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Abstract. A sampling method is one of the popular methods to deal with an 
imbalance problem appearing in machine learning. A dataset having an imbalance 

problem contains a noticeably different number of instances belonging to different 

classes. Three sampling techniques are used to solve this problem by balancing class 
distributions. The first one is an undersampling technique removing noises from a 

class having a large number of instances, called a majority class. The second one is 

an over-sampling technique synthesizing instances from a class having a small 
number of instances, called a minority class, and the third one is the combined 

technique of both undersampling and oversampling. This research applies the 

combined technique of both undersampling and oversampling via the mass ratio 
variance scores of instances from each individual class. For the majority class, 

instances with high mass ratio variances are removed whereas for the minority class, 

instances with high mass ratio variances are used in synthesizing minority instances. 
The results of this proposed sampling technique help improve recall over standard 

classifiers: a decision tree, a random forest, Linear SVM, MLP on all synthesized 

datasets; however it may have low precision. So the combined measure of precision 
and recall is used, F1-score. Recall and F1-scores of synthesized datasets and UCI 

datasets are significantly better for collections of datasets having small imbalance 

ratio. Moreover, the Wilcoxon signed-rank test is used to confirm the improvement 
for datasets having imbalance ratio smaller than or equal to 0.2.  

Keywords. Mass ratio variance score, Undersampling, Oversampling, Imbalanced 

problem, Classification 

1. Introduction 

A class imbalanced problem[1] is one of the important topics in classification from 

machine learning. It is a problem of building a classifier in the presence of 

underrepresented class instances and highly skewed class distributions. This occurs when 

the number of instances representing an important class is much smaller than those from 

other classes. In a binary classification, the smaller class is called the minority class or 

the positive class while another class is called the majority class or the negative class. 

The main purpose of classification on this problem is to identify the minority instances 
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as accurately as possible. In real world applications, minority instances are important 

such as fraud transactions in the fraud detection[2], ailing patients in the medical 

diagnosis[3], default loans in the credit approval[4]. In addition, a class imbalance 

problem in the medical diagnosis is to detect and diagnose the patterns of certain diseases 

within patient electronic healthcare records. It is normal that some life threatening 

diseases are rare among patients. The misclassification of these cases can lead to the 

patient’s death so the ailing patients that identify as healthy should not be occurred, i.e. 

the number of false negative patients should be small. Traditionally, a minority instance 

tends to be misclassified when a standard classifier is applied on an imbalanced dataset 

due to its tiny portion. 

There are three main methodologies to deal with an imbalanced problem. First, a 

data-level methodology[5, 6, 7, 8] resamples the distribution of class instances to make 

them balance. Then this new dataset can be used to train with any classifier. Many 

techniques in this approach are an oversampling technique[9, 10, 11] which synthesizes 

random instances from the minority group avoiding those from majority groups, or an 

undersampling technique[12, 13] which discards random instances from the majority 

group to extend the minority region of instances in the minority class or the mixture of 

an oversampling and undersampling technique[14]. Second, an algorithmic-level 

methodology upgrades or reimplements the classification algorithms to be more robust 

to noise while handling minority instances successfully[15, 16, 17, 18, 19]. Third, the 

hybrid methodology combines both the data-level approach and the algorithmic-level 

approach such as Adaboost[20], Boosting[21], Bagging[22], etc. 

An undersampling algorithm concentrates on removing instances from the majority 

class, it reduces the total amount of information that the model has to learn from. 

Currently, there are many undersampling techniques such as DBMUTE 2017, MUTE, 

2011, but a random undersampling algorithm (RUS) is the simplest method that removes 

minority instances randomly without any restriction. There are many intelligent 

approaches toward undersampling such as Tomek-link[23], it is the method that based 

on 1-Nearest-Neighbour, groups the borderline minority instance with nearest majority 

instance then removes those majority instances, this makes borderline unblemish and 

easy to partition. An oversampling algorithm contrasts this operation by increasing the 

number of minority instances. The simplest method is the random oversampling 

algorithm (ROS). It randomly duplicates instances from the minority class, which will 

not expand the region of the minority class. One of the popular oversampling techniques 

that expand the region of this class is the Synthetic minority oversampling technique 

(SMOTE)[5]. It produces artificial minority instances by interpolating between existing 

minority instances and their nearest minority neighbours. The enhanced SMOTE 

algorithm has been developed such as Borderline-SMOTE[6] and Safe-Level-SMOTE[7] 

that deal with some majority instances during the synthetic process. 

A misclassified minority instance normally lies further away from other minority 

instances or abnormal minority instances. An algorithm to help a classifier to recognize 

them should remove some surrounding majority instances within the overlapping region. 

In addition, it should also synthesize a small number of minority instances near these 

minority instances. Hence, the resampling technique is proposed. In addition, the 

algorithm may be used to identify abnormal instances in the majority class for removal. 

This can be achieved using the anomaly score, the Mass-ratio variance based outlier 

factor(MOF)[24]. The algorithm to generate MOF requires no parameter and uses the 

density to assign high scores to outliers. This makes MOF perfect to detect those 

abnormal instances for majority and minority classes.  
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The mass ratio variance majority undersampling and minority oversampling 

technique (MUOT) is proposed. It uses MOF to detect abnormal instances in both 

majority and minority classes. An abnormal instance from the majority class is treated 

as noise which will be removed to clean up the overlapping area between both classes 

while abnormal instances from the minority class will be packed with synthesized 

minority instances. To evaluate the performance of the proposed method via precision, 

recall and F1-score, four standard classifiers will be executed on synthesized datasets 

and UCI datasets. Finally, the Wilcoxon signed-rank test will be used to demonstrate the 

effectiveness of the proposed method for unseen instances. 

2. Related work and background knowledge 

A mass-ratio-variance based outlier factor algorithm[24] is a parameter-free density-

based outlier scoring algorithm. It gives scores to all instances from a dataset. The high 

score is given to an outlier whereas the low score is given to normal instances via the 

variance of mass-ratio scores. The following definitions are used to define MOF. 

Definition 1: Given a dataset  the Euclidean distance of instance 

to instance  denoted as is defined as 

 

Definition 2: Given a dataset , the set of all instances within the neighbourhood 

of instances with respect to the radius  is defined as the set of points that lies 

within the ball centred at instance x with the radius  

 
Definition 1 is the Euclidean distance definition and definition 2 defines the set of 

neighbourhoods of instance x with respect to the radius r. The next definition defines the 

mass-ratio of an instance with respect to another instance. The last definition defines the 

mass-ratio variance score of an instance. 

Definition 3: For instance and instance , the mass-ratio of instance 

with respect to instance is defined as 

 

For instance x, the definition 3 will assign mass-ratios to other instances in the dataset. 

If this instance x is outlier, the denominator will contribute a small number so that other 

instances will have high mass-ratios, except the one that is close to x. If this instance x 

is among other instances in a dataset, this mass-ratio will be close to 1. 

Definition 4: is defined as mean of the mass-ratio distribution of other instances, 

except x and MOF of instance  is defined as the variance of the mass-ratio distribution. 
These MOFs are used to separate abnormal instances from normal ones. They are used 

in the proposed method, MUOT, for a class imbalance problem. The criterion to separate 

abnormal instances from normal instances will explain in detail in the next section. 

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance154



 

3. MUOT 

MUOT uses mass-ratio-variance scores for undersampling and oversampling. Originally, 

the mass-ratio-variance score was designed to identify outliers of a static dataset by 

giving high MOF scores to outliers and low MOF scores to normal instances. MUOT is 

the algorithm that resamples imbalanced to balanced dataset. Both undersampling and 

oversampling steps are performed only on abnormal instances. The undersampling step 

is to remove abnormal instances from the majority class and oversampling step is to 

synthesize the minority instances into balls using abnormal instances from the minority 

class as center. To identify abnormal instances, a threshold for MOF scores must be 

selected. For a univariate data distribution,  is suggested as the IQR rule to 

identify outliers. Note IQR = Q3 - Q1 where Q3 is the 75th percentile and Q1 is the 25th 

percentile. Nevertheless, to find an appropriate threshold for MUOT, 50th, 60th, 70th, 80th 

and 90th percentiles are investigated to compare with  via the decision tree. 

After resampling techniques are applied to datasets with different thresholds. The one 

with the highest F1-score will be selected as the appropriate threshold for MUOT, see 

Figure 1. From these experiments, the best threshold is 90 percentile. So 10% of majority 

instances will be removed and 10% of minority instances will be used in the 

oversampling step to make sure that there are enough minority instances for a classifier 

to recognize these minority outcasts. 

 
Figure 1: Average rank of each threshold compared 

The following pseudocode demonstrates the step-by-step of the MUOT algorithm. 

Algorithm MUOT(X, y, p) 
Input: Array of data X; vector of target y; percentile threshold p (default = 90) 

nFeatures = number of features, nPos = number of minority instances, nNeg = number of majority instances 

Note: 1. yi is 0 for a majority instance and 1 for a minority instance 
          2. # is used for a line comment 

          3. compute_MOF(S) returns MOF scores of each instance in S 
          4. percentile(S, p) returns the pth percentile value from S 
          5. a group of selected instances is represented in a numpy array as Variable_name[*conditions* or *index*] 

          6.  ball(x, nFeatures, r, n) returns n synthesized instances within a ball centered at x and radius r. 

          7. enumerate(S) returns a sequence of (i, s) where i is the index of s in S 
          7. concatenate(S, T) returns the new set that concatenate T to S 
Output: the balanced dataset X and y 

1. XNeg is the subset of X having target y = 0 

2. MOFNeg = compute_MOF(XNeg) 

3. NegThreshold = percentile(MOFNeg, p) 
4. NegAbnormal is the set of instances from XNeg having MOFNeg > NegThreshold 

5. nNegAbnormal = the number of instances from NegAbnormal
6. X = is the subset of X removing NegAbnormal 
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7. nNegNormal = nNeg - nNegAbnormal 

8. nSyn = nNegNormal - nPos  # nSyn will be the number of synthesized instance 

9. if nSyn > 0  
10.     then # Do the oversampling step 

11.             XPos is the subset of X having target y = 1 

12.             MOFPos = compute_MOF(XPos) 
13.             PosThreshold = percentile(MOFPos, p) 

14.             PosAbnormal is the set of instances from XPos having MOFPos > PosThreshold 

15.             nPosAbnormal = the number of instances from PosAbnormal 
16.             nSynPos = nSyn*(MOFPos[PosAbnormal] / Sum(MOFPos[PosAbnormal])) 

17.             NegIndex = index of nearest majority instance from instances in PosAbnormal 

18.             radius = distance[NegIndex] # radius is set as the distance from the minority instance to its 
nearest majority instance 

19.             for i, abnormal in enumerate(PosAbnormal) 
20.                     SynPos = ball(abnormal, nFeatures, radius[i], nSynPos[i]) 

21.                     X = concatenate(X, SynPos) 

22.                     Y = concatenate(Y, 1) 
23.             endfor 

24. endif 
25. return X, y 

End MUOT 

4. Experiments and Results 

This section reports the experimental results of the MUOT algorithm via four classifiers. 

The experimental datasets are grouped into three collections having the imbalance ratio 

(IR) of 0.1, 0.2 and 0.3. Note that the imbalance ratio is defined as the ratio between 

number of minority instances and number of all instances. IR values represent the ratio 

of imbalance data, a low IR value means there is a small number of minority instances 

(highly imbalanced) while a high IR value means the data is more balanced. In each 

collection, the subcollection is defined based on the number of clusters of 2, 3 and 4. 

Each collection will contain 3 subcollections, each subcollection is defined in 3D and 5D 

with 100 or 300 instances. Then the datasets are generated randomly 30 times and the 

average performance will be reported from these 30 datasets in each subcollection and 

each collection. The reported results are the average performance measures of each 

collection by each subcollection based on different classifiers and measures. 

   (1) 

The performance measures are computed from the confusion matrix shown below. TP is 

the count of true positive instances: the actual class is positive and the predicted class is 

also positive. TN is the count of true negative instances: the actual class is negative and 

the predicted class is negative. FP is the count of false positive instances: the actual class 

is negative but the predicted class is positive. FN is the count of false negative instances: 

the actual class is positive but the predicted class is negative. 

 Actual Positive Actual Negative 

Predicted Positive TP: True Positive FP: False Positive 

Predicted Negative FN: False Negative TN: True Negative 

Figure 2: Confusion matrix 
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In a class imbalance problem, three measures are more crucials than others which are TP, 

FN and FP. Note that FP is the number of negative instances that are predicted as positive 

and FN is the number of positive instances that are predicted as negative which should 

be very low for a class imbalance problem. So recall, see Equation 3, will be more 

emphasized than precision, see Equation 2. Nevertheless, to incorporate both measures, 

F1-score is used as the harmonic mean of precision and recall, see Equation 4. 

      (2) 

      (3) 

    (4) 

4.1 Synthesized data 

There are 36 settings in the experiment which are grouped by IR and the number of 

clusters. Collection 1 has IR = 0.1, Collection 2 has IR = 0.2 and Collection 3 has IR = 

0.3. Each collection also has three subcollections grouped by the number of clusters = 2, 

3 and 4. In each subcollection, there are 4 settings varying by the number of features = 3 

and 5 and the number of instances = 100 and 300 as shown in Table 1. In each setting, 

30 datasets are randomly generated based on the provided setting. 

Table 1. Information of synthesized datasets used in the experiment 

 Synthesized data   
Collection (IR) Subcollection #clusters #features #instances 
1 (IR = 0.1) 

 
 

1.1 

1.2 
1.2 

2 

3 
4 

3, 5 

3, 5 
3, 5 

100, 300 

100, 300 
100, 300 

2 (IR = 0.2) 2.1 

2.2 

2.3 

2 

3 

4 

3, 5 

3, 5 

3, 5 

100, 300 

100, 300 

100, 300 

3 (IR = 0.3) 3.1 

3.2 

3.3 

2 

3 

4 

3, 5 

3, 5 

3, 5 

100, 300 

100, 300 

100, 300 

The average performances of precision, recall and F1-score are reported in Figure 3 over 

four classifiers: a decision tree, a random forest, linear SVM, MLP comparing between 

the use of the original dataset and the dataset from the MUOT algorithm. 

The results of the experiments are shown in Table 2 and Figure 3. Each cell in Table 

2 reports mean±sd from each setting, where mean is the average performance and sd is 

the standard deviation. To easily see the increase and decrease of performance, Figure 3 

shows the barplot of each measurement compared between the original and the MUOT 

datasets. It has a 3 by 3 barplots by the collections and the subcollections. But in this 

paper are shows a 2 by 2 barplots which the collection having IR= 0.1 and 0.3 and the 

subcollection having the number of clusters= 2 and 4. In case of full Figure 3 can be find 

at this following links[https://bit.ly/3k2SMvo]. 

From Table 2, all experiments show the decrease in precision and the increase in 

recall. For F1-scores, all experiments show improvement of this performance measure. 

Notice that for the number of clusters = 2, the improvement of recalls and F1-scores are 

small with respect to the larger number of clusters for all collections. The reason for this 

behavior is that by removing majority abnormal instances will expand the minority 

region so a classifier would be able to classify more minority instances which increases 

recall. However, this behavior will cause precision to decrease because the more minority 
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prediction, the more chance that some majority instances will be predicted as minority 

instances which will decrease precision. Therefore, F1-score should be used to determine 

the performance of MUOT. This demonstrates that the MUOT algorithm can help 

classifiers to give a better improvement for the original datasets having IR less than or 

equal to 0.2 and the more number of clusters the better improvement from MUOT can 

be obtained. 

Table 2. Mean±sd of precision, recall and F1-score of each collection 

Collection Subcollection   Mean±sd  
IR #cluster Models precision recall F1-score 

IR = 0.1 2 

 

3 
 

4 

Original 

MUOT 

Original 
MUOT 

Original 

MUOT 

0.6030 ± 0.1670 

0.5035 ± 0.1200 

0.4403 ± 0.1972 
0.3774 ± 0.1463 

0.4591 ± 0.0398 

0.4368 ± 0.1296 

0.3974 ± 0.1077 

0.5110 ± 0.1175 

0.2399 ± 0.1054 
0.3904 ± 0.1330 

0.3446 ± 0.1746 

0.5068 ± 0.1740 

0.4474 ± 0.1118 

0.4767 ± 0.1063 

0.2810 ± 0.1144 
0.3499 ± 0.1268 

0.3571 ± 0.1740 

0.4344 ± 0.1367 

IR = 0.2 

 

 

2 

 

3 
 

4 

Original 

MUOT 

Original 
MUOT 

Original 

MUOT 

0.7699 ± 0.0949 

0.6656 ± 0.0917 

0.6577 ± 0.1086 
0.5653 ± 0.0975 

0.6780 ± 0.1435 

0.5685 ± 0.1200 

0.6147 ± 0.0877 

0.7139 ± 0.0700 

0.4536 ± 0.0979 
0.6003 ± 0.0655 

0.5069 ± 0.1356 

0.6265 ± 0.1224 

0.6608 ± 0.0871 

0.6675 ± 0.0734 

0.5046 ± 0.0948 
0.5562 ± 0.0728 

0.5485 ± 0.1371 

0.5743 ± 0.1187 

IR = 0.3 2 
 

3 

 
4 

Original 
MUOT 

Original 

MUOT 
Original 

MUOT 

0.8023 ± 0.0693 
0.7194 ± 0.0671 

0.7441 ± 0.0889 

0.6537 ± 0.0806 
0.7366 ± 0.0995 

0.6618 ± 0.0806 

0.7254 ± 0.0721 
0.7942 ± 0.0447 

0.5938 ± 0.1072 

0.6963 ± 0.0734 
0.6277 ± 0.1322 

0.7052 ± 0.1014 

0.7461 ± 0.0670 
0.7450 ± 0.0556 

0.6401 ± 0.1024 

0.6614 ± 0.0761 
0.6606 ± 0.1191 

0.6730 ± 0.0905 

UCI 
collection 

 Original 
MUOT 

0.5750 ± 0.2381 
0.5646 ± 0.1903 

0.4774 ± 0.2453 
0.6087 ± 0.1939 

0.4843 ± 0.2559 
0.5551 ± 0.2054 

 

  

  

Figure 3: Average precision, recall and F1-score of 4 collection 

4.2 Real world datasets 

Five UCI datasets are used in the experiment. In contrast with the synthesized data, the 

minority class must be selected in the experiment. The brief description of five UCI 
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datasets and their characteristics are shown in Table 3. In real world datasets, consisting 

of both binary and multiclass datasets. The multiclass datasets are converted to the binary 

datasets by selecting one class as the minority class and the rest as the majority class. In 

Table 3, the target class was chosen to be the minority class as in the column of “minority 

target” and the rest were set as the majority class. The overall IR values of these five 

datasets is 0.2467. The average performances from the UCI datasets are shown in Figure 

4. 

Table 3. Information of UCI datasets used in the experiment 

Datasets #instances #features minority target #minority IR 
Wine 

Parkinsons 

Haberman 
E Coli 

Pima 

178 

195 

306 
336 

768 

13 

22 

3 
7 

8 

“3” 

“0” 

“2” 
“imU” 

“1” 

48 

48 

81 
35 

268 

0.2697 

0.2461 

0.2647 
0.1041 

0.3489 

Average     0.2467 

From the previous observation, the MUOT algorithm can help classifiers to gain better 

recall and F1-score for IR less than 0.3 so it is expected to see the improved performance 

for these five UCI datasets having the average IR as 0.2467. From Figure 4, the improved 

performance of recall and F1-score are obtained. This can be concluded that the MUOT 

algorithm can help classifiers improve recall and F1-score. 

 

Figure 4: Average precision, recall and F1-score of 5 UCI dataset 

4.3 Results 

The MUOT algorithm generates a new dataset that increases recall for a classifier since 

more positive instances can be easily recognized, but it will decrease precision due to the 

enlarged minority regions so F1-score is the preferred measure which incorporates recall 

and precision together. All results show the increases of recall and F1-score and the 

decrease of precision. From three collections varying by IR values, the ranges of recall 

and F1-score increase corresponding to IR, the more balanced the datasets are, the less 

improvement MUOT will be. For the result of different numbers of clusters, MUOT 

exhibits the highest F1-score when the number of clusters is equal to 4. This may come 

from the spread of minority instances among all clusters. So MOF can be used to help 

detect abnormal instances very well when more minority instances are spread across the 

dataset. For UCI datasets, MUOT improves recall and F1-score and decreases precision. 

To validate these findings, the non-parametric Wilcoxon signed-rank tests are used to 

find the statistical significance of F1-score between the original datasets and the datasets 

from the MUOT algorithm with respect to four classifiers. 
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4.4 The Wilcoxon signed-rank test 

The Wilcoxon signed-rank tests are used to evaluate the statistical significant 

improvement of datasets from the MUOT algorithm against the original datasets. In each 

test, the original datasets will be evaluated by 4 standard classifiers compared with the 

datasets generated from the MUOT algorithm based on the same classifier. Table 4 

showed the p-values from the Wilcoxon signed-rank  test if the p-value is less than 0.05, 

then it is considered to be significantly different. 

Table 4.Wilcoxon signed-rank test, p-values of each dataset 

Collection Subcollection  P-value  
IR #cluster precision recall F1-score 

IR = 0.1 2 

3 
4 

0.004181 

3.35E-02 
4.04E-01   

3.05E-05 

6.10E-05 
3.05E-05 

0.015503 

0.000214 
0.000305 

IR = 0.2 

 

 

2 

3 

4 

6.10E-05 

4.27E-04   

6.10E-05 

3.05E-05 

3.05E-05 

3.05E-05 

4.04E-01 

9.16E-05 

6.29E-03 

IR = 0.3 2 

3 

4 

3.05E-05 

9.16E-05 

3.05E-05  

3.05E-05 

3.05E-05 

3.05E-05 

0.175354 

0.028992 

0.433197 

UCI collection  4.75E-01 3.62E-05 7.30E-03 

For collection 3 with IR = 0.3 and the number of clusters = 2 and 4, it shows no 

significantly different performances of F1-score since their p-values are higher than 0.05. 

While all other collections, the p-values are smaller than 0.05 so the significant 

improvement can be obtained using MUOT. It can be concluded that MUOT is more 

effective on imbalance datasets having IR value less than or equal 0.2 from the datasets. 

5 Conclusion 

This paper proposed the undersampling and oversampling techniques using MOF for a 

class imbalance problem, called MUOT (Mass ratio variance majority undersampling 

and minority oversampling technique). It selects abnormal instances using MOF from 

the parameter-free outlier scoring method with the 90 percentile threshold. The 

undersampling step performs on majority instances having MOF score above 90 

percentile and the oversampling step performs on abnormal minority instances using the 

same threshold setting inside the ball that does not include any majority instance 

according to MOF scores. This enlarges the minority regions and aids classifiers to 

recognize more minority instances. 

The experiments with different IR values shows the improved performance of 

MUOT for recall and F1-score. In addition, datasets having IR less than 0.3 will be 

improved using MUOT. So that MUOT can handle imbalance datasets very effectively 

when a dataset is imbalanced. More characteristics of datasets should be investigated 

further via MUOT and the threshold values for undersampling and oversampling should 

be investigated. 

References 

[1]  Ali A, Ralescu A, Shamsuddin SM. Classification with class imbalance problem: A review. Int. J. 
Advance Soft Compu. 2015 Jan. vol. 5, no. 3, p.176-204. 

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance160



 

[2]  Aweyemi JO, Adetunmbi AO, Oluwadare SA. Credit card fraud detection using machine learning 

techniques: A comparative analysis. International Conference on Computing Networking and Informatics 

(ICCNI); 2017 Oct 29-31. p. 1-9. 
[3]  Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial 

Intelligence in Medicine. 2001 Aug. vol. 23, no. 1, p. 89-109. 

[4]  Mozina M, Zabkar J, Bratko I. Argument based machine learning. Artificial Intelligence. 2007 Jul-Oct. 
vol. 171, no. 10–15, p. 922-937. 

[5]  Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling 

Technique. Journal of Artificial Intelligence Research. 2002. vol. 16, p. 321–357. 
[6]  Han H, Wang WY, Mao BH. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data 

Sets Learning. In: Huang DS, Zhang XP, Huang GB, editors. Advances in Intelligent Computing. ICIC; 

2005. Lecture Notes in Computer Science; Berlin, Heidelberg, Springer. vol. 3644, p. 878-887. 
[7]  Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-Level-SMOTE: Safe-Level-Synthetic 

Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem. In Theeramunkong T, 
Kijsirikul B, Cercone N, Ho TB, editors. Advances in Knowledge Discovery and Data Mining. PAKDD; 

2009. Lecture Notes in Computer Science; Berlin, Heidelberg, Springer. vol. 5476, p. 475-482. 

[8]  Rout N, Mishra D, Mallick MK. Handling Imbalanced Data: A Survey. In: Reddy M, Viswanath K, K.M. 
S, editors. International Proceedings on Advances in Soft Computing, Intelligent Systems and 

Applications; 2017 Dec 28. Advances in Intelligent Systems and Computing; Singapore, Springer. vol 

628, p. 431-443. 
[9]  Gosain A, Sardana S. Handling class imbalance problem using oversampling techniques: A review, 

International Conference on Advances in Computing, Communications and Informatics; 2017 Sep 13-

16. p. 79-85. 
[10] Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. DBSMOTE: Density-Based Synthetic Minority 

Over-sampling TEchnique. Appl Intell 36. 2012 Apr. p. 664–684. 

[11] Chiamanusorn C, Sinapiromsaran K. Extreme Anomalous Oversampling Technique for Class Imbalance. 
In Proceedings of the 2017 International Conference on Information Technology (ICIT 2017); 2017 Dec 

27. Association for Computing Machinery, New York, NY, USA. p. 341–345. 

[12] Liu X, Wu J, Zhou Z. Exploratory Undersampling for Class-Imbalance Learning. In IEEE Transactions 
on Systems, Man, and Cybernetics, Part B (Cybernetics); 2009 Apr. vol. 39, no. 2, p. 539-550. 

[13] Bunkhumpornpat C, Sinapiromsaran K. DBMUTE: density-based majority under-sampling technique. 

Knowl Inf Syst 50. 2017 Mar. p. 827–850. 
[14] Junsomboon N, Phienthrakul T. Combining Over-Sampling and Under-Sampling Techniques for 

Imbalance Dataset. In Proceedings of the 9th International Conference on Machine Learning and 

Computing; 2017 Feb 24. USA, New York, Association for Computing Machinery. p. 243–247. 
[15] Sahin Y, Bulkan S, Duman E. A cost-sensitive decision tree approach for fraud detection. Expert Systems 

with Applications. 2013 Nov 1. vol. 40, no. 15, p. 5916-5923. 

[16] Boonchuay K, Sinapiromsaran K, Lursinsap C. Decision tree induction based on minority entropy for the 
class imbalance problem. Pattern Anal Applic 20. 2017 Aug. p. 769–782. 

[17] Sagoolmuang A, Sinapiromsaran K. Oblique Decision Tree Algorithm with Minority Condensation for 

Class Imbalanced Problem. Engineering Journal. 2020 Feb 8. vol. 24, no. 1, p. 221-237. 
[18] Sagoolmuang A, Sinapiromsaran K. Decision Tree Algorithm with Class Overlapping-Balancing 

Entropy for Class Imbalanced Problem. International Journal of Machine Learning and Computing. 2020 

May 3. vol. 10, no. 3, p. 444-451. 
[19] Suebkul K, Sinapiromsaran K. Recursive Tube-Partitioning Algorithm for a Class Imbalance Problem. 

Thai Journal of Mathematics. 2020. vol. 18, no. 4, p.2041-2051. 

[20] Thanathamathee P, Lursinsap C. Handling imbalanced data sets with synthetic boundary data generation 
using bootstrap re-sampling and AdaBoost techniques. Pattern Recognition Letters. 2013 Sep 1. vol. 34, 

no. 12, p. 1339-1347. 

[21] Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data. 
Pattern Recognition. 2007 Dec. vol. 40, no. 12, p. 3358-3378. 

[22] Breiman L. Bagging Predictors. Machine Learning 24. 1996 Aug. p. 123-140. 

[23] Devi D, Biswas S, Purkayastha B. Redundancy-driven modified Tomek-link based undersampling: A 
solution to class imbalance. Pattern Recognition Letters. 2017 Jul 1. vol. 93, p. 3-12. 

[24] Changsakul P, Boonsiri S, Sinapiromsaran K, Mass-ratio-variance based Outlier Factor. 18th 

International Joint Conference on Computer Science and Software Engineering (JCSSE); 2021 Jul, p. 1-
5.

P. Polvimoltham and K. Sinapiromsaran / Mass Ratio Variance 161


