01 to 0.05. Thus, it is better to set r = 0.01. Seen from this table, the
multi-step low-rank factorization can achieve large compression ratio at low to moderate
computational cost. Therefore, it can be useful to reduce significantly the storage cost of
Web graphes and the PageRank computations. This may be an attractive advantage when
solving PageRank problems, especially when the damping factor approaches 1 or several
PageRank problems corresponding to the same Web structure need to be solved.

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices402

Algorithm 1 Multi-step low-rank factorization for PageRank problems

Input: G, αP, θ , r
1: Compute the number rownnz of nonzero elements for each row of G, set k = 1;
2: Permute and mark the rows of G and αP in a rownnz increasing order until the amount of

nonzero elements in the marked rows reaches θnnz(G);
3: Suppose the first unmarked row is rowl , generate PickG = G(l : n, :) and PickA = A(l : n, :);
4: Compute the number of nonzeros in each column of PickG, store it in vector colsum;
5: Compute the maxcom value of each unmarked row by maxcom = pickG∗ colsum′;
6: for i = 1 : r ∗ size(P,2) do
7: Pick a row row j from the unmarked rows with the largest maxcom value;
8: Set common j = row j;
9: if maxcom(j) == 0 then

10: Break;
11: end if
12: Find the column indexes of the nonzero elements of row j, store them in vector neighbors;
13: Compute the number of nonzeros of columns neighbors distributed in each row by

repeats = sum(pickG(:,neighbours),2);
14: Permute the rows by [sumrow,orderr] = sort(repeats,′ descend′);
15: Set compressed j=0, index j = 1, N(k).group = [j];
16: if sumrow(2)< 1 then
17: Set maxcom(j) = 0 and rownnz(l + j−1) = 0;
18: Continue;
19: end if
20: for s = 1 : n− l +1 do
21: Compute the common nonzero indexes by temcommon = common j.∗ pickG(orderr(s), :);
22: Compute the number of common nonzero indexes by temcommonnnz = nnz(temcommon);
23: if temcommonnnz ∗ index j > compressed j then
24: Set N(k).group = [N(k).group,orderr(s)], common j = temcommon;
25: Set compressed j = temcommonnnz ∗ index j;
26: Set index j = index j +1;
27: end if
28: end for
29: Set neighbour = f ind(common j);
30: Update rownnz(N(k).group) = rownnz(N(k).group+ l−1)−nnz(common j);
31: Update maxcom = maxcom− sum(pickG(:,neighbour),2)∗ index j;
32: Set sumneighbours = sum(pickG(:,neighbour),2);
33: Update maxcom(N(k).group) = maxcom(N(k).group) − sum(sumneighbours) +

sumneighbours(N(k).group)∗ index j;
34: Compute commonneighbour = f ind(common j);
35: Set N(k).common = common j.∗ pickA(j, :), N(k).col = k ∗ones(1, index j), k = k+1;
36: end for
37: Set row f = [N(1 : k − 1).group], col f = [N(1 : rank).col], lenv = length(row f), v f =

ones(1, lenv) ;
38: Set temF = sparse(row f ,col f ,v f ,size(PickG,1),k−1);
39: Set F = sparse(n,k−1), F(i : n, :) = temF , H = cat(2,N.common), H = H ′;
40: Permute the rownnz back to the original order, and permute the rows of F accordingly;
41: return F and H.

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices 403

4. Conclusions and future work

We have presented a novel multi-step low-rank factorization method to reduce the large
memory cost demanded for realistic PageRank calculations. Differently from the low-
rank factorizations proposed in [11], the proposed method can be implemented to the
whole matrix A instead of only the off-diagonal blocks of A, thus leading to higher
compression level. The outcome of the algorithm is a low-rank decomposition of the
form A = D+FH that is suitable to construct effective preconditioners, e.g. based on
the Woodbury formula [11]. Additionally, matrix-vector multiplications that account for
the most expensive operation in classical iterative solvers are expected to be cheaper to
compute using the low-rank representation A = D+FH. The proposed technique can be
especially effective when the network has many nodes with similar in-link distributions.

In future work, it will be interesting to investigate the structure characteristics,
such as the distributions of the out-degrees and in-degrees and the similarity of in-
link (out-link) distributions of large networks from more fields to develop optimal or
highly efficient pre-processing techniques for reducing the memory and algorithmic
costs of computing large-scale PageRank centralities. An important application of these
techniques can be the solution of PageRank problems with multiple damping factors like
[16] or with slight modification of the network, that are computationally very demanding.

References

[1] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. 1998.
[2] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:

Bringing order to the web. Technical report, Stanford InfoLab, 1999.
[3] Langville AN, Meyer CD. A reordering for the PageRank problem. SIAM J. Sci. Comput. 2006

Feb;27(6):2112-20.
[4] Gleich DF. PageRank beyond the web. SIAM Rev. 2005 Aug;57(3):321-63.
[5] Henni K, Mezghani N, Gouin-Vallerand C. Unsupervised graph-based feature selection via subspace

and pagerank centrality. Expert Systems with Applications. 2018;114:46-53.
[6] Morrison JL, Breitling R, Higham DJ, Gilbert DR. GeneRank: using search engine technology for the

analysis of microarray experiments. BMC bioinformatics. 2005 Sep;6(1):1-14.
[7] Wu G, Zhang Y, Wei Y. Accelerating the Arnoldi-type algorithm for the PageRank problem and the

ProteinRank problem. Journal of Scientific Computing. 2013 Feb;57(1):74-104.
[8] Ding Y, Yan E, Frazho A, Caverlee J. PageRank for ranking authors in co-citation networks. Journal of

the American Society for Information Science and Technology. 2009;60(11):2229-43.
[9] Pedroche F, Romance M, Criado R. A biplex approach to PageRank centrality: From classic to multiplex

networks. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2017; 26(6): 065301.
[10] Shen ZL, Huang TZ, Carpentieri B, Gu XM, Wen C. An efficient elimination strategy for solving

PageRank problems. Appl. Math. Comput. 2017 Apr; 298(1):111-22.
[11] Shen ZL, Huang TZ, Carpentieri B, Wen C, Gu XM, Tan XY. Off-diagonal low-rank preconditioner for

difficult PageRank problems. J. Comput. Appl. Math. 2019; 346 (1):456-70.
[12] Davis TA, Hu Y. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 2011;

38(1): 1:1-1:25. Available at the URL: http://www.cise.ufl.edu/research/sparse/matrices.
[13] Boldi P, Vigna S. The WebGraph Framework I: Compression Techniques. In: Proc. of the 13th

international conference on World Wide Web. 2004: 595-602.
[14] Boldi P, Rosa M, Santini M, Vigna S. Layered label propagation: A multiresolution coordinate-free

ordering for compressing social networks. In: Proc. of the 20th international conference on World wide
web. 2011: 587-596.

[15] Boldi P, Codenotti B, Santini M, Vigna S. Ubicrawler: A scalable fully distributed Web crawler.
Software: Practice and Experience. 2004; 34: 711-726.

[16] Constantine PG, Gleich DF. Random alpha pagerank. Internet Mathematics. 2009; 6: 189-236.

Z.-L. Shen and B. Carpentieri / Multi-Step Low-Rank Decomposition of Large PageRank Matrices404

