

Mass Ratio Variance Majority

Undersampling and Minority

Oversampling Technique for Class

Imbalance

Piboon Polvimolthama and Krung Sinapiromsaran
a,1

a
 Department of Mathematics and Computer Science, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand

Abstract. A sampling method is one of the popular methods to deal with an
imbalance problem appearing in machine learning. A dataset having an imbalance

problem contains a noticeably different number of instances belonging to different

classes. Three sampling techniques are used to solve this problem by balancing class
distributions. The first one is an undersampling technique removing noises from a

class having a large number of instances, called a majority class. The second one is

an over-sampling technique synthesizing instances from a class having a small
number of instances, called a minority class, and the third one is the combined

technique of both undersampling and oversampling. This research applies the

combined technique of both undersampling and oversampling via the mass ratio
variance scores of instances from each individual class. For the majority class,

instances with high mass ratio variances are removed whereas for the minority class,

instances with high mass ratio variances are used in synthesizing minority instances.
The results of this proposed sampling technique help improve recall over standard

classifiers: a decision tree, a random forest, Linear SVM, MLP on all synthesized

datasets; however it may have low precision. So the combined measure of precision
and recall is used, F1-score. Recall and F1-scores of synthesized datasets and UCI

datasets are significantly better for collections of datasets having small imbalance

ratio. Moreover, the Wilcoxon signed-rank test is used to confirm the improvement
for datasets having imbalance ratio smaller than or equal to 0.2.

Keywords. Mass ratio variance score, Undersampling, Oversampling, Imbalanced

problem, Classification

1. Introduction

A class imbalanced problem[1] is one of the important topics in classification from

machine learning. It is a problem of building a classifier in the presence of

underrepresented class instances and highly skewed class distributions. This occurs when

the number of instances representing an important class is much smaller than those from

other classes. In a binary classification, the smaller class is called the minority class or

the positive class while another class is called the majority class or the negative class.

The main purpose of classification on this problem is to identify the minority instances

1 Corresponding Author, Krung Sinapiromsaran, Department of Mathematics and Computer Science,

Faculty of Science, Chulalongkorn University, Bangkok, Thailand; E-mail: krung.s@chula.ac.th

Fuzzy Systems and Data Mining VII
A.J. Tallón-Ballesteros (Ed.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210186

152

as accurately as possible. In real world applications, minority instances are important

such as fraud transactions in the fraud detection[2], ailing patients in the medical

diagnosis[3], default loans in the credit approval[4]. In addition, a class imbalance

problem in the medical diagnosis is to detect and diagnose the patterns of certain diseases

within patient electronic healthcare records. It is normal that some life threatening

diseases are rare among patients. The misclassification of these cases can lead to the

patient’s death so the ailing patients that identify as healthy should not be occurred, i.e.

the number of false negative patients should be small. Traditionally, a minority instance

tends to be misclassified when a standard classifier is applied on an imbalanced dataset

due to its tiny portion.

There are three main methodologies to deal with an imbalanced problem. First, a

data-level methodology[5, 6, 7, 8] resamples the distribution of class instances to make

them balance. Then this new dataset can be used to train with any classifier. Many

techniques in this approach are an oversampling technique[9, 10, 11] which synthesizes

random instances from the minority group avoiding those from majority groups, or an

undersampling technique[12, 13] which discards random instances from the majority

group to extend the minority region of instances in the minority class or the mixture of

an oversampling and undersampling technique[14]. Second, an algorithmic-level

methodology upgrades or reimplements the classification algorithms to be more robust

to noise while handling minority instances successfully[15, 16, 17, 18, 19]. Third, the

hybrid methodology combines both the data-level approach and the algorithmic-level

approach such as Adaboost[20], Boosting[21], Bagging[22], etc.

An undersampling algorithm concentrates on removing instances from the majority

class, it reduces the total amount of information that the model has to learn from.

Currently, there are many undersampling techniques such as DBMUTE 2017, MUTE,

2011, but a random undersampling algorithm (RUS) is the simplest method that removes

minority instances randomly without any restriction. There are many intelligent

approaches toward undersampling such as Tomek-link[23], it is the method that based

on 1-Nearest-Neighbour, groups the borderline minority instance with nearest majority

instance then removes those majority instances, this makes borderline unblemish and

easy to partition. An oversampling algorithm contrasts this operation by increasing the

number of minority instances. The simplest method is the random oversampling

algorithm (ROS). It randomly duplicates instances from the minority class, which will

not expand the region of the minority class. One of the popular oversampling techniques

that expand the region of this class is the Synthetic minority oversampling technique

(SMOTE)[5]. It produces artificial minority instances by interpolating between existing

minority instances and their nearest minority neighbours. The enhanced SMOTE

algorithm has been developed such as Borderline-SMOTE[6] and Safe-Level-SMOTE[7]

that deal with some majority instances during the synthetic process.

A misclassified minority instance normally lies further away from other minority

instances or abnormal minority instances. An algorithm to help a classifier to recognize

them should remove some surrounding majority instances within the overlapping region.

In addition, it should also synthesize a small number of minority instances near these

minority instances. Hence, the resampling technique is proposed. In addition, the

algorithm may be used to identify abnormal instances in the majority class for removal.

This can be achieved using the anomaly score, the Mass-ratio variance based outlier

factor(MOF)[24]. The algorithm to generate MOF requires no parameter and uses the

density to assign high scores to outliers. This makes MOF perfect to detect those

abnormal instances for majority and minority classes.

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance 153

The mass ratio variance majority undersampling and minority oversampling

technique (MUOT) is proposed. It uses MOF to detect abnormal instances in both

majority and minority classes. An abnormal instance from the majority class is treated

as noise which will be removed to clean up the overlapping area between both classes

while abnormal instances from the minority class will be packed with synthesized

minority instances. To evaluate the performance of the proposed method via precision,

recall and F1-score, four standard classifiers will be executed on synthesized datasets

and UCI datasets. Finally, the Wilcoxon signed-rank test will be used to demonstrate the

effectiveness of the proposed method for unseen instances.

2. Related work and background knowledge

A mass-ratio-variance based outlier factor algorithm[24] is a parameter-free density-

based outlier scoring algorithm. It gives scores to all instances from a dataset. The high

score is given to an outlier whereas the low score is given to normal instances via the

variance of mass-ratio scores. The following definitions are used to define MOF.

Definition 1: Given a dataset the Euclidean distance of instance

to instance denoted as is defined as

Definition 2: Given a dataset , the set of all instances within the neighbourhood

of instances with respect to the radius is defined as the set of points that lies

within the ball centred at instance x with the radius

Definition 1 is the Euclidean distance definition and definition 2 defines the set of

neighbourhoods of instance x with respect to the radius r. The next definition defines the

mass-ratio of an instance with respect to another instance. The last definition defines the

mass-ratio variance score of an instance.

Definition 3: For instance and instance , the mass-ratio of instance

with respect to instance is defined as

For instance x, the definition 3 will assign mass-ratios to other instances in the dataset.

If this instance x is outlier, the denominator will contribute a small number so that other

instances will have high mass-ratios, except the one that is close to x. If this instance x

is among other instances in a dataset, this mass-ratio will be close to 1.

Definition 4: is defined as mean of the mass-ratio distribution of other instances,

except x and MOF of instance is defined as the variance of the mass-ratio distribution.
These MOFs are used to separate abnormal instances from normal ones. They are used

in the proposed method, MUOT, for a class imbalance problem. The criterion to separate

abnormal instances from normal instances will explain in detail in the next section.

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance154

3. MUOT

MUOT uses mass-ratio-variance scores for undersampling and oversampling. Originally,

the mass-ratio-variance score was designed to identify outliers of a static dataset by

giving high MOF scores to outliers and low MOF scores to normal instances. MUOT is

the algorithm that resamples imbalanced to balanced dataset. Both undersampling and

oversampling steps are performed only on abnormal instances. The undersampling step

is to remove abnormal instances from the majority class and oversampling step is to

synthesize the minority instances into balls using abnormal instances from the minority

class as center. To identify abnormal instances, a threshold for MOF scores must be

selected. For a univariate data distribution, is suggested as the IQR rule to

identify outliers. Note IQR = Q3 - Q1 where Q3 is the 75th percentile and Q1 is the 25th

percentile. Nevertheless, to find an appropriate threshold for MUOT, 50th, 60th, 70th, 80th

and 90th percentiles are investigated to compare with via the decision tree.

After resampling techniques are applied to datasets with different thresholds. The one

with the highest F1-score will be selected as the appropriate threshold for MUOT, see

Figure 1. From these experiments, the best threshold is 90 percentile. So 10% of majority

instances will be removed and 10% of minority instances will be used in the

oversampling step to make sure that there are enough minority instances for a classifier

to recognize these minority outcasts.

Figure 1: Average rank of each threshold compared

The following pseudocode demonstrates the step-by-step of the MUOT algorithm.

Algorithm MUOT(X, y, p)
Input: Array of data X; vector of target y; percentile threshold p (default = 90)

nFeatures = number of features, nPos = number of minority instances, nNeg = number of majority instances

Note: 1. yi is 0 for a majority instance and 1 for a minority instance
 2. # is used for a line comment

 3. compute_MOF(S) returns MOF scores of each instance in S
 4. percentile(S, p) returns the pth percentile value from S
 5. a group of selected instances is represented in a numpy array as Variable_name[*conditions* or *index*]

 6. ball(x, nFeatures, r, n) returns n synthesized instances within a ball centered at x and radius r.

 7. enumerate(S) returns a sequence of (i, s) where i is the index of s in S
 7. concatenate(S, T) returns the new set that concatenate T to S
Output: the balanced dataset X and y

1. XNeg is the subset of X having target y = 0

2. MOFNeg = compute_MOF(XNeg)

3. NegThreshold = percentile(MOFNeg, p)
4. NegAbnormal is the set of instances from XNeg having MOFNeg > NegThreshold

5. nNegAbnormal = the number of instances from NegAbnormal
6. X = is the subset of X removing NegAbnormal

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance 155

7. nNegNormal = nNeg - nNegAbnormal

8. nSyn = nNegNormal - nPos # nSyn will be the number of synthesized instance

9. if nSyn > 0
10. then # Do the oversampling step

11. XPos is the subset of X having target y = 1

12. MOFPos = compute_MOF(XPos)
13. PosThreshold = percentile(MOFPos, p)

14. PosAbnormal is the set of instances from XPos having MOFPos > PosThreshold

15. nPosAbnormal = the number of instances from PosAbnormal
16. nSynPos = nSyn*(MOFPos[PosAbnormal] / Sum(MOFPos[PosAbnormal]))

17. NegIndex = index of nearest majority instance from instances in PosAbnormal

18. radius = distance[NegIndex] # radius is set as the distance from the minority instance to its
nearest majority instance

19. for i, abnormal in enumerate(PosAbnormal)
20. SynPos = ball(abnormal, nFeatures, radius[i], nSynPos[i])

21. X = concatenate(X, SynPos)

22. Y = concatenate(Y, 1)
23. endfor

24. endif
25. return X, y

End MUOT

4. Experiments and Results

This section reports the experimental results of the MUOT algorithm via four classifiers.

The experimental datasets are grouped into three collections having the imbalance ratio

(IR) of 0.1, 0.2 and 0.3. Note that the imbalance ratio is defined as the ratio between

number of minority instances and number of all instances. IR values represent the ratio

of imbalance data, a low IR value means there is a small number of minority instances

(highly imbalanced) while a high IR value means the data is more balanced. In each

collection, the subcollection is defined based on the number of clusters of 2, 3 and 4.

Each collection will contain 3 subcollections, each subcollection is defined in 3D and 5D

with 100 or 300 instances. Then the datasets are generated randomly 30 times and the

average performance will be reported from these 30 datasets in each subcollection and

each collection. The reported results are the average performance measures of each

collection by each subcollection based on different classifiers and measures.

 (1)

The performance measures are computed from the confusion matrix shown below. TP is

the count of true positive instances: the actual class is positive and the predicted class is

also positive. TN is the count of true negative instances: the actual class is negative and

the predicted class is negative. FP is the count of false positive instances: the actual class

is negative but the predicted class is positive. FN is the count of false negative instances:

the actual class is positive but the predicted class is negative.

 Actual Positive Actual Negative

Predicted Positive TP: True Positive FP: False Positive

Predicted Negative FN: False Negative TN: True Negative

Figure 2: Confusion matrix

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance156

In a class imbalance problem, three measures are more crucials than others which are TP,

FN and FP. Note that FP is the number of negative instances that are predicted as positive

and FN is the number of positive instances that are predicted as negative which should

be very low for a class imbalance problem. So recall, see Equation 3, will be more

emphasized than precision, see Equation 2. Nevertheless, to incorporate both measures,

F1-score is used as the harmonic mean of precision and recall, see Equation 4.

 (2)

 (3)

 (4)

4.1 Synthesized data

There are 36 settings in the experiment which are grouped by IR and the number of

clusters. Collection 1 has IR = 0.1, Collection 2 has IR = 0.2 and Collection 3 has IR =

0.3. Each collection also has three subcollections grouped by the number of clusters = 2,

3 and 4. In each subcollection, there are 4 settings varying by the number of features = 3

and 5 and the number of instances = 100 and 300 as shown in Table 1. In each setting,

30 datasets are randomly generated based on the provided setting.

Table 1. Information of synthesized datasets used in the experiment

 Synthesized data
Collection (IR) Subcollection #clusters #features #instances
1 (IR = 0.1)

1.1

1.2
1.2

2

3
4

3, 5

3, 5
3, 5

100, 300

100, 300
100, 300

2 (IR = 0.2) 2.1

2.2

2.3

2

3

4

3, 5

3, 5

3, 5

100, 300

100, 300

100, 300

3 (IR = 0.3) 3.1

3.2

3.3

2

3

4

3, 5

3, 5

3, 5

100, 300

100, 300

100, 300

The average performances of precision, recall and F1-score are reported in Figure 3 over

four classifiers: a decision tree, a random forest, linear SVM, MLP comparing between

the use of the original dataset and the dataset from the MUOT algorithm.

The results of the experiments are shown in Table 2 and Figure 3. Each cell in Table

2 reports mean±sd from each setting, where mean is the average performance and sd is

the standard deviation. To easily see the increase and decrease of performance, Figure 3

shows the barplot of each measurement compared between the original and the MUOT

datasets. It has a 3 by 3 barplots by the collections and the subcollections. But in this

paper are shows a 2 by 2 barplots which the collection having IR= 0.1 and 0.3 and the

subcollection having the number of clusters= 2 and 4. In case of full Figure 3 can be find

at this following links[https://bit.ly/3k2SMvo].

From Table 2, all experiments show the decrease in precision and the increase in

recall. For F1-scores, all experiments show improvement of this performance measure.

Notice that for the number of clusters = 2, the improvement of recalls and F1-scores are

small with respect to the larger number of clusters for all collections. The reason for this

behavior is that by removing majority abnormal instances will expand the minority

region so a classifier would be able to classify more minority instances which increases

recall. However, this behavior will cause precision to decrease because the more minority

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance 157

prediction, the more chance that some majority instances will be predicted as minority

instances which will decrease precision. Therefore, F1-score should be used to determine

the performance of MUOT. This demonstrates that the MUOT algorithm can help

classifiers to give a better improvement for the original datasets having IR less than or

equal to 0.2 and the more number of clusters the better improvement from MUOT can

be obtained.

Table 2. Mean±sd of precision, recall and F1-score of each collection

Collection Subcollection Mean±sd
IR #cluster Models precision recall F1-score

IR = 0.1 2

3

4

Original

MUOT

Original
MUOT

Original

MUOT

0.6030 ± 0.1670

0.5035 ± 0.1200

0.4403 ± 0.1972
0.3774 ± 0.1463

0.4591 ± 0.0398

0.4368 ± 0.1296

0.3974 ± 0.1077

0.5110 ± 0.1175

0.2399 ± 0.1054
0.3904 ± 0.1330

0.3446 ± 0.1746

0.5068 ± 0.1740

0.4474 ± 0.1118

0.4767 ± 0.1063

0.2810 ± 0.1144
0.3499 ± 0.1268

0.3571 ± 0.1740

0.4344 ± 0.1367

IR = 0.2

2

3

4

Original

MUOT

Original
MUOT

Original

MUOT

0.7699 ± 0.0949

0.6656 ± 0.0917

0.6577 ± 0.1086
0.5653 ± 0.0975

0.6780 ± 0.1435

0.5685 ± 0.1200

0.6147 ± 0.0877

0.7139 ± 0.0700

0.4536 ± 0.0979
0.6003 ± 0.0655

0.5069 ± 0.1356

0.6265 ± 0.1224

0.6608 ± 0.0871

0.6675 ± 0.0734

0.5046 ± 0.0948
0.5562 ± 0.0728

0.5485 ± 0.1371

0.5743 ± 0.1187

IR = 0.3 2

3

4

Original
MUOT

Original

MUOT
Original

MUOT

0.8023 ± 0.0693
0.7194 ± 0.0671

0.7441 ± 0.0889

0.6537 ± 0.0806
0.7366 ± 0.0995

0.6618 ± 0.0806

0.7254 ± 0.0721
0.7942 ± 0.0447

0.5938 ± 0.1072

0.6963 ± 0.0734
0.6277 ± 0.1322

0.7052 ± 0.1014

0.7461 ± 0.0670
0.7450 ± 0.0556

0.6401 ± 0.1024

0.6614 ± 0.0761
0.6606 ± 0.1191

0.6730 ± 0.0905

UCI
collection

 Original
MUOT

0.5750 ± 0.2381
0.5646 ± 0.1903

0.4774 ± 0.2453
0.6087 ± 0.1939

0.4843 ± 0.2559
0.5551 ± 0.2054

Figure 3: Average precision, recall and F1-score of 4 collection

4.2 Real world datasets

Five UCI datasets are used in the experiment. In contrast with the synthesized data, the

minority class must be selected in the experiment. The brief description of five UCI

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance158

datasets and their characteristics are shown in Table 3. In real world datasets, consisting

of both binary and multiclass datasets. The multiclass datasets are converted to the binary

datasets by selecting one class as the minority class and the rest as the majority class. In

Table 3, the target class was chosen to be the minority class as in the column of “minority

target” and the rest were set as the majority class. The overall IR values of these five

datasets is 0.2467. The average performances from the UCI datasets are shown in Figure

4.

Table 3. Information of UCI datasets used in the experiment

Datasets #instances #features minority target #minority IR
Wine

Parkinsons

Haberman
E Coli

Pima

178

195

306
336

768

13

22

3
7

8

“3”

“0”

“2”
“imU”

“1”

48

48

81
35

268

0.2697

0.2461

0.2647
0.1041

0.3489

Average 0.2467

From the previous observation, the MUOT algorithm can help classifiers to gain better

recall and F1-score for IR less than 0.3 so it is expected to see the improved performance

for these five UCI datasets having the average IR as 0.2467. From Figure 4, the improved

performance of recall and F1-score are obtained. This can be concluded that the MUOT

algorithm can help classifiers improve recall and F1-score.

Figure 4: Average precision, recall and F1-score of 5 UCI dataset

4.3 Results

The MUOT algorithm generates a new dataset that increases recall for a classifier since

more positive instances can be easily recognized, but it will decrease precision due to the

enlarged minority regions so F1-score is the preferred measure which incorporates recall

and precision together. All results show the increases of recall and F1-score and the

decrease of precision. From three collections varying by IR values, the ranges of recall

and F1-score increase corresponding to IR, the more balanced the datasets are, the less

improvement MUOT will be. For the result of different numbers of clusters, MUOT

exhibits the highest F1-score when the number of clusters is equal to 4. This may come

from the spread of minority instances among all clusters. So MOF can be used to help

detect abnormal instances very well when more minority instances are spread across the

dataset. For UCI datasets, MUOT improves recall and F1-score and decreases precision.

To validate these findings, the non-parametric Wilcoxon signed-rank tests are used to

find the statistical significance of F1-score between the original datasets and the datasets

from the MUOT algorithm with respect to four classifiers.

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance 159

4.4 The Wilcoxon signed-rank test

The Wilcoxon signed-rank tests are used to evaluate the statistical significant

improvement of datasets from the MUOT algorithm against the original datasets. In each

test, the original datasets will be evaluated by 4 standard classifiers compared with the

datasets generated from the MUOT algorithm based on the same classifier. Table 4

showed the p-values from the Wilcoxon signed-rank test if the p-value is less than 0.05,

then it is considered to be significantly different.

Table 4.Wilcoxon signed-rank test, p-values of each dataset

Collection Subcollection P-value
IR #cluster precision recall F1-score

IR = 0.1 2

3
4

0.004181

3.35E-02
4.04E-01

3.05E-05

6.10E-05
3.05E-05

0.015503

0.000214
0.000305

IR = 0.2

2

3

4

6.10E-05

4.27E-04

6.10E-05

3.05E-05

3.05E-05

3.05E-05

4.04E-01

9.16E-05

6.29E-03

IR = 0.3 2

3

4

3.05E-05

9.16E-05

3.05E-05

3.05E-05

3.05E-05

3.05E-05

0.175354

0.028992

0.433197

UCI collection 4.75E-01 3.62E-05 7.30E-03

For collection 3 with IR = 0.3 and the number of clusters = 2 and 4, it shows no

significantly different performances of F1-score since their p-values are higher than 0.05.

While all other collections, the p-values are smaller than 0.05 so the significant

improvement can be obtained using MUOT. It can be concluded that MUOT is more

effective on imbalance datasets having IR value less than or equal 0.2 from the datasets.

5 Conclusion

This paper proposed the undersampling and oversampling techniques using MOF for a

class imbalance problem, called MUOT (Mass ratio variance majority undersampling

and minority oversampling technique). It selects abnormal instances using MOF from

the parameter-free outlier scoring method with the 90 percentile threshold. The

undersampling step performs on majority instances having MOF score above 90

percentile and the oversampling step performs on abnormal minority instances using the

same threshold setting inside the ball that does not include any majority instance

according to MOF scores. This enlarges the minority regions and aids classifiers to

recognize more minority instances.

The experiments with different IR values shows the improved performance of

MUOT for recall and F1-score. In addition, datasets having IR less than 0.3 will be

improved using MUOT. So that MUOT can handle imbalance datasets very effectively

when a dataset is imbalanced. More characteristics of datasets should be investigated

further via MUOT and the threshold values for undersampling and oversampling should

be investigated.

References

[1] Ali A, Ralescu A, Shamsuddin SM. Classification with class imbalance problem: A review. Int. J.
Advance Soft Compu. 2015 Jan. vol. 5, no. 3, p.176-204.

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance160

[2] Aweyemi JO, Adetunmbi AO, Oluwadare SA. Credit card fraud detection using machine learning

techniques: A comparative analysis. International Conference on Computing Networking and Informatics

(ICCNI); 2017 Oct 29-31. p. 1-9.
[3] Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial

Intelligence in Medicine. 2001 Aug. vol. 23, no. 1, p. 89-109.

[4] Mozina M, Zabkar J, Bratko I. Argument based machine learning. Artificial Intelligence. 2007 Jul-Oct.
vol. 171, no. 10–15, p. 922-937.

[5] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling

Technique. Journal of Artificial Intelligence Research. 2002. vol. 16, p. 321–357.
[6] Han H, Wang WY, Mao BH. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data

Sets Learning. In: Huang DS, Zhang XP, Huang GB, editors. Advances in Intelligent Computing. ICIC;

2005. Lecture Notes in Computer Science; Berlin, Heidelberg, Springer. vol. 3644, p. 878-887.
[7] Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-Level-SMOTE: Safe-Level-Synthetic

Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem. In Theeramunkong T,
Kijsirikul B, Cercone N, Ho TB, editors. Advances in Knowledge Discovery and Data Mining. PAKDD;

2009. Lecture Notes in Computer Science; Berlin, Heidelberg, Springer. vol. 5476, p. 475-482.

[8] Rout N, Mishra D, Mallick MK. Handling Imbalanced Data: A Survey. In: Reddy M, Viswanath K, K.M.
S, editors. International Proceedings on Advances in Soft Computing, Intelligent Systems and

Applications; 2017 Dec 28. Advances in Intelligent Systems and Computing; Singapore, Springer. vol

628, p. 431-443.
[9] Gosain A, Sardana S. Handling class imbalance problem using oversampling techniques: A review,

International Conference on Advances in Computing, Communications and Informatics; 2017 Sep 13-

16. p. 79-85.
[10] Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. DBSMOTE: Density-Based Synthetic Minority

Over-sampling TEchnique. Appl Intell 36. 2012 Apr. p. 664–684.

[11] Chiamanusorn C, Sinapiromsaran K. Extreme Anomalous Oversampling Technique for Class Imbalance.
In Proceedings of the 2017 International Conference on Information Technology (ICIT 2017); 2017 Dec

27. Association for Computing Machinery, New York, NY, USA. p. 341–345.

[12] Liu X, Wu J, Zhou Z. Exploratory Undersampling for Class-Imbalance Learning. In IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics); 2009 Apr. vol. 39, no. 2, p. 539-550.

[13] Bunkhumpornpat C, Sinapiromsaran K. DBMUTE: density-based majority under-sampling technique.

Knowl Inf Syst 50. 2017 Mar. p. 827–850.
[14] Junsomboon N, Phienthrakul T. Combining Over-Sampling and Under-Sampling Techniques for

Imbalance Dataset. In Proceedings of the 9th International Conference on Machine Learning and

Computing; 2017 Feb 24. USA, New York, Association for Computing Machinery. p. 243–247.
[15] Sahin Y, Bulkan S, Duman E. A cost-sensitive decision tree approach for fraud detection. Expert Systems

with Applications. 2013 Nov 1. vol. 40, no. 15, p. 5916-5923.

[16] Boonchuay K, Sinapiromsaran K, Lursinsap C. Decision tree induction based on minority entropy for the
class imbalance problem. Pattern Anal Applic 20. 2017 Aug. p. 769–782.

[17] Sagoolmuang A, Sinapiromsaran K. Oblique Decision Tree Algorithm with Minority Condensation for

Class Imbalanced Problem. Engineering Journal. 2020 Feb 8. vol. 24, no. 1, p. 221-237.
[18] Sagoolmuang A, Sinapiromsaran K. Decision Tree Algorithm with Class Overlapping-Balancing

Entropy for Class Imbalanced Problem. International Journal of Machine Learning and Computing. 2020

May 3. vol. 10, no. 3, p. 444-451.
[19] Suebkul K, Sinapiromsaran K. Recursive Tube-Partitioning Algorithm for a Class Imbalance Problem.

Thai Journal of Mathematics. 2020. vol. 18, no. 4, p.2041-2051.

[20] Thanathamathee P, Lursinsap C. Handling imbalanced data sets with synthetic boundary data generation
using bootstrap re-sampling and AdaBoost techniques. Pattern Recognition Letters. 2013 Sep 1. vol. 34,

no. 12, p. 1339-1347.

[21] Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data.
Pattern Recognition. 2007 Dec. vol. 40, no. 12, p. 3358-3378.

[22] Breiman L. Bagging Predictors. Machine Learning 24. 1996 Aug. p. 123-140.

[23] Devi D, Biswas S, Purkayastha B. Redundancy-driven modified Tomek-link based undersampling: A
solution to class imbalance. Pattern Recognition Letters. 2017 Jul 1. vol. 93, p. 3-12.

[24] Changsakul P, Boonsiri S, Sinapiromsaran K, Mass-ratio-variance based Outlier Factor. 18th

International Joint Conference on Computer Science and Software Engineering (JCSSE); 2021 Jul, p. 1-
5.

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance 161

