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Abstract. Granularity analysis and measurements for complex data environment
are important tools to describe the essential attributes of the granular computing
model(GCM). Firstly, based on fuzzy multiple relations, this paper difines a multi-
fuzzy granular structure, and studies the hierarchical characteristics and relates
mathematical conclusions of the four fuzzy multiple partial-order relations on the
structure; Secondly, the measurement method of multi-fuzzy information granu-
larity is proposed, and its properties of measurements are analyzed; Finally, the
axiomatic definition of multi-fuzzy information granularity and its properties are
discussed.
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1. Introduction

Zadeh proposed the concept of granular computing in 1996[1]. He elaborated that hu-
man cognition has three main concepts, namely granulation (decomposing the whole into
parts), organization (integrating the parts into the whole), and causation (connections
between parts)[1][2]. Since granular computing covers the research of granular theory,
methodology, technology and tools, it has become one of the research hotspots in the
field of artificial intelligence in recent years, and has been widely used in machine learn-
ing, decision analysis, process control, pattern recognition and data mining, etc. Also
the ideological of granular computing is structured thinking, peculiaritied by hierarchical
modeling, comprehending, processing and learning[3]. Information system is the carrier
for us to obtain the most information resources[4]. In granular computing, it is one of the
important ways of knowledge representation[5]. The information granularity of an infor-
mation system reflects the uncertainty measure of its real structure[6]. In recent years,
measurement methods have been widely studied. How to analyze the granular structure
and measurement of complex information granular computing models are particularly
important for the measurement of information uncertainty of complex data in reality. At
present, people have proposed a variety of information granularity measurement forms
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in information systems for different data environments[7-12]. Qian et al. mainly studied
the information granularity in the information system under the fuzzy binary relation,
discussed the three partial-order relations on the fuzzy-binary information granularity,
and gave the axiomatic definition of the fuzzy binary information granular[13]. Under
the framework of Qian’s research on information granularity in information systems,
other scholars have expanded their research content. Yang et al. proposed the granular-
ity in the intuitionistic fuzzy information system, gave the granularity and its axiomatic
definition, and studied related properties[14]. Based on the interval-value hesitant fuzzy
binary relation, Lu et al. gave the concept of interval-valued hesitant fuzzy granularity
structure, calculated the interval-valued hesitant fuzzy information granularity; Mean-
while lu et al. put forward the partial-order relationship on interval-valued hesitant fuzzy
information granularity[15], and further researched its internal hierarchical granularity
structure. In view of the constantly quantified multi-data environment, the research on
the hierarchical structure of its internal granularity and its measurement is undoubtedly
of great significance to reveal the essence of its internal structure.

Yager first proposed fuzzy multiset, its biggest advantage is to allow the membership
of elements in the universe to appear multiple times with the same or different member-
ship values[16]. Kim et al. studied the basic relations and operations of fuzzy multisets,
and discussed the application of fuzzy multisets in fuzzy relational database systems
[17]. Miyamoto gave the definition of the module of fuzzy multiset, and considered the
application of commutativity in fuzzy multisets [18]. El-Azab, M.S. defined fuzzy multi
correlation measure and many of its properties are investigated[19]. However, few peo-
ple have discussed the partial-order relation between the multi-fuzzy information granu-
lar structure based on the fuzzy multirelation. And few people use information granular-
ity to study the uncertainty measurement of fuzzy multi-information GCM. Therefore,
it is necessary to study the multi-fuzzy granular structure of fuzzy multiple information
granularity and information measurement.

The main contributions of this paper are as follow:

• The granular structure under fuzzy multiple environments is defined, and three
operations are discussed.

• Four partial-order relations between multi-fuzzy granular structures are estab-
lished, and their properties are proved mathematically.

• Uncertainty measures of fuzzy multi-information are studied by using information
granularity.

• Axiomatization method of fuzzy multi-information granularity presented in this
paper has important theoretical significance and application value for multi-
information granular computing model.

This paper is organized as follows. Section 2 reviews some basic concepts: fuzzy
multisets, the number of membership degrees of elements in the fuzzy multisets, the op-
erations between fuzzy multisets, and proposes a fuzzy multirelation. Section 3 studies
the multi-fuzzy granular structure and the three operations. In the section 4, we present
for the hierarchical characteristics and related mathematical conclusions of the four fuzzy
multiple partial-order relations on the structure. In the Section 5, the multi-fuzzy infor-
mation granularity and its axiomatization method are defined, and under the four partial-
order relations proposed above, the properties of multi-fuzzy information granularity are
studied. Finally, section 6 gives the conclusion.
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2. Preliminaries

In this section, we will review several basic concepts, such as fuzzy multisets, the number
of membership degrees of elements in the fuzzy multisets, the operations between fuzzy
multisets, and proposes a fuzzy multirelation.

Fuzzy multisets is an extension of multisets, which is defined as follows:
Definition 2.1[20]: Let U = {x1,x2,...,xn} be a finite and nonempty set. A fuzzy

multisets M on U can be defined as M = {dM (x1)/x1,dM (x2)/x2, . . . ,dM (xn)/xn}, in
which dM (xi) =

{
d1

M (xi) ,d2
M (xi) , · · · ,dk

M (xi)
}

is a finite multiset of the [0,1], denoting
the possible membership degrees of the xi to the set M, and d1

M(xi) ≥ d2
M(xi) ≥ ·· · ≥

dk
M(xi). In this paper, all fuzzy multisets are defined as FM(U).

Example 1: Consider a fuzzy mltiset A = {(x1,0.3),(x1,0.4),(x1,0.5),(x1,0.5),(x2,
0.4),(x2,0.6)} of U = {x1,x2}. We may write A= {{0.3,0.4,0.5,0.5}/x1,{0.4,0.6}/x2},
in which the multiset of memberships {0.3,0.4,0.5,0.5} and {0.4,0.6} correspond to x1
and x2.

Definition 2.2: Let U = {x1,x2,...,xn} be a finite and nonempty set. Let A,B ∈
FM(U). A = {dA (x1)/x1,dA (x2)/x2, . . . ,dA (xn)/xn}, B = {dB (x1)/x1,dB (x2)/x2, . . .,
dB (xn)/xn}, where dA (xi)= {d1

A (xi) ,d2
A (xi) , · · · ,dp

A (xi)} and dB (xi)= {d1
B (xi) ,d2

B (xi) ,
· · · ,dq

B (xi)}. The number of values in seqence dA(xi) is defined as

L(xi,A) = max{s : ds
A(xi) �= 0}.

We can get L(xi;A,B) = max{L(xi; A) ,L(xi;B )}. The resulting length for A and B is
defined by

L(xi;A,B) = max{p,q} .

We sometimes write L(xi) instead of L(xi;A,B) when no ambiguity arises.
Definition 2.3[20]: The number of elements, or cardinality of a fuzzy multiset is

given by |M|= ∑
xi∈U

L(xi;M)

∑
s=1

ds
M (xi).

Definition 2.4[21]: Let a universe U = {x1,x2,...,xn} be a finite universe of dis-
course. Then their basic operations for the membership sequences between A and B are
as follows:

ds
A∪B(xi) = ds

A(xi)∨dB
s(xi),s = 1,2, · · · ,L(xi); (1)

ds
A∩B(xi) = ds

A(xi)∧ds
B(xi),s = 1,2, · · · ,L(xi); (2)

∼ ds
A (xi) = 1−ds

A (xi) ,s = 1,2, · · · ,L(xi;A) . (3)

Note: If ∀A,B ∈ FM(U), in order to have a correct comparison and define an opera-
tion between two fuzzy multisets A and B, the membership sequences d1

A(xi),d2
A(xi), · · · ,
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dp
A(xi) and d1

B(xi),d2
B(xi), · · · ,dq

B(xi) should have the equal length[20]. If p < q, we there-
fore extend dA(xi) with maximum element dp

A(xi) until it has same length with dB(xi).
Definition 2.5: Let U = {x1,x2,...,xn} be a finite and nonempty set. Then the fuzzy

multi-subset defined in the direct product space U ×U is called the fuzzy multirelation
R̃∗on U , R̃∗ is given by R̃∗ = {(dr(xi j)/xi j) |xi j = (xi,x j) ∈ U ×U, i, j = 1,2, · · · ,n},
where dr(xi j) is a subset of the power set [0,1] representing the possible multiple mem-
bership degrees of the xi and x j.

3. Multi-Fuzzy Granular Structures

In Granular Computing, transformation among granular structures is a significant matter
which involves composition, disintegration and transformation.A class of fuzzy informa-
tion particles produced by fuzzy multiple relations in the universe of discourse is called
multi-fuzzy granular structure. The granular structure under multi-fuzzy environment is
defined as follow.

Definition 3.1: Suppose U = {x1,x2, ...,xn }, R̃∗ is a fuzzy multirelation on U . Then
the multi-fuzzy granular structure of U is defined as

K(R̃∗) = (SR̃∗(x1),SR̃∗(x2), · · · ,SR̃∗(xn)) (4)

where SR̃∗(xi)= ( dr(xi1)
xi

, dr(xi2)
xi

, · · · , dr(xin)
xi

) is a multi-fuzzy information granule, dr(xi j)=

{d1
r (xi j),d2

r (xi j), · · · ,ds
r(xi j)} denotes a set about the possible multiple degrees of equiv-

alence and between xi and x j.
Definition 3.2: Let K(P̃∗),K(Q̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,Sp̃∗ (xn)),

SP̃∗(xi) = ( d p(xi1)
xi

, d p(xi2)
xi

, · · · , d p(xin)
xi

), in which d p(xi j) = {d1
p(xi j),d2

p(xi j), · · · ,ds
q(xi j)},

s= L(xi j; SP̃∗(xi)); K(Q̃∗)= (Sq̃∗(x1),Sq̃∗ (x2), · · · ,Sq̃∗ (xn)), SQ̃∗(xi)=( dq(xi1)
xi

, dq(xi2)
xi

, · · · ,
dq(xin)

xi
), dq(xi j) = {d1

q(xi j),d2
q(xi j), · · · ,dt

q(xi j)}, and t=L(xi j; SQ̃∗(xi)). Refer to defini-
tion 2.2, the number of values in d p(xi j) is defined as

L(xi j; SP̃∗(xi)) = max
{

m : dm
p (xi j) �= 0

}
.

We can get L(xi j;SP̃∗(xi),SQ̃∗(xi)) = max{L(xi j; SP̃∗(xi)) ,L(xi j;SQ̃∗(xi) )}. The resuting
length for SP̃∗(xi),SQ̃∗(xi) is defined by

L(xi j; SP̃∗(xi), SQ̃∗(xi)) = max{s, t} .

We sometimes write L(xi j) instead of L(xi j; SP̃∗(xi), SQ̃∗(xi)) when no ambiguity
arises.

Definition 3.3: Let K(R̃∗) ∈ K(U),K(R̃∗) = (SR̃∗(x1),SR̃∗(x2), · · · ,SR̃∗(xn)), where
SR̃∗(xi) = ( dr(xi1)

xi
, dr(xi2)

xi
, · · · , dr(xin)

xi
) is a multi-fuzzy information granule, dr(xi j) =

{d1
r (xi j),d2

r (xi j), · · · ,ds
r(xi j)} and s = L(xi j;SR̃∗(xi)). The cardinality of the multi-fuzzy

granule SR̃∗(xi) can be calculated with
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|SR̃∗(xi)|=
n

∑
j=1

(

L(xi j ;SR̃∗ (xi))

∑
s=1

ds
r(xi j)

L(xi j; R̃∗)
)

(5)

which is a natural extension of the cardinality of fuzzy sets.
Given a family of fuzzy multi-granular structures GCM = (U,R̃∗), we also denote

the multi-fuzzy granular structure induced by P̃∗ ∈ R̃∗ by K(P̃∗)= (Sp̃∗(x1),Sp̃∗ (x2), · · · ,
Sp̃∗ (xn)), where SP̃∗(xi) = ( d p(xi1)

xi
, d p(xi2)

xi
, · · · , d p(xin)

xi
). Moreover, let K(U) be the collec-

tion of all multi-fuzzy granular structures on U .
Example 2: Let K(R̃∗) = (SR̃∗(x1),SR̃∗(x2)).

M(R̃∗) =
( {0.2,0.2} {0.3,0.3,0.6}
{0.6,0.6,0.8} {0.1,0.3,0.3,0.4}

)

where dr (x11)= {d1
r (x11) ,d2

r (x11)}= {0.2,0.2}, dr (x12)= {d1
r (x12) ,d2

r (x12) ,d3
r (x12)}

= {0.3,0.3,0.6} and SR̃∗(x1) = ( dr(x11)
x1

, dr(x12)
x1

) = ( {0.2,0.2}x1
, {0.3,0.3,0.6}x1

). According to
the definition of cardinality, we can get |SR̃∗(x1)|= 0.2+0.4 = 0.6.

In fact, Qian [13] proposed four operations of the granular structure, proving that
the new fuzzy granular structure can be generated by these four operations. Therefore,
three operations(intersection operation, union operation and complement operation) for
multi-fuzzy granular structures are given below. Before this, We first give the definition
of �, 
 and ∼ in the multi-fuzzy granules.

Definition 3.4: Let K(P̃∗),K(Q̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,Sp̃∗ (xn)),

SP̃∗(xi) = ( d p(xi1)
xi

, d p(xi2)
xi

, · · · , d p(xin)
xi

), in which d p(xi j) = {d1
p(xi j),d2

p(xi j), · · · ,ds
q(xi j)},

and s = L(xi j; SP̃∗(xi)); Also K(Q̃∗) = (Sq̃∗(x1),Sq̃∗ (x2), · · · ,Sq̃∗ (xn)), SQ̃∗(xi) = ( dq(xi1)
xi

,
dq(xi2)

xi
,· · ·, dq(xin)

xi
), in which dq(xi j)={d1

q(xi j),d2
q(xi j),· · ·,dt

q(xi j)} and t=L(xi j; SQ̃∗(xi)).
Three operators �, 
 and ∼ on objects in the multi-fuzzy granules are defined as follow:

SP̃∗ (xi)�SQ̃∗ (xi) ={d p(xi1)∩dq(xi1)

xi
,

d p(xi2)∩dq(xi2)

xi
, · · · , d p(xin)∩dq(xin)

xi
}

={{d
1
p∩q(xi1),d2

p∩q(xi1), ...,ds
p∩q(xi1)}

xi
,

{d1
p∩q(xi2),d2

p∩q(xi2), ...,ds
p∩q(xi2)}

xi
,

· · · , {d
1
p∩q(xin),d2

p∩q(xin), ...,ds
p∩q(xin)}

xi
}

(6)
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SP̃∗ (xi)
SQ̃∗ (xi) ={d p(xi1)∪dq(xi1)

xi
,

d p(xi2)∪dq(xi2)

xi
, · · · , d p(xin)∪dq(xin)

xi
}

={{d
1
p∪q(xi1),d2

p∪q(xi1), ...,ds
p∪q(xi1)}

xi
,

{d1
p∪q(xi2),d2

p∪q(xi2), ...,ds
p∪q(xi2)}

xi
,

· · · , {d
1
p∪q(xin),d2

p∪q(xin), ...,ds
p∪q(xin)}

xi
}

(7)

∼ SP̃∗(xi) = (
∼ d p(xi1)

xi
,
∼ d p(xi2)

xi
, · · · ,∼ d p(xin)

xi
) (8)

in which, ∼ d p(xi j) = {(1−d1
p(xi j)),(1−d2

p(xi j)), · · · ,(1−ds
p(xi j))}, i, j = 1,2, · · · ,n.

Note, suppose t < s, we therefore extend dq(xi j) with maximum element dt
q(xi j)

until it has same length with dp(xi j).
Definition 3.5: Let K(U) be the collection of all multi-fuzzy granular structures on

U , K(P̃∗),K(Q̃∗) ∈ K(U). Three operators
⋂

,
⋃

and � are defined as follow:

K(P̃∗)
⋂

K(Q̃∗) ={SP̃∗ (xi)�SQ̃∗ (xi)} (9)

K(P̃∗)
⋃

K(Q̃∗) ={SP̃∗ (xi)
SQ̃∗ (xi)} (10)

�K(P̃∗) = {�SP̃∗(xi)| �SP̃∗(xi) =∼ SP̃∗(xi)} (11)

Note: The offered three operators can be regarded as intersection operation, union
operation and complement operation in-between multi-fuzzy granular structures, which
are used to refine and roughen multi-fuzzy granular structures and calculate complement
of a multi-fuzzy granular structure, respectively. Next, we investigate some basic mathe-
matical properties of these three operators.

Theorem 3.1: Let
⋂

,
⋃

and � be three operators on K(U), they have the following
algebra properties:

(1) K(P̃∗)
⋂

K(P̃∗) = K(P̃∗),K(P̃∗)
⋃

K(P̃∗) = K(P̃∗);
(2) K(P̃∗)

⋂
K(Q̃∗) = K(Q̃∗)

⋂
K(P̃∗),K(P̃∗)

⋃
K(Q̃∗) = K(Q̃∗)

⋃
K(P̃∗);

(3) K(P̃∗)
⋂
(K(P̃∗)

⋃
K(Q̃∗)) = K(P̃∗),K(P̃∗)

⋃
(K(P̃∗)

⋂
K(Q̃∗)) = K(P̃∗);

(4) (K(P̃∗)
⋂

K(Q̃∗))
⋂

K(R̃∗) = K(P̃∗)
⋂(

K(Q̃∗)
⋂

K(R̃∗)
)
;

(K(P̃∗)
⋃

K(Q̃∗))
⋃

K(R̃∗) = K(P̃∗)
⋃
(K(Q̃∗)

⋃
K(R̃∗)).

Proof : Item (1)(2)(3) and (4) are straightforward by Definition 3.5.
Theorem 3.2: Let

⋂
,
⋃

and � be three operators on K(U), then

(1) �(�K(P̃∗)) = K(P̃∗);
(2) �(K(P̃∗)

⋂
K(Q̃∗)) = �K(P̃∗)

⋃ �K(Q̃∗);
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(3) �(K(P̃∗)
⋃

K(Q̃∗)) = �K(P̃∗)
⋂ �K(Q̃∗).

Proof : According to these operators of Definition 3.3, we can get (1) �K(P̃∗) =
{�SP̃∗(xi)| �SP̃∗(xi)=∼ SP̃∗(xi)}, where∼ d p(xi j)= {(1−d1

p(xi j)),(1−d2
p(xi j)), · · · ,(1−

dp
s(xi j))}; Then ∼ (∼ d p(xi j)) = {1− (1− d1

p(xi j)),1− (1− d2
p(xi j)), · · · ,1− (1−

ds
p(xi j))}, ∼ (∼ SP̃∗(xi)) = (∼(∼d p(xi1))

xi
, ∼(∼d p(xi2))

xi
, · · · , ∼(∼d p(xin))

xi
) = SP̃∗(xi), i, j =

1,2, · · · ,n. Therefore, �(�K(P̃∗)) = K(P̃∗) holds. Items (2) and (3) are straightforward by
Definition 3.4.

4. Partial-Order Relations on Multi-Fuzzy Granular Structures

Partial-order relation is one of the important ways to describe the granular structure. In
the following, we propose four partial-order relations on multi-fuzzy granular structures.

Definition 4.1: Let SP̃∗(xi)=(d p(xi1)
xi

, d p(xi2)
xi

, · · · , d p(xin)
xi

), SQ̃∗(xi)=( dq(xi1)
xi

, dq(xi2)
xi

, · · · ,
dq(xin)

xi
). If d p(xi j)≤ dq(xi j), then SP̃∗(xi)⊆ SQ̃∗ (xi).

Definition 4.2: Let K(P̃∗),K(Q̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,Sp̃∗ (xn)),

SP̃∗(xi) = ( d p(xi1)
xi

, d p(xi2)
xi

, · · · , d p(xin)
xi

), in which d p(xi j) = {d1
p(xi j),d2

p(xi j), · · · ,ds
p(xi j)},

and s = L(xi j; SP̃∗(xi)); Also K(Q̃∗) = (Sq̃∗(x1),Sq̃∗ (x2), · · · ,Sq̃∗ (xn)), SQ̃∗(xi) = ( dq(xi1)
xi

,
dq(xi2)

xi
, · · · , dq(xin)

xi
), where dq(xi j) = {d1

q(xi j),d2
q(xi j), · · · ,dt

q(xi j)}, t=L(xi j; SQ̃∗(xi)) and
i, j = 1,2, · · · ,n, a partial-order relation �1 is defined as

K(P̃∗)�1K(Q̃∗)⇔ SP̃∗(xi)⊆ SQ̃∗(xi)
⇔ d p(xi j)≤ dq(xi j)
⇔d1

p(xi j)≤ d1
q(xi j),d2

p(xi j)≤ d2
q(xi j), . . . ,ds

p(xi j)≤ ds
q(xi j).

Clearly, (K(U),�1) is a poset. Furthermore,
K(P̃∗) = K(Q̃∗)⇔ SP̃∗(xi) = SQ̃∗ (xi)

⇔ d p(xi j) = dq(xi j)
⇔ d1

p(xi j) = d1
q(xi j),d2

p(xi j) = d2
q(xi j), . . . ,ds

p(xi j) = ds
q(xi j), i, j =

1,2, · · · ,n, which can be written as P̃∗=Q̃∗.
K(P̃∗)≺1K(Q̃∗)⇔ K(P̃∗)�1K(Q̃∗) and K(P̃∗) �= K(Q̃∗) is denoted by P̃∗≺1Q̃∗.

Theorem 4.1: Let
⋃
,
⋂

and � be three operators on K(U), the following properties
hold.

(1) If K(P̃∗)�1K(Q̃∗), then �K(Q̃∗)�1 �K(P̃∗);
(2) K(P̃∗)�1K(P̃∗)

⋃
K(Q̃∗),K(Q̃∗)�1K(P̃∗)

⋃
K(Q̃∗);

(3) K(P̃∗)
⋂

K(Q̃∗)�1K(P̃∗),K(P̃∗)
⋂

K(Q̃∗)�1K(Q̃∗).

Proof :
K(P̃∗)�1K(Q̃∗)⇒∀xi ∈U ,SP̃∗(xi)⊆ SQ̃∗(xi), i = 1,2, · · · ,n.

⇒∀xi ∈U,d p(xi j)≤ dq(xi j), i, j = 1,2, · · · ,n.
⇒∀xi ∈U,(1−d1

q(xi j))≤ (1−d1
p(xi j)),(1−d2

q(xi j))≤
(1−d2

p(xi j)), · · · ,(1−ds
q(xi j))≤ (1−dp

s(xi j)), i, j = 1,2, · · · ,n.
⇒∀xi ∈U, �SQ̃∗(xi)�1 �SP̃∗(xi).⇒ �K(Q̃∗)�1 �K(P̃∗).

In the same way, items (2) and (3) are easily obtained by the Definition 4.2.
Example 3: Let K(P̃∗),K(Q̃∗) ∈ K(U), P̃∗ and Q̃∗ are fuzzy multirelations on U ,

where K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2)) and K(Q̃∗) = (Sq̃∗(x1),Sq̃∗ (x2)),The fuzzy multirela-
tion is denoted by the following maxtrix:
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M(P̃∗) =
({0.1,0.1,0.2,0.2} {0.1,0.1,0.4}

{0.2,0.5} {0.2,0.5,0.5,0.6,0.7}
)

M(Q̃∗) =
( {0.3,0.3,0.4} {0.3,0.4,0.4}
{0.6,0.6,0.7.0.8} {0.3,0.5,0.6,0.7,0.8}

)

From the values of these knowledge and the definition of�1, we know that K(P̃∗)�1K(Q̃∗).
Definition 4.3: Let K(P̃∗),K(Q̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,Sp̃∗ (xn)),

SP̃∗(xi) = ( d p(xi1)
xi

, d p(xi2)
xi

, · · · , d p(xin)
xi

), d p(xi j) = {d1
p(xi j),d2

p(xi j), · · · ,ds
p(xi j)}, i, j =

1,2, · · · ,n and s = L(xi j; SP̃∗(xi)). then the definition of the mean degree of multiple
membership is as follows:

�

d p(xi j) =
1

L(xi j)

L(xi j ; SP̃∗ (xi))

∑
s=1

ds
p(xi j) (12)

Thus, the multi-fuzzy information granule can also be defined as

SP̃∗(xi) = (

�

d p(xi1)

xi
,

�

d p(xi2)

xi
, · · · ,

�

d p(xin)

xi
) (13)

Definition 4.4: Let SP̃∗(xi) = (
�
d p(xi1)

xi
,
�
d p(xi2)

xi
, · · · ,

�
d p(xin)

xi
) and SQ̃∗(xi) =(

�
d q(xi1)

xi
,

�
d q(xi2)

xi
, · · · ,

�
d q(xin)

xi
), if

�

d p(xi j)≤
�

dq(xi j), then SP̃∗(xi)� SQ̃∗ .
Definition 4.5: Let K(P̃∗),K(Q̃∗) ∈ K(U), where K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,

Sp̃∗ (xn)), SP̃∗(xi) = (
�
d p(xi1)

xi
,
�
d p(xi2)

xi
, · · · ,

�
d p(xin)

xi
), K(Q̃∗) = (Sq̃∗(x1),Sq̃∗ (x2), · · · ,Sq̃∗ (xn))

and SQ̃∗(xi) = (
�
d q(xi1)

xi
,
�
d q(xi2)

xi
, · · · ,

�
d q(xin)

xi
), a partial-order relation �2 is defined as

K(P̃∗)�2K(Q̃∗)⇔ SP̃∗(xi)� SQ̃∗ (xi), i = 1,2, · · · ,n
⇔

�

d p(xi j)≤
�

dq(xi j), i, j = 1,2, · · · ,n,

in which
�

d pi j =

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
,
�

dqi j =

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
, should be written as P̃∗�2Q̃∗.

Furthermore,
K(P̃∗)� K(Q̃∗)⇔ SP̃∗(xi)� SQ̃∗ (xi), i = 1,2, · · · ,n.

⇔
�

d p(xi j) =
�

dq(xi j), i, j = 1,2, · · · ,n is written as P̃∗ � Q̃∗.
K(P̃∗)≺2K(Q̃∗)⇔K(P̃∗)�2K(Q̃∗) and K(P̃∗) ��K(Q̃∗) should be written as P̃∗≺2Q̃∗.

Theorem 4.2: Letting K(U) be the collection of all multi-fuzzy granular structures
on U , then (K(U),�2) is a poset.

Proof : Let K(P̃∗),K(Q̃∗),K(R̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,Sp̃∗ (xn)),

SP̃∗(xi)=(
�
d p(xi1)

xi
,
�
d p(xi2)

xi
,· · ·,

�
d p(xin)

xi
),

�

d pi j =

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
; Also K(Q̃∗) = (Sq̃∗(x1),

Sq̃∗ (x2), · · · ,Sq̃∗ (xn)), SQ̃∗(xi) = (
�
d q(xi1)

xi
,
�
d q(xi2)

xi
,· · ·,

�
d q(xin)

xi
),

�

dqi j =

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
.
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And K(R̃∗)=(SR̃∗(x1),SR̃∗(x2), · · · ,SR̃∗(xn)), SR̃∗(xi)=(
�
d r(xi1)

xi
,
�
d r(xi2)

xi
,· · ·,

�
d r(xin)

xi
),
�

dri j =
L(xi j ;SR̃∗ (xi))

∑
m=1

dm
r (xi j)

L(xi j ;SR̃∗ (xi))
.

(1) It can be seen from Definition 4.5, for xi ∈ U , SP̃∗(xi) � SP̃∗ (xi),
�

d p(xi j) ≤
�

d p(xi j),i, j = 1,2, · · · ,n, holds, we can find P̃∗�2P̃∗.
(2) Suppose P̃∗�2Q̃∗ and Q̃∗�2P̃∗, according to Definition 4.5, we can find

P̃∗�2Q̃∗ ⇔ SP̃∗(xi)� SQ̃∗ (xi)

⇔
�

d p(xi j)≤
�

dq(xi j);
Q̃∗�2P̃∗ ⇔ SQ̃∗ (xi)� SP̃∗(xi)

⇔
�

dq(xi j)≤
�

d p(xi j) for i = 1,2, · · · ,n.

Therefore, we obtain that
�

d p(xi j) =
�

dq(xi j) =
�

d p(xi j), which is
�

d p(xi j) =
�

dq(xi j).
Hence P̃∗ � Q̃∗.

(3) Suppose P̃∗�2Q̃∗, Q̃∗�2R̃∗. P̃∗�2Q̃∗ ⇔ SP̃∗(xi)� SQ̃∗ (xi)⇔
�

d p(xi j)≤
�

dq(xi j)⇔
L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
≤

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
p(xi j)

L(xi j ;SQ̃∗ (xi))
, for i, j = 1,2, · · · ,n. Q̃∗�2R̃∗ ⇔ SQ̃∗ (xi) �

SR̃∗ (xi) ⇔
�

d p(xi j) ≤
�

dr(xi j) ⇔
L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
p(xi j)

L(xi j ;SQ̃∗ (xi))
≤

L(xi j ;SR̃∗ (xi))

∑
m=1

dm
r (xi j)

L(xi j ;SR̃∗ (xi))
, for i, j =

1,2, · · · ,n. So we can get

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
≤

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
p(xi j)

L(xi j ;SQ̃∗ (xi))
≤

L(xi j ;SR̃∗ (xi))

∑
m=1

dm
r (xi j)

L(xi j ;SR̃∗ (xi))
,

thus
�

d p(xi j) ≤
�

dq(xi j) ≤
�

dr(xi j),
�

d p(xi j) ≤
�

dq(xi j)⇔ SP̃∗(xi) � SR̃∗ (xi). Hence,
P̃∗�2R̃∗.

Theorem 4.3: The partial-order relation �1 is a special instance of partial-order
relation �2.

Proof : Suppose that K(P̃∗),K(Q̃∗) ∈ K(U) and K(P̃∗)�1K(Q̃∗).According to the

Definition 4.2, we can know SP̃∗(xi) � SQ̃∗(xi) and
�

d p(xi j) ≤
�

dq(xi j). So,
�

dq(xi j) ≤
�

d p(xi j). Hence SP̃∗(xi) � SQ̃∗ (xi), we obtain that K(P̃∗)�2K(Q̃∗). Therefore, partial-
order relation �1 is a special instance of partial-order relation �2.

Definition 4.6: Let K(P̃∗),K(Q̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,Sp̃∗ (xn)),

SP̃∗(xi) = ( d p(xi1)
xi

, d p(xi2)
xi

, · · ·, d p(xin)
xi

), in which d p(xi j) = {d1
p(xi j),d2

p(xi j), · · · ,ds
p(xi j)},

s= L(xi j; SP̃∗(xi)); K(Q̃∗)=(Sq̃∗(x1),Sq̃∗ (x2), · · · ,Sq̃∗ (xn)), SQ̃∗(xi)=( dq(xi1)
xi

, dq(xi2)
xi

,· · · ,
dq(xin)

xi
), in which dq(xi j) = {d1

q(xi j),d2
q(xi j), · · · ,dt

q(xi j)} and t = L(xi j; SQ̃∗(xi)). The
partial-order relation �3 is defined as K(P̃∗)�3K(Q̃∗) ⇔ |SP̃∗(xi)| ≤ |SQ̃∗ (xi)|, i =

1,2, · · · ,n, where |SP̃∗(xi)|=
n
∑
j=1

(

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
) and |SQ̃∗(xi)|=

n
∑
j=1

(

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
).

Furthermore, K(P̃∗) ∼= K(Q̃∗) ⇔ |SP̃∗(xi)|=|SQ̃∗ (xi)|, i = 1,2, · · · ,n, is written as
P̃∗ ∼= Q̃∗. K(P̃∗)≺3K(Q̃∗)⇔ K(P̃∗)�3K(Q̃∗) and K(P̃∗) �∼= K(Q̃∗) should be written as
P̃∗≺3Q̃∗.
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Theorem 4.4: Let K(U) be the collection of all multi-fuzzy granular structures on
U , then (K(U),�3) is a poset.

Proof : Suppose that K(P̃∗),K(Q̃∗),K(R̃∗) ∈ K(U), K(P̃∗) = (Sp̃∗(x1),Sp̃∗(x2), · · · ,
Sp̃∗(xn)), SP̃∗(xi) = ( d p(xi1)

xi
, d p(xi2)

xi
, · · · , d p(xin)

xi
); K(Q̃∗) = (Sq̃∗(x1),Sq̃∗ (x2), · · · ,Sq̃∗ (xn)),

SQ̃∗(xi) = ( dq(xi1)
xi

, dq(xi2)
xi

, · · · , dq(xin)
xi

); And K(R̃∗) = (SR̃∗(x1),SR̃∗(x2), · · · ,SR̃∗(xn)),

SR̃∗(xi) = ( dr(xi1)
xi

, dr(xi2)
xi

, · · · , dr(xin)
xi

).

(1) According to the definition of the partial-order relation�3, we can find P̃∗�3P̃∗.
(2) Suppose P̃∗�3Q̃∗, Q̃∗�3P̃∗. According the definition of the partial-order relation

�3, we can find |SP̃∗(xi)|≤|SQ̃∗(xi)|⇔
n
∑
j=1

(

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
)≤

n
∑
j=1

(

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
)

and |SQ̃∗(xi)| ≤ |SP̃∗(xi)| ⇔
n
∑
j=1

(

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
) ≤

n
∑
j=1

(

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
). So,

n
∑
j=1

(

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
) ≤

n
∑
j=1

(

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
) ≤

n
∑
j=1

(

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
). Therefore,

we obtain that |SP̃∗(xi)| ≤ |SQ̃∗(xi)| ≤ |SP̃∗(xi)|, that is |SP̃∗(xi)|= |SQ̃∗(xi)|. Hence,
P̃∗ ∼= Q̃∗.

(3) Suppose P̃∗�3Q̃∗, Q̃∗�3R̃∗, according the definition of the partial-order relation

�3, we can find |SP̃∗(xi)|≤|SQ̃∗ (xi)|⇔
n
∑
j=1

(

L(xi j ;SP̃∗ (xi))

∑
s=1

ds
p(xi j)

L(xi j ;SP̃∗ (xi))
)≤

n
∑
j=1

(

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
)

and |SQ̃∗ (xi)| ≤ |SR̃∗(xi)| ⇔
n
∑
j=1

(

L(xi j ;SQ̃∗ (xi))

∑
t=1

dt
q(xi j)

L(xi j ;SQ̃∗ (xi))
) ≤

n
∑
j=1

(

L(xi j ;SR̃∗ (xi))

∑
m=1

dm
r (xi j)

L(xi j ;SR̃∗ (xi))
), for

i, j = 1,2, · · · ,n. Therefore, we obtain that |SP̃∗(xi)| ≤ |SQ̃∗ (xi)| ≤ |SR̃∗(xi)|, that is
|SP̃∗(xi)| ≤ |SR̃∗(xi)|. Thus, P̃∗�3R̃∗.

Summarizing the (1)-(3), (K(U),�3) is a poset.
Theorem 4.5: The partial-order relation �2 is a special instance of partial-order

relation �3.
Proof : Suppose that K(P̃∗),K(Q̃∗) ∈ K(U) and K(P̃∗)�2K(Q̃∗).According to

the Definition 4.5, we can know SP̃∗(xi) ⊆ SQ̃∗(xi) and d1
p(xi j) ≤ d1

q(xi j),d2
p(xi j) ≤

d2
q(xi j), . . . ,ds

p(xi j)≤ ds
q(xi j). So,

�

dq(xi j)≤
�

d p(xi j). Hence |SP̃∗(xi)| ≤ |SQ̃∗(xi)|, we ob-
tain that K(P̃∗)�3K(Q̃∗). Therefore, partial-order relation �2 is a special instance of
partial-order relation �3.

Definition 4.8: Let K(P̃∗),K(Q̃∗)∈K(U), in which K(P̃∗) = (Sp̃∗(x1),Sp̃∗ (x2), · · · ,
Sp̃∗ (xn)), SP̃∗(xi) = ( d p(xi1)

xi
, d p(xi2)

xi
, · · ·, d p(xin)

xi
); K(Q̃∗) = (SQ̃∗ (x1),SQ̃∗ (x2), · · ·,SQ̃∗ (xn)),

SQ̃∗(xi) = ( dq(xi1)
xi

, dq(xi2)
xi

, · · ·, dq(xin)
xi

). A partial-order relation �4 is defined as
K(P̃∗)�4K(Q̃∗) ⇔for K(P̃∗), there exists a sequence K′(Q̃∗) of K(Q̃∗), such that

|SP̃∗(xi)| ≤ |SQ̃∗ (xi
′)|,i = 1,2, · · · ,n, where K′(Q̃∗) = (Sq̃∗(x1

′),Sq̃∗ (x2
′), · · ·,Sq̃∗ (xn

′)).
Furthermore, K(P̃∗) ≈ K(Q̃∗)⇔ |SP̃∗(xi)| = |SQ̃∗ (xi

′)|, i = 1,2, · · · ,n, which is denoted
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by P̃∗ ≈ Q̃∗. K(P̃∗)≺4K(Q̃∗)⇔ K(P̃∗)�4K(Q̃∗) and K(P̃∗) �≈ K(Q̃∗), which is written as
P̃∗≺4Q̃∗.

Therorem 4.7: Let K(U) be the collection of all multi-fuzzy granular structures on
U , then (K(U),�4) is a poset.

Proof : According to the definition of order-relation �4, it can be proved that
(K(U),�4) is a poset.

Therorem 4.6: The partial-order relation �3 is a special instance of partial-order
relation �4.

Proof : It is easy to prove from Definition 4.6 and Definition 4.7.

5. Multi-Fuzzy Information Granularity and Its Axiomatic Method

Information granularity can be regarded as a measure of the degree of aggregation (reg-
ularity) of knowledge on the domain classification. Fuzzy multi-information granular-
ity is equally important, and can be used to describe the classification ability of multi-
fuzzy granular structure. According to Zadeh’s research on granular computing, infor-
mation granularity should be expressed the granulation degree of objects from a hierar-
chical perspective[2]. That is, information granularity should represent the hierarchical
relationship between multi-fuzzy granular structures.

From the viewpoint of sizes of information granules, in the following, we introduce
the definition of multi-fuzzy information granularity.

Definition 5.1: Suppose K(R̃∗) ∈ K(U), in which K(R̃∗) = (SR̃∗(x1),SR̃∗(x2), · · · ,
SR̃∗(xn)). Then, the multiple fuzzy information granularity of R̃∗ is defined as

GK(R̃∗) =
1
n

n

∑
i=1

|SR̃∗(xi)|
n

(14)

where |SR̃∗(xi)| is the cardinality of the muti-fuzzy information granule SR̃∗(xi). Ax-
iomatic methods and constructive methods play an equal role in mathematical definition.
In the following, we give the axiomatic constraint to define a multi-fuzzy information
granularity in the context of multi-fuzzy granular structures by employing the partial-
order relation �3.

Definition 5.2: Let K(U) be the collection of all multi-fuzzy granular structures on
U , if ∀K(P̃∗) ∈ K(U), there is a real number G(P̃∗) with the following properties:

(1) G(P̃∗)≥ 0(nonnegative);
(2) For ∀K(P̃∗), K(Q̃∗)∈K(U), if K(P̃∗)∼=K(Q̃∗), then G(P̃∗)=G(Q̃∗)(invariability);
(3) For ∀K(P̃∗), K(Q̃∗)∈K(U), for K(P̃∗)≺3K(Q̃∗), then G(P̃∗)<G(Q̃∗)(monotonicity).

then G is called a multi-fuzzy information granularity. Obtained by the above axiomatic
method, we come to the following theorem.

Theorem 5.1: Let ∀K(P̃∗),K(Q̃∗)∈K(U), if K(P̃∗)�3K(Q̃∗), then G(P̃∗)≤G(Q̃∗).
This also satisfies the partial-order relation �1, �2 and�4 , respectively. It is easy to
prove by Definition 5.2 and the definition of partial-order relations �1, �2, �3 and �4.
Furthermore, the information granularity GK given by Definition 5.1 satisfies the ax-
iomatic definition methods. Next, we give proof:

(1) Obviously, it is nonnegative;
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(2) Letting K(P̃∗),K(Q̃∗)∈K(U), K(P̃∗)= (Sp̃∗(x1),Sp̃∗ (x2), · · ·,Sp̃∗ (xn)), K(Q̃∗)=
(SQ̃∗ (x1),SQ̃∗ (x2), · · ·,SQ̃∗ (xn)). According to the definition of partial-order rela-
tion �3, if P̃∗ ∼= Q̃∗, then |SP̃∗(xi)|= |SQ̃∗ (xi)|, i = 1,2, · · · ,n. Therefore

GK(P̃∗) = 1
n

n
∑

i=1

|SP̃∗ (xi)|
n = 1

n

n
∑

i=1

|SQ̃∗ (xi)|
n = 1

n

n
∑

i=1

|SQ̃∗ (xi)|
n = GK(Q̃∗).

(3) Letting K(P̃∗),K(Q̃∗) ∈ K(U) with P̃∗≺3Q̃∗, such that

K(P̃∗)≺3K(Q̃∗)⇔ |SP̃∗(xi)|< |SQ̃∗ (xi)|, i = 1,2, · · ·n.

⇔
n
∑
j=1

(

L(xi j)

∑
s=1

ds
p̃∗ (xi)

L(xi j)
)<

n
∑
j=1

(

L(xi j)

∑
s=1

ds
q̃∗ (xi j)

L(xi j)
),

GK(P̃∗) = 1
n

n
∑

i=1

|SP̃∗ (xi)|
n < 1

n

n
∑

i=1

|SQ̃∗ (xi)|
n = GK(Q̃∗).

Thus, GK(P̃∗) < GK(Q̃∗).Through monotonicity, meaning that relation Q̃∗ is more
chaotic than relation P̃∗, so the uncertainty of group Q̃∗ is higher.

In conclusion, the information granularity GK given by Definition 5.1 satisfies the
axiomatic definition methods in Definition 5.2.

6. Conclusion

Based on fuzzy multirelations, this paper first proposes a kind of fuzzy information gran-
ular structure generated by multi-fuzzy relations in the universe of discourse, namely
multi-fuzzy granular structure. Based on this structure, four fuzzy multiple partial-order
relations are defined, and the hierarchical characteristics of these four partial order re-
lations and related mathematical conclusions are studied. Secondly, for fuzzy multi-
information GCM, a multi-fuzzy information granularity is proposed. Finally, an ax-
iomatic method for defining fuzzy multiple information granularity on the fuzzy multi-
ple granular structure is given, and axiomatic constraints with partial-order relations are
established. This paper studies the internal structure nesting relationship and informa-
tion granularity measurement of fuzzy multi-information GCM, which provides a theo-
retical basis for the development of artificial intelligence and decision-making theory. In
the next step of this paper, the reasoning logic and algorithm design of fuzzy multiple
information will be further studied.
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