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Abstract. Human Activity Recognition (HAR) plays an important role in behavior 
analysis, video surveillance, gestures recognition, gait analysis, and posture 

recognition. Given the recent progress of Artificial Intelligence (AI) applied to HAR, 

the inputs that are the data from wearable sensors can be treated as time-series from 
which movement events can be classified with high accuracy. In this study, a dataset 

of raw sensor data served as input to four different deep learning networks (DNN, 

CNN, LSTM, and CNN-LSTM). Differences in accuracy and learning time were 
then compared and evaluated for each model. An analysis of HAR was made based 

on an attempt to classify three activities: walking, sit-to-stand, and squatting. We 

also compared the performance of two different sensor data types: 3-axis linear 
acceleration measured from two inertial measurement units (IMUs) versus 3D 

acceleration of two retro-reflective markers from the high-end optoelectronic 

motion capture system (MOCAP). The dataset created from observations of ten 
subjects was preprocessed with labelling and sliding windows and then used as input 

to the four frameworks. The results indicate that, for HAR prediction, linear 

accelerations estimated using IMUs are as reliable as those measured using the 
MOCAP system. Also, the use of the hybrid CNN-LSTM framework for both 

methods resulted in higher accuracy (99%). 

Keywords. human activity recognition; motion capture; inertial measurement unit; 
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1. Introduction 

Currently, devices that aim to identify human activities play an important role in 

understanding how people perform their daily activities. The growing applications of 

Human Activity Recognition (HAR) include behavior analysis, video surveillance, 
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gestures recognition, gait analysis, and posture recognition [1]. Consequently, there are 

two types of HAR: that based on data extracted from video and that based on motion 

sensors (e.g., wearable sensors, smartphones, radio frequency (RF) sensors (Wi-Fi, 

RFID), LED light sensors, cameras [2]. For HAR based on motion sensors, the raw data 

obtained translates into signal patterns that represent the movement of the sensed area of 

the body. 

The application of AI for HAR has revolutionized the way researchers segment and 

identify information extracted from wearable motion sensors. Machine Learning 

techniques first were used to extract features, and later to apply classifiers and obtain 

predictions (i.e., Support Vector Machines, k-Nearest Neighbor, and Artificial Neural 

Networks) [3]. However, the use of Deep Learning is recommended for feature 

extraction due to the power that these networks offer [4]. In Deep Learning, the raw data 

is managed as time series sequences. Hence, sliding windows must be created to organize 

this raw data [5]. The literature suggests using special networks to work with this type 

of data: these include Deep Neural Networks (DNN), Convolutional Neural Networks 

(CNN), and Recurrent Neural Networks (RNN). Lately, a hybrid model has been used 

that is based on the combination of two deep neural networks: CNN-LSTM (Long Short-

Term Memory). This hybrid model allows for the achievement of high recognition scores 

in image processing and video-based HAR [6]. 

Overall, by using deep learning frameworks, it is possible to obtain high accuracy 

predictions and avoid the manual feature extraction process that occurs when applying 

Machine Learning [7]. In other words, this process overcomes the disadvantages of basic 

Machine learning algorithms, so that data scientists need not perform feature engineering 

manually. Given that, this study aimed to evaluate the performance of four deep learning 

networks (DNN, CNN, LSTM, CNN-LSTM) for HAR and, specifically, their ability to 

predict three different activities: walking, sit-to-stand, and squatting. The experimental 

data acquired includes 3D acceleration values from two different systems: a low-cost 

inertial measurement system composed of two IMUs, and an optoelectronic MOCAP 

system.  

 

2. Materials and Methods   

2.1. Experimental Acquisition:  
The performance of the different networks was tested by evaluating the linear 

acceleration data of three daily movements: walking, sit-to-stand, and squatting. The 

experimental acquisitions were done in the Lisbon Biomechanics Laboratory at Instituto 

Superior Técnico using two motion capture systems: a low-cost inertial measurement 

system based on two MetaMotionR sensors (MBIENTLAB INC, San Francisco, CA., 

USA) and a high-end optoelectronic system composed of 14 infrared ProReflex 1000 

cameras (Qualisys©, Göteborg, Sweden). The study was approved by the ethics 

committee of Instituto Superior Técnico in January 2020 (Ref. nr. 1/2020 (CE-IST)). All 

volunteers expressed their agreement to participate by signing an informed consent after 

a detailed explanation of the study objectives and experimental protocol.  

The inertial measurement acquisition protocol consisted in the use of two wearable 

sensors placed on the left wrist and left ankle. Simultaneously, a 2D full body protocol, 

composed of 24 retro-reflective makers placed on anatomical landmarks as suggested by 

ISB [8] [9], was implemented to acquire the volunteer’s motion with the optoelectronic 

system. Two more markers were placed over the IMUs to directly compare the neural 

network predictions from the two systems (see Fig. 1). Ten healthy volunteers (M:6, F:4; 
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Age: 30.0±6.3 years; Height: 1.70±0.11 m.; Weight: 69.7±15.3 kg.) were selected based 

on the inclusion/exclusion criteria defined in the ethics committee proposal. The 

acquisitions with the two systems were done simultaneously using a sampling frequency 

of 100 Hz. The MOCAP data was processed using the Qualisys Tracking Manager 

software and the IMU data with the MetaBase App. For the gait analysis, volunteers were 

instructed to walk continuously for 60 seconds; this procedure was repeated three times. 

For the remaining movements, volunteers performed three series of ten repetitions each. 

All the trials were performed after a period of adaptation to the laboratory environment. 

 

2.2. Data Preprocessing: 
All acquisition files were processed using Python programming language (Google 

Colab). A unified dataset was created, including all the frames in a file. Next, each 

activity was labeled, following the labelling technique [10], adding the information 

corresponding to the activity to which the sample belongs. The raw data was processed 

using sliding windows [11]. To create sliding windows it was necessary to divide the 

input signal into segments of a certain time duration. For this study, a window of 100 

samples in length was used. Six columns (x1, y1, z1, x2, y2, z2) and the final column 

named label, corresponding to the variable y, contained the three classes of expected 

activity (walking, sit-to-stand, squatting).”   
IMU data consisted of 3D vector accelerations in csv format. As the dataset was 

obtained using two MBIENTLAB INC sensors, the acquisition control was managed via 

Low Energy Bluetooth through the MetaBase App and, thus, in some cases the start time 

for recording the samples differed. The raw data was manually synchronized to adjust 

for this discrepancy. 

 Because the MOCAP system does not directly provide acceleration values, the 

acquired trajectories were processed using in-house routines developed in MATLAB 

software (MathWorks©, Natick, USA). The trajectories were smoothed using a 2nd order 

Butterworth filter with a cutoff frequency of 6 Hz and were posteriorly splined using 

cubic polynomials. Finally, the linear accelerations were computed as the 2nd order 

derivative of the spline functions. 

 

2.3. Choosing the artificial intelligence architecture: 
Several studies have suggested that time series data should be processed with Deep 

Learning networks [5,12,13] because these types of networks directly learn the mapping 

(between the inputs of time-series and class outputs) with the feature engineering 

technique [14]. First, a DNN architecture was implemented with fully connected layers. 

Second, CNN was used to treat the data as a times series and build them into 1 dimension 

temporal convolution (1D-CNN)  to capture dependences among input data [13]. This 

type of architecture is recommended to learn detailed feature representations and patterns 

from images [15]. Third, a LSTM is the type of RNN that helps in training the model 

over lengthy sequences and in the retention of the memory from previous time steps of 

 
Figure 1. Representation of the experimental protocol: a) Ankle sensor; b) Wrist Sensor 
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input fed to the model [16]. Hence, this last architecture is the one most often 

recommended to treat time series data. However, four networks with different 

architectures were tested, including a new approach combining CNN and LSTM. The 

CNN-LSTM is a hybrid model that uses CNN layers for feature extraction on input data 

combined with LSTMs to support sequence prediction [6]. Thus, the CNN-LSTM model 

reads subsequences of the main sequence as blocks: CNN extract features from each 

block, and then allows the LSTM to interpret the features extracted from each block. For 

this, a TimeDistributed wrapper was used that allows reuse of the CNN model, once per 

each subsequence. The CNN output serves as input to the LSTM, which provides the 

final prediction. 

Two metrics were chosen to measure the classification performance of each 

algorithm: accuracy and F1 score. Accuracy is the ratio of the number of correct 

predictions to the total number of input samples [17]. The F1 score combines two 

measures defined in terms of the total number of correctly recognized samples, which 

are known in the information retrieval community as precision and recall. Precision is 

defined as  , and recall corresponds to , where TP, FP are the number of true 

and false positives, respectively, and FN corresponds to the number of false negatives 

[18]. Class imbalance is countered by weighting classes according to their sample 

proportion: 

  

where i is the class index and wi= ni/N is the proportion of samples of class i, with ni 
being the number of samples of the i-th class and N being the total number of samples. 

3. Results 

3.1. Deep Learning Networks for IMU and MOCAP:  
The IMU-system database contained 304,135 samples and the MOCAP 315,334 samples. 

To train the algorithm, data from 8 volunteers was used and split in a relation of 80% for 

training and 20% for testing. Once trained, the algorithm was validated using data from 

an additional 2 volunteers. Early-stopping was added in the training phase to avoid 

overfitting.  

Although the number of epochs and batch normalization were not the same for each 

network type, the remaining configuration used the same parameter settings for the two 

types of data. First, the basic DNN architecture was settled with the following 

parameters: 4 Dense fully connected layers with a dimension of 32 neurons, each built 

alongside a flatten layer. This model was trained with 50 epochs using a batch size of 64. 

The number of network parameters was 11,939. Also, the loss function used was sparse 

categorical crossentropy, which is commonly used for categorical problems. The 

activation function was ReLU, and the optimizer function was Adam. Using this 

configuration, an accuracy of 0.999 was obtained for both acquisition systems (Figure 2, 

DNN IMU vs. DNN MOCAP). An F1 score of 91.856% was obtained for IMU and 

87.198% for MOCAP. Second, a CNN architecture was created using a sequential model 

of one Convolutional 1D layer with 32 filters, using a kernel of size 3 and ReLU 

activation. Besides a dropout of 0.5, a Max pooling 1D of size 2 and a flatten layer were 

used. In the end, a dense 8 units layer with ReLU activation function and another dense 

layer using the number of classes (in this case 3 classes) using as activation SoftMax 

were used for obtaining the prediction. This network was trained for 20 epochs using a 
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batch size of 32. Also, as in DNN, the loss function used was sparse categorical 

crossentropy. Using this configuration, an accuracy of 0.913 for IMU and 0.989 for 

MOCAP was obtained in the prediction as shown in Figure 2 (CNN IMU vs CNN 

MOCAP). F1 score values of 91.352% and 86.303%, respectively, were obtained. Third, 

an LSTM architecture was created using a sequential model of one LSTM layer with 100 

neurons. In addition, it featured a dropout of 0.5 and two dense layers: the first one with 

100 and activation function ReLU, and the last one with the number of classes and a 

SoftMax activation function. The number of network parameters was higher, totaling 

53,203. This network was trained for 15 epochs, using a batch size of 64. Also, as in the 

DNN and CNN architecture, the loss function used was sparse categorical crossentropy. 

Using this configuration resulted in a prediction accuracy of 0.993 (Figure 2: LSTM IMU 

vs LSTM MOCAP), and F1 scores of 91.856% and 86.303%, respectively.  

Finally, when creating the CNN-LSTM network, we highlight the necessity of 

treating the data, which is in windows of 100-time steps, into subsequences using 4 steps 

and length 25 to feed a sequential model followed by a 1D CNN wrapped into two Time 

Distributed layers. Also, as in the 3 models mentioned above, the loss function used was 

sparse categorical crossentropy. This configuration resulted in prediction accuracies of 

0.993 and 0.993 (Figure 2: CNN-LSTM IMU vs CNN-LSTM MOCAP) and F1 scores 

of 99.97% and 88.63%, respectively. 

   

. Discussion   
Although the first three classification networks returned acceptable accuracies (between 

91 and 99%), the F1 score, due to its robustness in the face of class imbalance, is the sole 

parameter that proves that a network is able to classify well, [19].  

According to the accuracy metric, all values, except for CNN, are around 99% 

(Table 1). This is most likely due to the early-stopping settings, although it is expected 

 
 

Figure 2. Accuracy and Loss metrics for the four Deep Learning networks of IMU and MOCAP data. 
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that the accuracy percentage would also reach 99% if it were allowed to train for more 

epochs. 
Table 1.

Performance 
Measurements 

Parameters 

Acquisition 
System 

DNN CNN LSTM CNN-LSTM 

 

Accuracy 

IMU 0.999 0.913 0.993 0.999 
MOCAP 0.999 0.989 0.999 0.999 

 
F1  

Score 
IMU 91.856 91.352 91.856 99.97 

MOCAP 87.198 86.303 87.830 88.629  

 

The F1 score metric for IMU performance surpasses 90% for all four networks; 

however, for MOCAP all networks (DNN, CNN, LSTM, CNN-LSTM) do not perform 

as expected because the samples were not sufficiently balanced (Table 1). For example, 

there were fewer walking frames than sitting and squatting frames. Prediction was most 

powerful with the last network (CNN-LSTM) for both systems, achieving a 99.97% 

prediction score for IMU and 88.63% for MOCAP. 

Comparing our results to the literature, Deep & Zheng [20] used a UCI_HAR dataset 

implementing 4 different LSTM and the hybrid framework CNN-LSTM. Their CNN-

LSTM model achieved the highest accuracy value with respect to the resting frameworks 

(93.40%); in contrast, we achieved 99% accuracy for all 4 networks tested. On the other 

hand, due to the imbalanced condition of our dataset, the calculated F1 score proves that 

the CNN-LSTM model is the best at recognition: hybrid models present higher scores 

[21]. Overall, using low-cost inertial sensor data with a complex Deep Learning hybrid 

model (CNN-LSTM) results in a good accuracy that is equal in reliability to a higher-

cost and more complex MOCAP data system more specialized in motion capture. 

. Conclusion  
Using Deep Learning methods, it was possible to recognize human activities such as 

walking, sit-to-stand, and squatting using only two IMUs and two markers located in the 

same place on the human body. This was accomplished by using Deep Learning 

Networks and processing the raw data as time series through sliding windows to extract 

relevant features from the segmented sequences. Accurate results were achieved with 

sensor data from IMUs, and the results validated with high quality MOCAP data. Using 

deep learning networks (DNN, CNN, LSTM), accuracies of above 91% was achieved. It 

was proven that, using the hybrid CNN-LSTM model, predictions can be achieved with 

the same accuracy (99%) as with the MOCAP system. Further research on the 

implementation of automatic labelling of human activities is required. 

Acknowledgements 
We acknowledge the support provided by the BeHealSy Program of EIT Health that 

promoted the collaboration between the Universidad Politécnica de Madrid and the 

University of Lisbon. Additionally, this work was supported by Fundação para a Ciência 

e a Tecnologia (FCT) with references UIDB/50021/2020 (INESC-ID) and 

UIDB/50022/2020 (Lisbon Biomechanics Laboratory and IDMEC under LAETA).  Also, 

the first author thanks the IFARHU-SENACYT Panama program for supporting her PhD 

5

M. Jaén-Vargas et al. / A Deep Learning Approach to Recognize Human Activity 255



scholarship and the second author acknowledges scholarship support from the Fundación 

Carolina FC and the Universidad Tecnológica Centroamericana UNITEC. 

References 
[1]  Wang J, Chen Y, Hao S, Peng X, Hu L. Deep learning for sensor-based activity recognition: A survey. 

Pattern Recognit Lett [Internet]. 2019;119que bue:3–11. Available from: 

https://doi.org/10.1016/j.patrec.2018.02.010 

[2]  Wan S, Qi L, Xu X, Tong C, Gu Z. Deep Learning Models for Real-time Human Activity Recognition 
with Smartphones. Mob Networks Appl. 2020;25(2):743–55.  

[3]  Kale H, Mandke P, Mahajan H, Deshpande V. Human Posture Recognition using Artificial Neural 

Networks. Proc 8th Int Adv Comput Conf IACC 2018. 2018;272–8.  
[4]  Wu Q, Wang F. Concatenate convolutional neural networks for non-intrusive load monitoring across 

complex background. Energies. 2019;12(8).  

[5]  Ortiz Laguna J, Olaya AG, Borrajo D. A dynamic sliding window approach for activity recognition. Lect 
Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2011;6787 

LNCS:219–30.  

[6]  Yao S, Hu S, Zhao Y, Zhang A, Abdelzaher T. DeepSense: A unified deep learning framework for time-
series mobile sensing data processing. 26th Int World Wide Web Conf WWW 2017. 2017;351–60.  

[7]  Brownlee J. Deep Learning for Time Series Forecasting. Machine Learning Mastery. 2018.  

[8]  Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, 
Witte H, Schmid O, Stokes I. ISB recommendation on definitions of joint coordinate system of various 

joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech [Internet]. 

2002;35(4):543–8. Available from: 
https://www.sciencedirect.com/science/article/pii/S0021929001002226 

[9]  Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna 

AR, McQuade K, Wang X, Werner FW, Buchholz B. ISB recommendation on definitions of joint 
coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, 

wrist and hand. J Biomech [Internet]. 2005;38(5):981–92. Available from: 

https://www.sciencedirect.com/science/article/pii/S002192900400301X 
[10]  Woodward K, Kanjo E, Oikonomou A, Chamberlain A. LabelSens: enabling real-time sensor data 

labelling at the point of collection using an artificial intelligence-based approach. Pers Ubiquitous 

Comput. 2020;24(5):709–22.  
[11]  Niemann F, Reining C, Rueda FM, Nair NR, Steffens JA, Fink GA, Hompel M Ten. Lara: Creating a 

dataset for human activity recognition in logistics using semantic attributes. Sensors (Switzerland). 

2020;20(15):1–42.  
[12]  Xu C, Chai D, He J, Zhang X, Duan S. InnoHAR: A deep neural network for complex human activity 

recognition. IEEE Access. 2019;7:9893–902.  

[13]  Murad A, Pyun JY. Deep recurrent neural networks for human activity recognition. Sensors (Switzerland). 
2017;17(11).  

[14]  Chao-Lung Yang Z-XC and C-YY. Sensor Classification Using Convolutional Neural Network by 
Encoding Multivariate Time Series as Two-Dimensional Colored Images. Sensors (Switzerland). 

2019;(1).  

[15]  Gollapudi S, Gollapudi S. Deep Learning for Computer Vision. In: Learn Computer Vision Using 
OpenCV. 2019. p. 51–69.  

[16]  Goyal P, Pandey S, Jain K. Deep learning for natural language processing: Creating neural networks with 

Python [Internet]. 2018. 290 p. Available from: https://proquest-safaribooksonline-
com.cyber.usask.ca/9781484236857 

[17]  Mishra A. Metrics to evalute your machine learnign algorithm [Internet]. 2018. Available from: 

https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234 
[18]  Ordóñez FJ, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal 

wearable activity recognition. Sensors (Switzerland). 2016;16(1).  

[19]  Dehghani A, Sarbishei O, Glatard T, Shihab E. A quantitative comparison of overlapping and non-
overlapping sliding windows for human activity recognition using inertial sensors. Sensors (Switzerland). 

2019;19(22):10–2.  

[20]  Deep S, Zheng X. Hybrid Model Featuring CNN and LSTM Architecture for Human Activity 
Recognition on Smartphone Sensor Data. Proc - 2019 20th Int Conf Parallel Distrib Comput Appl 

Technol PDCAT 2019. 2019;259–64.  

[21]  Abbaspour S, Fotouhi F, Sedaghatbaf A, Fotouhi H, Vahabi M, Linden M. A comparative analysis of 
hybrid deep learning models for human activity recognition. Sensors (Switzerland). 2020;20(19):1–14.  

M. Jaén-Vargas et al. / A Deep Learning Approach to Recognize Human Activity256


