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Abstract. This paper presents a new approach to synthesize the control for one
class of uncertain Metzler-Takagi-Sugeno time-delay systems. The structural para-
metric constraints of the closed-loop system, their diagonal matrix representations
as well as the interval system parameter bounds are accounted into an associated set
of the linear matrix inequalities. After sorting out the relevant preliminaries in the
uncertain structure of the Metzler systems and the specific properties of the time-
delay positive system representations, the design conditions reflecting quadratic
system stability of the considered system class are proven in the matrix inequality
framework. The main result of the control law parameter design is shown in de-
tail by the numerical example in order to characterize potential adaptation of the
method for purely Metzler matrix parameter structures.
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1. Introduction

Time-delay systems are used to model the time lag phenomenon in thermodynamics [1]
and ecology [2] and in modeling of interactions between species in mathematical biology
[3]. In order to control, a number of approaches are proposed to solve the problems
fixed with time-delay systems (see, e.g., [4]). In this paper the time-delay phenomena is
considered as a point delay in the state vector [5].

Due to uncertainty existence, the uncertain plant stabilization have attracted many
attentions to solve simultaneously this problem, reflecting LQR control [6], H2 cost con-
trol [7] and H∞ control principle [8]. In the sense of these prerequisites along with tech-
niques for simultaneous quadratic stabilization of time-delay systems, the key concepts in
stabilization and tracking conditions have been developed in [9] and the delay-dependent
stabilization has been investigated in [10].

Positive systems represent the dynamical plants whose states and outputs have to be
positive [11], [12]. The problem of positive systems usually deals with positive control
structure and positive system state estimation [13]. Since existence of the system posi-
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tivity depends on the constraints in nonnegativity of the system matrix parameters, con-
strained design approaches are proposed to solve these problems [14]. Among the main
features of positive systems can be mentioned the facts that the stability of delayed posi-
tive systems does not depend on the amplitude of delays [15], the asymptotical stability
of positive systems is equivalent to diagonal stability (systems are not only stable but also
positive) [16] and the system positivity can be interpreted through the model parametric
constraints [17]. Since these models prioritize theory of matrices of Metzler structure
[18], such systems are denoted oftentimes as Metzler systems. A similar approach one
can found in development of control for the Metzler time-delayed systems [19].

Using the Takagi-Sugeno fuzzy model [20] a nonlinear system is represented as
the collection of fuzzy rules, where each rule utilizes the local dynamics by a linear
system model. Since Takagi-Sugeno fuzzy models can well approximate a large class of
interval nonlinear systems the relevant design methodologies exploit fully advantage of
the modern control theory, especially in the constrained control of positive T-S systems
with delays [21] and in the positive system state estimation and fault diagnosis [22].

From the previous overview of methods and principles it can see hove many differ-
ent aspects have to be covered in the control design for uncertain Metzler-Takagi-Sugeno
time-delay systems. Although the principle of diagonal stabilization provides a way to
represent the parametric constraints of linear positive systems using the linear program-
ming method [23], its direct adaptation to this system class is hardly limited. To over-
come these limitations an original, new approach is established to give explicit design
conditions in the form of linear matrix inequalities (LMI) to guaranty the strictly positive
closed-loop system matrices if the uncertain system model takes the time-delay strictly
Metzler-Takagi-Sugeno form. Note that, this LMIs structure cover the system structural
constraints, the parameter uncertainties, the point-delay in system state, the quadratic
stability and the diagonal stabilisation principle. The primary goal is to find the controller
for stabilisation of the system under consideration while being consistent with the pos-
itive configuration. Although such defined class of systems prescribes the set of strong
structural parametric constraints, the proposed design conditions allow the numerical so-
lution in straightforward access. It is authors’ belief that further extensions can be done
through the given theoretical framework.

The remaining of the article is lay out as follows: Section 2 deals with the prob-
lem formulation and representative preliminaries related to Metzler-Takagi-Sugeno time-
delay dynamic systems. The control problem, the resulting system parameter constraint
formats and the relevant synthesis formulation are given in Section 3. The performance
of the proposed technique and the system parameters representation are illustrated by
carrying out a detailed numerical example in Section 4, also supporting related outlines
of new points of view and conclusions, drafted in Section 5.

For sake of convenience, throughout the paper used notations reflect usual conven-
tionality so that xT, XT denotes the transpose of the vector x, and the matrix X , respec-
tively, X−1, ρ(X) signifies the inverse and the eigenvalue spectrum of a square matrix
X , respectively, for a symmetric square matrix X ≺ 0 means that X is negative definite
matrix, diag [ · ] marks the elements of a (block) diagonal matrix, ∗ represents the block
in a square symmetric matrix that is readily inferred by the matrix symmetry, the symbol
In indicates the n-th order unit matrix, R (R+) qualifies the set of (nonnegative) real
numbers, Rn×r

+ refers to the set of n× r positive (nonnegative) real matrices and Mn×n
−+ is

the set of (strictly or pure) Metzler matrices.

D. Krokavec and A. Filasová / One Class of Uncertain Metzler-Takagi-Sugeno Time-Delay Systems 237



2. Basic Preliminaries

The system class under consideration is multi-input, multi-output (MIMO) uncertain
Metzler-Takagi-Sugeno time-delay dynamic systems, represented in state-space form as

q̇(t) =
s

∑
i=1

hi(ϑ(t))(Ai +ΔiAi(t))q(t)+(As +ΔAs(t))q(t− τ)+(B+ΔB(t))u(t) , (1)

y(t) =Cq(t) , (2)
where the point delay in the state vector is constant and satisfies the condition 0 < τ ∈
R+, the system input variable vector u(t)∈Rr and the uncertainties ΔAi(t), ΔB(t) ΔAs(t)
are matching uncertainties. The system trajectory q(t) ∈ Rn

+, and the output y(t) ∈ Rm
+

are nonnegative, C ∈Rm×n
+ , B,ΔB(t) ∈Rn×r

+ and ΔAi(t),ΔAs(t) ∈Rn×n
+ are nonnegative

matrices, A,As ∈Mn×n
−+ are strictly Metzler and r = m. Moreover, hi(θ(t)) is averaging

weight for the i-th rule, representing the normalized grade of membership, where

0≤ hi(ϑ(t))≤ 1,
s

∑
i=1

hi(ϑ(t)) = 1 f or all i ∈ 〈1,s〉 , (3)

while s is the number fuzzy rules (linear sub-models) and

ϑ(t) =
[

θ1(t) θ2(t) · · · θq(t)
]

(4)

is q-dimensional vector of premise variables, where the premise variables are measur-
able. More details can be found, e.g., in [24], [25].

Definition 1. [18] A square matrix A ∈Mn×n
−+ is purely Metzler if its diagonal elements

are negative and its off-diagonal elements are nonnegative. A Metzler matrix A ∈Mn×n
−+

is strictly Metzler if its diagonal elements are negative and its off-diagonal elements are
positive. A Metzler matrix is stable if it is Hurwitz.

Definition 2. [26] Given any nonnegative initial condition φ(t) ∈ Rn
+ such that q(t) =

φ(t) for −τ ≤ t ≤ 0, the externally unforced system (1) is said to be positive if the corre-
sponding trajectory is nonnegative (q(t) ∈Rn

+ for all t ≥ 0).

Definition 3. (adapted from [8]) If the uncertainties of the system (1), (2) satisfy for
every time-instant t > 0 the condition[

ΔAi(t)) ΔB(t)) ΔAs(t))
]
= MΞ(t)

[
Nai Nb Ns

]
, (5)

where M ∈ Rn×s
+ , Nai ∈ R

p×n
+ , Nb ∈ R

p×r
+ , Ns ∈ R

p×n
+ are known nonnegative real ma-

trices characterizing the uncertainties structure, Ξ(t) ∈ Rs×p is a time varying matrix
satisfying the bound

ΞT(t)Ξ(t)≤ I p (6)
and the elements of Ξ(t) are Lebesgue measurable, then the uncertainties ΔAi(t), ΔB(t)
ΔAs(t), are matching uncertainties.

Note, as a rule, for point time-delay Metzler-Takagi-Sugeno systems with strictly
positive Ai, As and nonnegative B all the matrices M ∈ Rn×s

+ , Nai ∈ R
p×n
+ , Nb ∈ R

p×r
+ ,

Ns ∈R
p×n
+ have to be non-negative.

Since Metzler-Takagi-Sugeno systems are defined to satisfy affine combination of
matrix elements [27], this suggests the following.
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Lemma 1. (adapted from [26]) Assuming that the externally unforced system (1) is
asymptotically stable and the matrices As ∈Mn×n

−+ and Ai ∈Mn×n
−+ for i = 1, . . . ,s are

strictly Metzler then the composed matrix

A	i = Ai +As (7)

is strictly Metzler and Hurwitz

Remark 1. Obviously, if all matrices in (7) are strictly Metzler then their sum must
have the form of a strictly Metzler matrix. In dependence on positions of zero elements
in these matrices, there can be a strictly Metzler matrix A	i even for the case where both
matrices are only purely Metzler, or one from them is strictly Metzler and the other is
purely Metzler. This means different interpretations of the tasks of analysis and synthesis
of such class of systems and leads to solutions with different parametric boundaries on
Metzler structures [4], [28], [29]. Unless otherwise stated below, the both above given
matrices in (7) are considered to be strictly Metzler for all i.

Remark 2. In general, a strictly Metzler matrix A ∈Mn×n
−+ is so confronted with n2

boundaries implying from the structural constraints

alh < 0, l = h, alh > 0, l 
= h, ∀l,h ∈ 〈1,n〉 . (8)

This just means in consequence to apply diagonal stabilization principle [30] in control
or observer design task. This principle can be adapted for the control design task if
a strictly Metzler matrix A ∈Mn×n

−+ . is represented with the following rhombic form,
constructed by circular shifts of the rows of the strictly Metzler A as follows

AΘ=

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 a13 · · · a1n
−a22 a23 · · · a2n a21

−a33 · · · a3n a31 a32
. . .

...
...

...
. . .

−ann an1 an2 · · · an,n−1

⎤
⎥⎥⎥⎥⎥⎦
, (9)

where the diagonal matrices

AΘ(l, l) = diag
[−a11 −a22 · · · −ann

]≺ 0 , (10)

AΘ(l, l+h) = diag
[
a1,1+h· · ·an−h,n an−h+1,1· · ·an,h

]� 0 , h = 1, . . . ,n−1 , (11)
are related to diagonals of AΘ and Θ=(1↔n)/n notes summation in the sense of the
sum of modulo (n+1).

Moreover, it can see that generally n2 parametric Metzler constraints (8) can be
defined by the negativeness of (10) and positiveness of the set of diagonal matrices (11).

Definition 4. [31] A square matrix L ∈ Rn×n
+ is the permutation matrix if exactly one

element in each column and each row is equal to 1 and all others are equal to 0. The
permutation matrix L is called circulant if

L =

[
0T 1

In−1 0

]
. (12)

Remark 3. If X ∈Rn×n is a diagonal matrix and L is the circulant permutation matrix
(12) then

LTdiag
[
x1 x2 · · · xn

]
L = diag

[
x2 · · · xn x1

]
. (13)
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Lemma 2. [32] Let the matrix A∈Mn×n
−+ is strictly Metzler then it is Hurwitz if and only

if there exists the positive definite diagonal matrix S ∈Rn×n
+ that for h = 1, . . . ,n−1 and

the circulant L ∈Rn×n
+ the following sets of LMIs is feasible

S� 0, SAT +AS≺ 0 , (14)

AΘ(l, l)S≺ 0 , LhAΘ(l, l+h)LhTS� 0 . (15)

Lemma 3. [33] If the strictly Metzler A∈Rn×n
−+ , the nonnegative B∈Rn×r

+ and a positive
K ∈ Rr×n

+ guarantee that Ac = A−BK ∈ Rn×n
−+ is strictly Metzler then it is satisfied for

the defined h and j

Ac =
n−1

∑
h=0

(
AΘ(l, l +h)−

r

∑
j=0

Bd jKd jh
)
LhT, (16)

where with Kd j,Bd j ∈Rn×n
+

AΘ(l, l)−
r

∑
j=0

Bd jKd j ≺ 0 , (17)

AΘ(l, l +h) −
r

∑
j=0

Bd jKd jh � 0 , (18)

K =

⎡
⎢⎣

kT
1
...

kT
r

⎤
⎥⎦ , Kd j = diag

[
kT

j
]
= diag

[
k j1 · · · k jn

]
, Kd jh = LhTKd jLh (19)

B =
[
b1 · · · br

]
, Bd j = diag

[
b j
]
= diag

[
b j1 · · · b jn

]
(20)

Note, (17), (18) force parameter constraints of the Metzler Ac and do not guaranty
that Ac is Hurwitz. Equation (16) together with (19)–(20) give the relations between the
square and the rhombic matrix representation of Ac.

Summarizing, in this section are fixed the basis notations and terminologies used in
the paper, clarified the necessary background theoretical preliminaries from the assorted
points of interpretation and recalled a number of relevant definitions. In order to com-
monly formalize control synthesis for the uncertain Metzler-Takagi-Sugeno time-delay
systems in the following section, everything is defined on the common state-space basis.

3. Control Design for the Class of Uncertain Metzler-Takagi-Sugeno Time-delay

Systems

This section presents the conditions on control existence for considered class of systems
with constant time-delays and the LMI based formulation for computing the control law
parameters. The considered problem is connected with the control law

u(t) =−Kq(t)−Ksq(t− τ) (21)

such that in the closed-loop structure
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q̇(t) =
s

∑
i=1

hi(ϑ(t))(Ai−BK)q(t)+
s

∑
i=1

hi(ϑ(t))(ΔAi(t)−ΔB(t)K)q(t)+

+(As−BKs)q(t− τ)+(ΔAs(t)−ΔB(t)Ks)q(t− τ)

=
s

∑
i=1

hi(ϑ(t))Aciq(t)+
s

∑
i=1

hi(ϑ(t))AΔci(t)q(t)+Acsq(t− τ)+AΔcs(t)q(t− τ) ,

(22)
where

Aci =Ai−BK, AΔci(t) =ΔAi(t)−ΔB(t)K, Acs =As−BKs, ΔAcs(t) =ΔAs(t)−ΔB(t)Ks,

(23)
the matrices Aci,Acs,A◦ci,A

◦
cs ∈ Rr×n

−+ are strictly Metzler, the control law gains K,Ks ∈
Rr×n

+ are positive and
A◦ci = Aci +Acs (24)

are strictly Metzler and Hurwitz for all i.
The relation (5) then admits the uncertainty models if p = r

ΔAci(t) = MΞ(t)(Nai−NbK) = MΞ(t)Nci , (25)

ΔAcs(t) = MΞ(t)(Ns−NbKs) = MΞ(t)Ncs . (26)
where

Nci = Nai−NbK , Ncs = Ns−NbKs . (27)
Reflecting the diagonal stabilisation principle, then to the above introduced relations

(19), (20) the additional terms are defined

Aci = Ai−
r

∑
j=1

b jkT
j = Ai−

r

∑
j=1

Bd jlnlT
n Kd j , (28)

Acs = As−
r

∑
j=1

b jkT
s j = As−

r

∑
j=1

Bd jlnlT
n Ksd j , (29)

Nci = Nai−
r

∑
j=1

nb jkT
j = Nai−

r

∑
j=1

Nbd jlrlT
n Kd j , (30)

Ncs = Ns−
r

∑
j=1

nb jkT
s j = Ns−

r

∑
j=1

Nbd jlrlT
n Ksd j , (31)

AΘ i(l, l) = diag
[−ai11 −ai22 · · · −ainn

]
, (32)

AΘ i(l, l +h) = diag
[
ai,1,1+h · · · ai,n−h,n ai,n−h+1,1 · · · ai,nh

]
, (33)

AΘs(l, l) = diag
[−as11 −as22 · · · −asnn

]
, (34)

AΘs(l, l +h) = diag
[
as,1,1+h · · · as,n−h,n as,n−h+1,1 · · · as,nh

]
, (35)

Ks =

⎡
⎢⎣

kT
s1
...

kT
sr

⎤
⎥⎦ , Ksd j = diag

[
kT

s j
]
= diag

[
ks j1 · · · ks jn

]
, Ksd jh = LhTKsd jLh (36)

Nb =
[
nb1 · · · nbp

]
, Nbd j = diag

[
nb j

]
= diag

[
nb j1 · · · nb jp

]
. (37)

lT
n =

[
1 1 · · · 1

]
, lT

r =
[
1 1 · · · 1

]
, ln ∈Rn

+. lr ∈Rr
+ (38)

and (7) is reformulated as:
A◦ci = Aci +Acs . (39)
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To simply constructing under defined matching uncertainties the following lemma can
be applied.

Lemma 4. [34] Let the real matrices X, Y , Z of consistent dimensions are bound by the
relation

Z = XTY +Y TX , (40)
then for positive γ ∈R+ the following inequality is satisfied

Z � γ−1XTX + γ Y TY . (41)

Thus, considering (19), (20), (32)–(39) and the circulant L ∈Rn×n
+ from (12) it can

prove the following.

Theorem 1. If for strictly Metzler Ai,As ∈Mn×n
−+ and nonnegative B ∈Rn×r

+ , M ∈Rn×s
+ ,

Nai ∈ R
p×n
+ , Nb ∈ R

p×r
+ , Ns ∈ R

p×n
+ there exist positive definite diagonal matrices

S,R j,Rs j ∈Rn×n
+ and a positive scalar δ ∈R+ such that for h = 1, . . . ,n−1, i = 1, . . . ,s

is feasible the following set of linear matrix inequalities

S� 0 , R j � 0 , Rs j � 0 , δ > 0 , (42)⎡
⎢⎢⎣
[(Ai +As)S−

r
∑
j=1

Bd jlnlT
n (R j +Rs j)]+ [∗]+δMMT ∗

(Nai +Ns)S−
r
∑
j=1

Nbd jlrlT
n (R j +Rs j) −δ Ir

⎤
⎥⎥⎦≺ 0 , (43)

AΘ i(l, l)S−
r

∑
j=0

Bd jR j ≺ 0 , (44)

AΘs(l, l)S−
r

∑
j=0

Bd jRs j ≺ 0 , (45)

LhAΘ i(l, l+h)S−
r

∑
j=0

LhBd jLhTR j � 0 , (46)

LhAΘs(l, l +h)LhTS−
r

∑
j=0

LhBd jLhTRs j � 0 , (47)

then the positive control gains K,Ks ∈Rr×n
+ are given as

Kd j = R jS−1, kT
j = lT

n Kd j , K =

⎡
⎢⎣

kT
1
...

kT
r

⎤
⎥⎦ , (48)

Ksd j = Rs jS−1, kT
s j = lT

n Ksd j , Ks =

⎡
⎢⎣

kT
s1
...

kT
sr

⎤
⎥⎦ (49)

and force the strictly Metzler and Hurwitz matrices (39) and Metzler matrices Aci, Acs.
Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof. It quickly follows from (7), (14) that
(Ai +As +ΔiAi(t)+ΔAs(t))S+S(Ai +As +ΔAi(t)+ΔAs(t))T ≺ 0 , (50)

where S� 0 is a positive definite diagonal matrix. Combining associated parts of uncer-
tainties in (50) it can write
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(ΔAi(t)+ΔAs(t))S+S(ΔAi(t)+ΔAs(t))

= MΞ(t)(Nai +Ns)S+S(Nai +Ns)
TΞ(t)TMT

� γ−1MΞ(t)Ξ(t)TMT + γS(Nai +Ns)
T(Nai +Ns)S

� γ−1MMT + γ S(Nai +Ns)
T(Nai +Ns)S ,

(51)

where the final relation follows from (41) taking a positive scalar γ ∈ R+ into account.
Then, in the view of condition (50)

(Ai +As)S+S(Ai +As)
T + γ−1MMT + γ S(Nai +Ns)

T(Nai +Ns)S≺ 0 (52)

and it is apparent that[
(Ai +As)S+S(Ai +As)

T + γ−1MMT S(Nai +Ns)
T

(Nai +Ns)S −γ−1Ir

]
≺ 0 , (53)

when the Schur complement property is applied.
To govern the closed-loop system then (53) has to be satisfied with exchange for

Ai ← Aci, As ← Acs, Nai ← Ncai, Ns ← Ncs and δ = γ−1 that is[
(Aci +Acs)S+S(Aci +Acs)

T +δMMT S(Ncai +Ncs)
T

(Ncai +Ncs)S −δ Ir

]
≺ 0 . (54)

Since it can check the following hold from (28)–(31)

AciS = AiS−
r

∑
j=1

b jkT
j S = AiS−

r

∑
j=1

Bd jlnlT
n Kd jS = AiS−

r

∑
j=1

Bd jlnlT
n R j , (55)

AcsS = AsS−
r

∑
j=1

b jkT
s jS = AsS−

m

∑
k=1

Bd jlnlT
n Ksd jS = AsS−

r

∑
j=1

Bd jlnlT
n Rs j , (56)

NcaiS = NaiS−
r

∑
j=1

nb jkT
j S = NaiS−

r

∑
j=1

Nbd jlrlT
n Kd jS = NaiS−

r

∑
j=1

Nbd jlrlT
n R j , (57)

NcsS = NsS−
r

∑
j=1

nb jkT
s jS = NsS−

r

∑
j=1

Nbd jlrlT
n Ksd jS = NsS−

r

∑
j=1

Nbd jlrlT
n Rs jS , (58)

where
R j = Kd jS , Rs j = Ksd jS . (59)

then LMI (57) conditioned by (58)-(59) imply (43).
The inequalities (17), (18) and the relation (19) in turn give the similar expressions

for actual parametric constraints

AΘ i(l, l)−
r

∑
j=0

Bd jKd j ≺ 0 , AΘs(l, l)−
r

∑
j=0

Bd jKsd j ≺ 0 , (60)

AΘ i(l, l +h)−
r

∑
j=0

Bd jKd jh � 0 , AΘs(l, l +h)−
r

∑
j=0

Bd jKsd jh � 0 , (61)

where
Kd jh = LhTKd jLh, Ksd jh = LhTKsd jLh. (62)

Then, multiplying the right side of (60) by S it yields

AΘ i(l, l)S−
r

∑
j=0

Bd jKd jS≺ 0 , AΘs(l, l)S−
r

∑
j=0

Bd jKsd jS≺ 0 (63)

and replacing with (59) then (60) imply (44) and (45).
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Pre-multiplying the left side by Lh and post-multiplying the right side by LhTS then
(61) is rewritten as

AΘ i(l, l +h)S−
r

∑
j=0

Bd jKd jhLhTS� 0 , AΘs(l, l +h)S−
r

∑
j=0

Bd jKsd jhLhTS� 0 , (64)

Thus, substituting (62)

AΘ i(l, l +h)S−
r

∑
j=0

Bd jLhTKd jS� 0 , AΘs(l, l +h)S−
r

∑
j=0

Bd jLhTKsd jS� 0 , (65)

where LhLhT = In and replacing with (59) then (64) imply (46) and (47). This completes
the proof.

Remark 4. If the set of LMIs (42)–(47) is feasible, the conditions (44)–(47) cover that
the matrices Aci, Ai are strictly Metzler, the matrix inequality (43) clamps that A◦ci is
Metzler and Hurwitz and the positive definite diagonal matrix variables S,R j,Rs j guar-
anty that K,Ks ∈Rr×n

+ are positive. Thus, the given problem can be solved by (42)–(47),
guaranteing quadratically stable closed-loop system.

Potentially, the given task formulation can be extended for models with the interval
uncertainties in time-delays and inputs using the concept of parallel distributed compen-
sation [25].

Corollary 1. Consider that B ∈ Rn×r
+ is nonnegative and that Ai,As ∈Mn×n

−+ are pure
Metzler but all are mutually compatible in the position of a zero value off-diagonal ele-
ment (zero element falls in all these matrices on the position with the row number z and
the column number y).

If the z-th row of B is zero vector (bT
z = 0T), the design conditions (42)–(47) re-

main valid and the results in the feasible case are positive K, Ks, pure Metzler matrices
Aci,As ∈Mn×n

−+ and pure Metzler and Hurwitz A◦ci ∈Mn×n
−+ .

If elements of the z-th rov of B are nonzero and an off-diagonal (z,y)-element is
equal to zero in mutually compatible Ai,As ∈Mn×n

−+ then the design conditions have to be
reformulated for the structural positive semi-definite diagonal matrix variables R j,Rs j,
defined as

R j = diag
[
r j1 · · · r j,z−1 r jz r j,z+1 · · · r jn

]� 0 (66)
Rs j = diag

[
rs, j1 · · · rs, j,z−1 rs jz rs, j,z+1 · · · rs, jn

]� 0 (67)
where for all j and given z

r jz = 0, rs jz = 0 (68)
The results in the last noted case guaranty nonnegative K, Ks, pure Metzler and Hur-

witz A◦ci ∈Mn×n
−+ and pure Metzler matrices Ai,As ∈Mn×n

−+ . The inclusion of the reference
[35] makes up for the omitted details of the explanation.

Other cases, if they are solvable, can be done "ad hoc" in definition of distinct struc-
tural positive semi-definite diagonal matrix variables R j, Rs j for different j ∈ 〈1,s〉.

The aim of the proposed methodology is to stabilize the systems of the given class
at the defined parameters of the system model. In the solved task, the task validation is
included inherently in the synthesis conditions - if the considered system is stabilizable,
there must be positive definite diagonal matrix variables such that the proposed set of
LMI is feasible. Only if the system has uncontrollable modes the validation would be
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more involved. For the control approach, the quadratic stability of the overall closed-loop
error dynamics is proven using by the system matrix eigenvalue emplacement criterion.

Remark 5. For application use in the control theory, this type of design task does not
define the principle of LMI algorithm implementation, but only their boundaries [36].
The final characteristics are defined by the choice of a standard LMI solver, which defines
the computational complexity of the implemented algorithms. In this case the algorithm
solves the design task in polynomial time with respect to the cardinality of the state space,
the number of matrix variables and applied LMI solver. Using the LMI solver SeDuMi
the computational complexity is O(h2

dvh2.5
ar + h3.5

ar ), where hdv is the number of decision
variables and har is the number of active rows in the LMIs [37], while the computational
complexity of MATLAB LMI Toolbox is O(h3

dvhar) [38]. The former algorithm is so more
efficient for problems with a large number of LMI variables.

Because the principle is not intended for use in an adaptive control structure with the
real-time control parameter calculation, this computational complexity is not applicable
limiting.

The proposed method provides a novel, original, constructive and nontrivial formu-
lation, where the computation of the control gains reduces to a feasibility problem over
a set of LMIs. The solution depends on the positive parameter δ , corresponding to an
upper bound for the matching uncertainty condition and is optimized in the nominally
defined design task. The parameter δ can be fixed in the design step interactively in the
case it is necessary to modify (usually slow down) the dynamics of a closed loop.

4. Illustrative Example

To illustrate the effectiveness of the proposed method the design principle is applied to
the system model (1), (2) defined by the system parameters

A1 =

⎡
⎣−0.27 1.94 1.45

0.08 −3.96 0.20
0.45 0.70 −2.91

⎤
⎦ , A2 =

⎡
⎣−0.26 2.06 1.55

0.14−3.64 0.36
0.25 0.78−2.55

⎤
⎦ , LT =

[
0 I2
1 0T

]
, lr =

[
1
1

]
,

As =

⎡
⎣−0.01 0.12 0.15

0.01−0.38 0.03
0.04 0.07−0.31

⎤
⎦ , B =

⎡
⎣0.5 1.0

1.0 0.9
0.7 1.1

⎤
⎦ , CT =

⎡
⎣1 0

0 1
0 0

⎤
⎦ , ln =

⎡
⎣1

1
1

⎤
⎦ , M =

⎡
⎣0 0

1 0
0 1

⎤
⎦ ,

Na1 =

[
0.02 0 0

0 0.01 0

]
, Na2 =

[
0.01 0 0

0 0.02 0

]
, Ns =

[
0.02 0 0

0 0.02 0

]
, Nb =

[
0.2 0
0 0.2

]
,

where A1, A2, As are strictly Metzler but not Hurwitz.
With the synthesis focusing points, of immediate consequences are primary the com-

mon matrix auxiliary parameters
AΘ1(l, l) =−diag1

[
0.27 3.96 2.91

]
, AΘ2(l, l) =−diag

[
0.26 3.64 2.55

]
,

AΘ1(l, l +1) = diag
[
1.94 0.20 0.45

]
, AΘ2(l, l +1) = diag

[
2.06 0.36 0.25

]
,

AΘ1(l, l +2) = diag
[
1.45 0.08 0.70

]
, AΘ2(l, l +2) = diag

[
1.55 0.14 0.78

]
,

AΘs(l, l) =−diag
[
0.01 0.38 0.31

]
,

AΘs(l, l +1) = diag
[
0.12 0.03 0.04

]
, AΘs(l, l +2) = diag

[
0.15 0.01 0.07

]
,

Bd1 = diag
[
0.5 1.0 0.7

]
, Bd2 = diag

[
1.0 0.9 1.1

]
,
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Nbd1 = diag
[
0.2 0

]
, Nbd2 = diag

[
0 0.02

]
.

Solving (42)-(47), applying SeDuMi package in MATLAB environment, the feasible
task admits the solution with the following positive definite diagonal matrix variables

S = diag
[
3.3558 0.4667 0.6948

]
,

R1 = diag
[
0.0879 0.1008 0.0422

]
, R2 = diag

[
0.1190 0.0813 0.0496

]
,

Rs1 = diag
[
0.0115 0.0132 0.0066

]
, Rs2 = diag

[
0.0119 0.0093 0.0070

]
.

Using relations (48), (49) the positive gain matrices of the common control law are
computed as

K =

[
0.0023 0.0426 0.0078
0.0079 0.0208 0.0167

]
, Ks =

[
0.0296 0.1861 0.0614
0.0352 0.1583 0.0659

]

and it is trivial to construct the matrices A◦c1, A◦c2

A◦c1 =

⎡
⎣−0.3338 1.7437 1.4834

0.0253 −4.7589 0.0865
0.4264 0.3854 −3.3588

⎤
⎦ , ρ(A	c1) =

⎡
⎣−0.1231
−3.5463
−4.7821

⎤
⎦ ,

A◦c2 =

⎡
⎣−0.3238 1.8637 1.5834

0.0853 −4.4389 0.2465
0.2264 0.4654 −2.9988

⎤
⎦ , ρ(A	c2) =

⎡
⎣−0.1459
−3.0848
−4.5308

⎤
⎦ .

The design condition guaranties only that Ac1, Ac2, Acs be strictly Metzler, but for such
given system parameters it is obtained

Ac1 =

⎡
⎣−0.3186 1.6578 1.3483

0.0219 −4.3328 0.0750
0.3927 0.3572 −3.0310

⎤
⎦ , ρ(Ac1) =

⎡
⎣−0.1226
−3.2068
−4.3529

⎤
⎦ ,

Ac2 =

⎡
⎣−0.3086 1.7778 1.4483

0.0819 −4.0128 0.2350
0.1927 0.4372 −2.6710

⎤
⎦ , ρ(Ac2) =

⎡
⎣−0.1452
−2.7440
−4.1032

⎤
⎦ ,

Acs =

⎡
⎣−0.0153 0.0859 0.1352

0.0034 −0.4262 0.0115
0.0337 0.0283 −0.3277

⎤
⎦ , ρ(Acs) =

⎡
⎣−0.0003
−0.3396
−0.4293

⎤
⎦ ,

which all are strictly Metzler and Hurwitz, but this results is not guaranteed in general.
One can verify that using slightly different parameter matrix with the time-delay

relation As in the form

As =

⎡
⎣−0.01 0.12 0.15

0.01−0.38 0.03
0.04 0.07−0.31

⎤
⎦ �

⎡
⎣−0.01 0.12 0.15

0.01−0.38 0.03
0.04 0.07−0.30

⎤
⎦ ,

the solution mean strictly Metzler and Hurwitz A◦c1, A◦c2, Ac1, Ac2, but Acs is only strictly
Metzler, since in this case

Acs =

⎡
⎣−0.0153 0.0859 0.1352

0.0034−0.4262 0.0115
0.0337 0.0283−0.3177

⎤
⎦ , ρ(Acs) =

⎡
⎣ 0.0001
−0.3302
−0.4291

⎤
⎦ .

Note, the matrix Acs does not need to be a Hurwitz matrix since the main idea is to
construct a stable augmented matrix A◦ci.

Real negative system eigenvalues are conditional on the use of positive Metzler sys-
tems because they guarantee the aperiodic positive trajectories of state variables for a
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non-negative initial state of the system with convergence to the system equilibrium only
in the positive subspace Rn

+. For this reason, the graphical presentation of state trajec-
tories appears to be redundant. The given example contains all the parameters so that
interesting readers can verify this fact.

Note, the potentially comparable method for stabilization of time-delay positive
continuous-time systems presented in [39] produces in general the non-negative gains
and the nonnegative closed-loop system matrices although the description of the system
is based on the strictly Metzler matrix structures. As a result, there is no comparison base
of the design methods for the results presented in this paper for uncertain Mezler-Takagi-
Sugeno time-delay systems.

For sake of readability, in the example is only treated the case of strictly Metzler
system matrices, but the authors are convinced that this explicit example helps interesting
readers in understanding such defined design problem in the whole complexity.

5. Concluding Remarks

In the paper, a novel method is proposed for design of control law parameters for uncer-
tain Mezler-Takagi-Sugeno time-delay systems with a constant point time-delay in state
and it is showed that it preserves principle of diagonal stabilization. Structural proper-
ties of the considered systems with uncertainties are reflected to ensure the closed-loop
quadratic stability when defining the LMIs structure which cover the system structural
constraints, the parameter uncertainties and the point-delay in system state. What seems
perhaps specific is additional conditions to find state feedbacks with positive system
gains, preserving the closed-loop system positivity for strictly Metzler system matrices.
The parameter uncertainty domination as well as quadratic stability are guaranteed by
using the proposed structure of the state feedback. The illustrative example confines to
the theoretical starting points. To the best of authors’ knowledge, no comparable theoret-
ical results are available for design of state control of this class of systems with strictly
Metzler matrix structures.

The reason justifying the use of uncertain Metzler-Takagi-Sugeno time-delay model
is the need to minimize potentially the time-delay impact on the control with distributed
sensor structures of nonlinear systems. In this sense the account of the uncertainties
in Metzler-Takagi-Sugeno models allows adjusting the system state so that the system
parameter constraints imposed by the system positivity are satisfied. This is also the main
topic for the future research.

The limitation of the presented structure of LMIs is tied to the positive definiteness
of the diagonal variables R j,Rs j, which in the case of the purely Metzler structure of
the matrices may mean a marginal feasibility of the solution. Corollary 1 outlines an
approach of solving this problem by defining these variables as structured in an ad hoc
manner for a specific case. Another disadvantage limiting their widespread use is the
problem of selecting the nonnegative uncertainty matching conditions.

Solving under given system parametric constraints and the boundlessness of system
uncertainties substantially limits a control parameter tuning by reexpressing the design
conditions with an additive tuning parameter. However, such a path must be used for
uncertain Metzler-Takagi-Sugeno time-delay systems with a polytopic region of uncer-
tainty as this introduces another scalar tuning parameter when using the slack matrix
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principle. If an unknown disturbance is acting on the uncertain Metzler-Takagi-Sugeno
time-delay systems, adjusting to the H∞ norm of the disturbance transfer function must
be done by even more tuning scalar parameter. The ideas presented can be potentially
extended to a more general class of Mezler-Takagi-Sugeno time-delay systems with in-
terval time-delays or to design a non-fragile memory feedback controller for the consid-
ered system class and to the system reference trajectory problem. These cases are partly
a topic for future research.
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