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Abstract. Droughts have appeared in many different regions that increase the 

chances of wildfires and other health risks like heat strokes. With satellite imaging 

and more collections on the Google Earth Engine (GEE) library, more information 
is available to discover trends. This study analyzes different causes and signs of 

historical drought data in the San Francisco Bay Area then uses several machine 

learning tools to model the drought. 
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1. Introduction 

The research in the paper was done on Google Earth Engine (GEE) [1] because of its big 

data parallel computing power. GEE combines multi-petabyte satellite imagery and 

geospatial datasets with planetary-scale analysis capability [1] making it a good platform 

to research global and regional climate change. Several GEE datasets were used to 

analyze the drought in California San Francisco Bay Area with hopes of providing insight 

on certain climate change indicators. The results might affect this technology innovation 

center and provide the fundamentals for policy makers on future droughts. 

2. Related Works 

There are a lot of researches to analyze and predict droughts in different regions and 

using different methods including machine learning. Peiyu Lai et al. [2] analyzed 

seasonal indicators related to droughts in Southwest China. Their work performed 

comprehensive survey on changes of variety of variables including surface water area, 

vegetation, meteorological factors and human activities, and whether these changes 

match the start and end of drought period on record without providing a mathematical 

modeling for predicting drought. Researches [3] have been made with Internet of Things 

(IoT) sensors that transfer meteorological information to a fog layer. Theses sensors 

include temperature, humidity, precipitation, and water levels. This fog layer would 

compress the data and then transfer it to the cloud for computations. This work’s main 

focus is on building infrastructure for real-time data collection and computing. Another 
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study [4] uses the Canadian Earth System Model (CanESM2) produced by ClimEx 

project by Ouranos with the Canadian Regional Climate Model (CRCM5) as well as 

CanESM2-LE’s monthly sea level pressures, to create accurate drought predictions when 

combined with artificial neural networks. Data captured with satellites have also been 

used. Their major contribution is applying an Artificial Neural Network drought model 

to two European domains, Munich and Lisbon. Sumin et al. in their research [5], the 

Scaled Drought Condition Index (SDCI), Standard Precipitation Index (SPI), and 

topographic characteristics were used in convolutional long short-term memory 

(convLSTM) and random forest models to generate predictions. Their area of study 

focused on East Asia.  

The study in this paper focuses in San Francisco Bay Area, one of the most populated 

and important high-tech economic regions, the water shortage has become more frequent 

in recent years impacting both daily life and economic activities. This area is not studied 

in related researches. The method proposed uses readily available massive satellite and 

geo-sensing data to extract information including permanent water area (PWA), seasonal 

water area (SWA), temperature, precipitation, and drought area and index. The study of 

this research tries to use these publicly available, valuable datasets to do the data mining, 

avoiding the need for extra sensor installation or data collection which were performed 

by some related researches [3].  The extracted data is analyzed against the drought 

historic records. This data is also feed into the proposed model using a linear regression 

to train and predict drought patterns. The result is evaluated with correlation coefficient 

and shows competitive or better performance compared to some earlier researches as in 

[5] for example.  

3. Proposed Methodology 

3.1. Datasets Used 

In this study, we choose to use the satellite imagery and geospatial datasets readily 

available in Google Earth Engine (GEE) database. The datasets contain massive global 

data and we utilize GEE parallel computing capability to extract the data specifically for 

our region of interest (RoI) – San Francisco Bay Area, and use the powerful GEE API to 

reduce the multi-dimensional imagery and geospatial data to several easy-to-process 

indicators such as surface water area, temperature and precipitation. We call this step 

data extraction stage with GEE. The program is written in JavaScript using GEE Code 

Editor platform seen in Table 1. 
Table 1. Experiment Details 

 Tools/Library Language Platform/Framework 
Data Extraction 
Stage 

Gee Code Editor JavaScript Google Earth Engine 

Data Condition Stage Pandas, Numpy, 

Jupyter 

Python None 

Training Stage Keras, XGBRegressor Python XGBoost/Tensorflow 

The datasets include JRC Yearly Water Classification History v1.2 [6], TIGER: US 

Census Counties 2018 [7], GRIDMET DROUGHT: CONUS drought indices [8], and 

ERA5 Monthly aggregates – Latest climate reanalysis produced by ECMWF / 

Copernicus Climate Change Service [9]. Most of the data are from satellite remote 

sensing images and contain huge amount of information. A single step of data processing 

usually takes hours even with power of GEE parallel computing. Once the data is 
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processed and extracted, a model using decision-tree ensemble model is constructed with 

XGBoost to compute predictions, the linear regression and squared error objective were 

used to train the model. 

The JRC Yearly Water dataset [6] contains occurrence of permanent surface water 

(PSW), seasonal surface water (SSW) and No-Water. The GEE satellite image of 

geographic region map is split into small tiles, and each tile is labeled with the occurrence 

of either PSW, SSW or No-Water. The tiles marked with PSW are integrated into total 

Permanent Water Area (PWA) in the region of interest (RoI). The integration is 

calculated by GEE Reducer function parallel computing engine. Similarly, SSW labels 

are used to compute SWA, and No-Water for No-Water Area. In order to focus our 

analysis on SF bay area, only the areas within the 6 counties of the SF Bay area were 

included as RoI: Almeda, Contra Costa, Marin, Napa, San Francisco, and Santa Clara. 

The outlines of these counties were extracted from the TIGER: US Census Counties 2018 

dataset [7] as a polygon into GEE and used as a region of interest (RoI) for the data 

reducer. Figure 1 shows graphs of the areas of No-Water Area, SWA, and PWA which 

are blue, orange, and gray respectively. The areas are in kilometers squared for each year 

from 1985 to 2018. 

 
Figure 1. Yearly PWA, SWA and No-Water Area in SF bay area. 

ERA5 monthly aggregates dataset [9] contains several global climate parameters, 

among which the 2-meter (2m) air temperature and total precipitation data were used to 

analyze the climate change. The monthly air temperature in Santa Clara County were 

extracted, integrated, averaged and shown in Figure 2. Similarly, monthly precipitation 

in Santa Clara County change were shown in Figure 3. 

To find the drought period and area, the GRIDMET DROUGHT: CONUS drought 

indices dataset [8] was used. It contains the Evaporative Drought Demand Index (EDDI) 

around every 5 days from 1985 to 2020. Using the monthly 30-day average, the EDDI 

drought index from 1985 to 2020 was calculated. Index less than -1.3 is considered a 

moderate drought, -1.99 to -1.6 is a severe drought, and -2.0 or below is an extreme 

drought. EDDI was used to mark drought locations [7] in Santa Clara County, and the 

locations were then integrated to compute the monthly drought area in Figure 4. The 

drought period could then be identified and compared to PWA and SWA change in 

Figure 1. A drought is expected to be an increase in drought area, the No-Water Area, 

and monthly temperature, and drop in precipitation, PWA and SWA. However, many 

factors lead to the result of a drought and some droughts with changes in one factor are 

less noticeable than ones with large differences. 
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Figure 2. Monthly Temperature (blue curve) and 12-month moving average (orange curve) in Santa Clara 

County 

 

 
Figure 3. Monthly Precipitation (blue curve) and 12-month moving average (orange curve) in Santa Clara 

County 

 
Figure 4. Monthly Drought Area in Santa Clara County 

3.2. Proposed Model 

This paper’s interest is to find the correlation between the drought occurrence time and 

pattern with respect to the geo-sensing and climate data such as surface water area, 

temperature and precipitation. A model was made with decision-tree ensemble in 

XGBoost’s library, and uses the collected data to train itself. XGBoost is highly effective 

and widely used machine learning method [10]. The training process is fast and easy to 

fit variety of target data. The tree ensemble structure is also stable and fast to train and 

fine-tune whenever new data are added or revised. Since this research is an on-going 

work, the XGBoost method is chosen so that more data could be easily added and 

evaluated. The XGBoost is not like Convolutional Neural Network (CNN) or Recurrent 

Neural Network (RNN) which is hard to interpret, the trained model can actually provide 

many insights into the mechanism under study, for example the most important or 

influential input factors to the result. At the end of this section, the experiment of another 

popular RNN model is also provided. 

The input data includes time series (1985-2018) of temperature, precipitation, PWA, 

SWA and No-Water Area. Month as numbers (1-12) is also added as input to include the 
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impact of seasonal change. The target ground truth is the calculated drought area as in 

Figure 4. Temperature and precipitation data is pre-processed using 12-month moving 

average to remove intrinsic fluctuation noises. Since all this data has different unit and 

range, they are normalized to facilitate the model training. The normalized data is 

converted to pandas DataFrame format before fed into the model. Normalized example 

data is shown in Table 2. This step is the data conditioning stage. The code is written in 

Python and uses libraries listed in Table 1. 
Table 2. Normalized input data and drought ground truth. 

MONTH TEMP RAINX100 PWA SWA NOWATER DROUGHT 
1 6.7224 2.2597 50.8733 18.2422 11.2207 0.0 

2 9.6151 4.3679 50.8732 18.2422 11.2207 0.0 
3 8.9493 11.7706 50.8732 18.2422 11.2207 0.0 

4 14.438 0.9999 50.8732 18.2422 11.2207 0.0 

5 13.951 0.1271 50.8732 18.2422 11.2207 0.0 

The model is constructed in XGBoost and trained with objective of squared error to 

the ground truth. The model parameter colsample_bytree is set to 0.6 such that 60% of 

the data is used for training to avoid overfitting. Maximum tree depth, regulation weight 

alpha, number of estimators are adjusted to find the optimal model setting. The model is 

constructed with XGBRegressor() function and trained with fit() procedure. In order to 

evaluate the accuracy of the model prediction, correlation coefficient (r) is used as 

statistical metric.  

 

n is the number of the samples, y and  are the values of reference and predicted 

drought area. The modeling and training program is written in Python using XGBoost 

library package as listed in Table 1. We call this step modeling and training stage. 

We also evaluated a RNN model which is widely used for analyzing time series 

sequential data. The model is constructed using 3 layers of Long Short-Term Memory 

(LSTM) with 20 units each and a Dense fully-connected layer at the end to output the 

predicated drought area value. The input data is re-arranged with 5 features (PWA, SWA, 

No-Water Area, Temperature, Precipitation) and 10 time-steps as a 2-dimensional array 

before fed into the model. “Adam” was used as the optimizer for training with learning 

rate set at 0.001. To facilitate the training, we added dropout after each layer to avoid 

overfitting. LSTM models are hard to train and are prone to weight explosions, so we 

used gradient clipping with a value of 0.2 and normalized the input data by scaling it to 

±0.25 range. Different LSTM cell units, learning rates, dropout rates and clipping values 

are experimented with. However, the training of this model was not stable and was hard 

to converge within a reasonable number of epochs. Based on evaluations above, as well 

as other advantages of XGBoost described at the beginning of this section, XGBoost is 

chosen in this research. 

4. Analysis and Experiment 

4.1. Analysis 

There is no obvious visual trending correlation between the extracted data and the 

drought record. Any single input data does not show strong correlation to start or end of 
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the two drought periods: May 2008 – June 2010, May 2013 – April 2014 shown in Figure 

4.  

For example, PWA shows the permanent water levels had actually risen slightly 

during drought period of May 2008 – June 2010 which is counter-intuitive, while drought 

period of May 2013 – April 2014 could be seen from a peak in No-Water Area or drop 

in PWA. No-Water Area shows some peaks before the drought period, while the time 

interval length from the peak to the actual drought start varies. On the other hand, some 

data correlation could be observed. The average data of No-Water Area was 11.056  

with PWA being 53.629 , during the drought No-Water Area increased to 14.923 

 with the PWA dropping to 50.180 . 

Looking at the temperature data itself in Figure 2, it is hard to identify the drought 

period. Even though the drought period of May 2013 - April 2014 can be seen from the 

slight increase of temperature in the winter from 8.099�C to 8.913�C and increase in 

summer from 20.253�C to 21.202�C, the drought of May 2008 - June 2010 could not be 

identified, which means that there is not a strong relationship between droughts and the 

temperatures data alone during them. We see similar characteristics in precipitation data. 

The monthly temperature (as in Figure 2), monthly precipitation (as in Figure 3), 

PWA, SWA and No-Water Area (as in Figure 1), and the drought levels were all gathered 

into a dataset and put into a model. Because the temperatures were constantly changing 

through the different seasons in the year the model produced with the data would not be 

have seen a pattern of sudden spikes of temperature. The solution was to take the moving 

average in intervals of 12 months to smooth the data points and make it easier to spot 

periods of drought. The same method of taking the moving average was used on the 

monthly precipitation for the model. Figures 2 and 3 shows the actual data as blue lines 

and the calculated average as the orange line. Month as number (1-12) is also used as 

input to take the seasonal change into account. 

4.2. Experiment and Results 

Three model parameters were adjusted in order to find the model with the most accuracy, 

which was tested by comparing the correlation coefficient of the model. These three were 

the max depth of the model (max_depth), L1 regularization (alpha), and number of 

estimators (n estimators). The max_depth controls how many levels there are in the 

model, because the XGBoost model uses decision-trees, the larger the max depth, the 

more complex the model is. The alpha value controls L1 regularization on the weights 

so weights would not have too much of an influence on a result to avoid overfitting and 

to make the model more conservative. The n_estimator value is the number of decision 

trees that the model uses together to make a prediction. Larger n_estimator results in 

more complex model. We choose [3,8] for max_depth, [10-30] for alpha and [5-30] for 

n_estimator as data range in this experiment. After testing different values, increasing 

the max_depth of the model increased the correlation coefficient (r) up to 0.99478 with 

a max depth of 8, however this could be the cause of overfitting. Changing the alpha 

values had little effect as the correlation coefficient did not change much. The last 

parameter changed was the n_estimators. Like the max_depth, increasing this value 

would also improve correlation coefficient because there are more decision trees together. 

While the parameters changed, the feature importance were also captured, this would 

give what the model deemed the biggest contributor to its prediction. All correlation 

values above 0.96 had temperature as their most important feature, with high f scores as 

shown in Figure 5. As the final result, we choose the model with less complexity while 
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correlation coefficient (r) is above 0.96: max_depth=6, alpha=15, n_estimator=26, 
r=0.966. The calculated drought area output from this model vs. the ground true is shown 

in Figure 6. 

 

 

Figure 5. Feature Importance in XGBoost model. 

 

Figure 6. Drought Model vs Drought Ground Truth.  

In practical application, predicting future drought based on past and current climate 

data could enable policy maker to take action in advance. To meet this purpose, the target 

is shifted 2 years in time axis and similar model is trained. As shown in Figure 7, the 

model could predict the drought occurrence 2 years in advance. 

 

Figure 7. Drought 2-yr Early Prediction vs Drought Ground truth.  
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5. Conclusion and Future Work 

In this work, the author extracted several climate data from GEE satellite imagery and 

geospatial datasets, including surface water area, precipitation, temperature and drought 

area in SF bay area. The climate data vs. drought area/occurrence is modeled using 

decision tree ensemble with XGBoost, trained with linear regression and squared error 

objective. With time shift in target data, the model is also able to predict the drought 

occurrence in advance. The model prediction shows good results in terms of r (around 

0.96), competitive to other research results [5] (r is around 0.9). Since climate change 

has long term and complicated impact, more advanced models like RNN/LSTM would 

be explored to add the accumulation effect, and the prediction would be more robust and 

precise. More data would be incorporated in the future work, such as vegetation area, 

cloud area, and possibly the human activity data to explore the more complex drought 

occurrence mechanism. Due to the fact that the climate change is in larger geographic 

scale, the author also plans to expand the region of interest to include more surrounding 

counties’ impact and model more accurate models. 
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