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Abstract. Sentence semantic matching (SSM) is central to many natural language 

processing tasks. This is especially the case for Chinese sentence semantic 
matching due to the complexity of the semantics, missing semantics and semantic 

confusion are more likely to occur. Existing methods have used enhanced text 

representations and multiple matching strategies to address these problems but 
there is still great potential to capture deep semantic information for Chinese text. 

This paper proposes a Multi-Granularity and Internal-External correlation Residual 

model (MGIER) to better capture the deep semantic information and to alleviate 
the missing semantics effectively. First, the MGIER model utilizes character/word 

granularity to capture fine-grained information. Then, soft alignment attention is 

employed to enhance the correlation between characters/words in a sentence, 
called internal correlation, and the correlation between sentences, called external 

correlation. In particular, this method uses residual connections to preserve more 

semantic information from the bottom embedding layer to the top prediction layer. 
Experimental results show that the proposed method achieves state-of-the-art 

performance for Chinese SSM, and, compared with pre-trained models, the 

method also achieves better performance with fewer parameters. 

Keywords. Chinese text matching, sentence semantic matching, multi-granularity, 

residual encoding, soft alignment attention, BiLSTM 

1.  Introduction 

Sentence semantic matching (SSM), which is used to identify whether or not two 

sentences have the same meaning, is widely used in various applications, such as 

intelligent customer service, information retrieval, and plagiarism detection. 

Due to the complexity of the semantics in the Chinese language, missing 

semantics and semantic confusion are more likely to occur. With the development of 

deep learning, such as the attention mechanism [1, 2] and Siamese networks [3], it is 

possible to capture deep semantic information of sentences. In English SSM tasks, [4, 

5] lead the way in using multi-granularity to extract fine-grained information. Although 

the character-granularity is beneficial to enrich English text representation, one single 

English character does not express meaning. However, a Chinese character is able to 

represent a definite meaning, which can convey more semantic information. Thus, [6-8] 
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utilize character/word granularity to capture semantic information from Chinese text 

and achieve remarkable performance. In order to capture more semantic information, 

[2] employs the residual connections to preserve information. [9] preserves semantic 

information from the bottom layer to the topmost layer. Although existing methods 

capture deep semantic information from different perspectives, they cannot completely 

overcome the missing semantics problem. 

Motivated by existing methods, we propose a Chinese SSM model, named the 

Multi-Granularity and Internal-External correlation Residual model (MGIER). We not 

only alleviate the problem of missing semantics in the encoding process, but also in the 

information propagation process. Moreover, we capture more sentence correlation 

information based on multi-granularity. For comparison, we list the core components of 

related methods in Table 1. 

Table 1. Core components of related methods. 

Method      Multi-
Granularity 

Siamese  Residual 
Connection 

Internal 
correlation 

External 
correlation 

From 
bottom 
to top 

Multi-
Residual  

MGIER        

ICE [8]        

MGF [7]        

DRCN [9]        

ESIM [1]        

In Table 1, the term “Siamese” refers to encoding information by the same network, 

which is detailed in section 2. “From bottom to top” refers to preserving information in 

every layer of the models. “Multi-Residual” refers to using residual connections in 

multiple layers of models. 

In summary, we mainly make the following contributions in this work:  

� We capture the semantic information of Chinese sentences from the bottom 

embedding layer to the top prediction layer by using the residual connections.  

� We utilize character/word granularity to capture fine-grained information of 

sentences, and employ soft alignment attention to enhance the internal 

correlation and the external correlation.  

2. Related Work 

Earlier SSM methods mainly focused on text representation [3, 10-12]. These obtained 

the vector representation for two sentences separately at first, and then employed 

distance measures to compute the semantic similarity of the two sentences. Among 

them, the Siamese network is still used today because the feature of sharing parameters 

makes the model smaller and easier to train. A key issue for such models is that there is 

no explicit interaction between the two sentences. 

To enhance interaction of sentences, some methods incorporate attention 

mechanism into the SSM task [1, 13]. ESIM [1] employs soft alignment attention to 

enhance the correlation between two sentences. Inspired by ESIM, some methods 

introduce many complex matching strategies to enhance the correlation between two 

sentences [2, 5, 13-14]. For these methods, missing semantics is still a difficult issue. 

To address this problem, researchers discovered that the granularity of text is also 

crucial for capturing semantic information [4-8], especially for Chinese SSM. In 
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particular, the MGF model [7] integrates character/word granularity and achieves 

remarkable results. However, this work does not consider the correlation of sentences. 

Thus, ICE [8] employs soft alignment attention to extract correlation information, but 

only considering the internal correlation of sentences is far from adequate. Some 

methods use residual connections [2] and dense connections [9] to capture semantic 

information for SSM. However, they do not incorporate multi-granularity and capture 

sufficient correlation information. 

Recently, pre-trained language models (PTMs) have achieved great success in 

various natural language processing tasks, due to their capacity to capture deep 

contextualized information [15-19]. Although BERT [15] and NEZHA [17] achieve 

remarkable results for Chinese SSM, they need to be trained on high-quality datasets 

and their migration ability is also very limited. 

Different from existing methods, we propose the MGIER model to capture more 

and deeper semantic information. With less computational cost, our method achieves 

better performance compared with the state-of-the-art methods. 

3. MGIER Model 

 

Figure 1. Architecture of the Multi-Granularity and Internal-External correlation Residual Model. 
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In this section, we introduce the proposed Multi-Granularity and Internal-External 

correlation Residual model (MGIER) for Chinese SSM. 

Given two sentences P and H, we respectively segment P and H to character 

sequences P_char and H_char, and word sequences P_word and H_word. Then, the 

MGIER model inputs P_char, P_word, H_char, and H_word, and predicts a label ƴ that 

indicates the semantic relationship between P and H. As shown in Fig. 1, the MGIER 

model architecture consists of five components: 1) a multi-granularity embedding layer, 

2) a residual encoding layer, 3) an internal-external correlation encoding layer, 4) a 

global feature fusion layer, and 5) a prediction layer. We will detail each component in 

the following subsections. 

3.1.  Multi-Granularity Embedding Layer 

In this layer, the character/word sequences P_char, P_word, H_char, and H_word of 

sentences P and H are first padded to the same length N. Then, an l-dimensional 

embedding vector for a character/word in the sequences is obtained by the pre-trained 

Word2Vec [20] on the data set, such as BQ [21] and LCQMC [22] in our experiments. 

It is noted that out-of-vocabulary (OOV) words are initialized with zero vectors. As a 

result, the sentences P and H are converted to four sequences , , , , where 

each sequence consists of N l-dimensional character/word embedding vectors. That is 

to say, each of , , ,  is a N*l matrix. 

3.2.  Residual Encoding Layer 

In this layer, we use LSTM [23] and BiLSTM [24] to encode character/word 

embedding vector sequences in , , ,  obtained in the previous layer. The 

formula is shown in Eq. (1). 

(1) 

Consider the first line in Eq. (1). First, we use LSTM to encode the character 

embedding vector sequence , i.e., . Second, we combine  

and , i.e., . Third, we use BiLSTM to encode the result in the second 

step, i.e., . Finally, we combine  

and  and obtain . As shown in Eq. (1), similar steps are applied to the 

other character/embedding vector sequences , , . The steps in Eq. (1) are 

detailed in the top-right of Fig. 1.

 

3.3.  Internal and External Correlation Encoding Layer 

In this layer, we employ soft alignment attention [1] to compute the internal correlation 

between characters/words in a sentence, and the external correlation between sentences. 

Internal Correlation Encoding. We capture the internal correlation features between 

a character and a word in the same sentence. 

L. Zhang and H. Chen / Multi-Granularity and Internal-External Correlation Residual Model 143



We first compute the correlation weight via Eq. (2). 

(2) 

where  and  are respectively the i-th character encoding vector in  and the j-
th word encoding vector in  for the sentence P, which are obtained in the previous 

layer.  is the correlation weight between  and . Similarly, , , and  

for the sentence H. After obtaining the correlation weights  and , we compute the 

internal correlation features via Eq. (3). 

(3)  

where , ,  and  are respectively the correlation features of the i-th character 

or the j-th word in the sentences P and H. With the above operations, we obtain the 

internal correlation features:  ( ),  ( ),  ( ), and  

( ) . 

External Correlation Encoding. We capture the external correlation features between 

two characters or two words in two different sentences.  

We first compute the correlation weight via Eq. (4). 

(4)  

where  and  are respectively the i-th character encoding vector in  for the 

sentence P and the i-th character encoding vector in  for the sentence H.  is the 

correlation weight between and . Similarly, , and  for the word 

encoding vectors. After obtaining the correlation weights  and , we compute the 

external correlation features via Eq. (5). 

(5)  

where , , , and  are respectively the correlation features of characters or 

words in the sentences P and H. With the above operations, we obtain the external 
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correlation features:  ( ),  ( ),  ( ), and  

( ) . 

3.4.  Feature Fusion Layer 

We have obtained the residual encoding features and internal-external correlation 

features in the above layers. Specifically, the residual encoding features are , , 

, and , the internal correlation features are  ,  ,  , and  , and the 

external correlation features are  ,  ,  , and .   

Internal Correlation Feature Fusion. The average and max pooling operations are 

able to extract a set of global and key features, respectively.  

 (6)  

Consider the first line in Eq. (6). First, we combine the residual encoding features and 

internal correlation features of sentence P, i.e., . Second, we perform 

the average and max pooling operations on the combined feature. Finally, we combine 

the results of the pooling operations and obtain  which is the feature of P. As shown 

in Eq. (6), similar steps are applied to sentence H and obtain  which is the feature of 

H. For the global internal correlation feature , we first combine all the internal 

correlation features, i.e., , and then perform the pooling operations 

on the combined feature. 

.                                                                                   (7) 

Here, the operations - and × are performed element-wise to infer the relationship 

between two sentences. As shown in Eq. (7), we compute the correlation feature  

for the tuple < , >.
 

                                                                                                  (8)  

As shown in Eq. (8), we obtain the internal correlation feature  by combining the 

correlation feature  and the global internal correlation feature .  

External Correlation Features Fusion. We integrate the residual encoding features 

and the external correlation features. 

(9)
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Consider the first line in Eq. (9). First, we combine the residual encoding features and 

external correlation features of word-granularity for sentences P and H, i.e., 

. Second, we perform the average and max pooling operations on 

the combined feature. Finally, we combine the results of the pooling operations and 

obtain , which is the word-granularity feature for sentences P and H. Similar steps 

are applied to character-granularity for sentences P and H. For the global external 

correlation feature , we first combine all the external correlation features, i.e., 

, and then perform pooling operations on the combined feature. 

. 
                                                        

           (10)  

As shown in Eq. (10), we compute the correlation feature  for the tuple < , 
>.

 

.                                                                                     (11)  

As shown in Eq. (11), we obtain the external correlation feature  by combining the 

correlation feature and the global external correlation feature .  

.                                                                                        (12)  

Finally, we obtain the global feature by combining the internal/external 

correlation features, as shown in Eq. (12), which is the input of the prediction layer. 

3.5.  Prediction Layer 

The prediction layer is a multi-layer perceptron classifier with three dense sub-layers, 

in which the first two dense layers are activated with the ReLU function [25] and the 

last dense layer is connected with the sigmoid activation function in our experiments. 

3.6.  Loss Function 

When training the models, we use two loss functions which have different effects on 

different datasets. The first one is the modified binary cross-entropy lmodify [26] shown 

in Eq. (13), which can focus on the training samples that are not easy to distinguish.
 

.                                   (13)
 

where  and  are the true value and the predicted value,  is 

defined as in Eq. (14).
 

             (14)  

where m is a threshold which is usually set to 0.7,  is the unit step function and is 

defined as shown in Eq. (15).
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(15)

 

The second loss function is the equilibrium binary cross-entropy lequilibrium [7] shown in 

Eq. (16), which can strengthen its ability to distinguish the fuzzy boundary and 

eliminate the blurring phenomenon in classification tasks. 

                (16)  

Where n is the count of samples and lmse is the equilibrium factor MSE, defined as in 

Eq. (17). 

(17)

 

4. Experiments 

The goal of the experiments is to evaluate the effect of the performance of the proposed 

model, MGIER, for Chinese SSM. 

4.1.  Experiment Setup 

Datasets. In the experiments, we use two Chinese datasets BQ [21] and LCQMC [22]. 

BQ is a Chinese bank question corpus for sentence intention equivalence identification, 

which comes from Weizhong bank’s online customer service logs. LCQMC is a 

Chinese question matching corpus collected from Baidu Knows. The two datasets 

consist of a large number of instances in the form of (P, H, Label), where P and H are 

two Chinese sentences, and Label indicates whether P and H have the same meaning. 

We split each dataset into a training set, validation set, and test set by the same 

proportion mentioned in [24, 25]. A summary of the datasets is shown in Table 2. 

Table 2. Experimental data sets 

Dataset Source Scale(train/validation/test) Positive:Negtive  
BQ Weizhong bank 100,000/10,000/10,000 1:1 

LCQMC Baidu Knows 238,766/8802/12,499 1.35:1 

Baseline models. In the experiments, we compare the proposed model with seven 

baseline models. ESIM [1] employs soft alignment attention to capture deep correlation 

information between two sentences. Although MGF [7] and ICE [8] use multi-

granularity to enhance text representation, only ICE uses soft alignment attention to 

capture the correlation information of sentences. Both have good performance for 

Chinese SSM. DRCN [9] utilizes the representational power of recurrent networks and 

attentive information. ESIM and DRCN also have remarkable performance in English 

SSM. BiMPM [14] matches two sentences from different directions. ARC-II [27] is a 

simplification of MatchPyramid. MatchPyramid [28] comes from modeling text 

matching as image recognition, which takes the matching matrix as an image. 
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Metrics. The metrics used in the experiments include accuracy, precision, recall and 

F1_score. 

Parameters. In the experiments, the hidden states of LSTM and BILSTM and the 

character/word embedding vectors have 300 dimensions. For LSTM, the dropout rates 

0.4 and 0 are used for the datasets BQ and LCQMC, respectively. In BiLSTM, the 

dropout rates are set to 0.55 and 0.25, respectively, for BQ and LCQMC. The dropout 

rates 0.3 and 0.5 are used for BQ and LCQMC, respectively, in the prediction layer 

which consists of two densely-connected hidden layers with 600 units and one 

classifier with a sigmoid activation function. When training the models, we use Adam 

optimizer, where the number of epochs is 100 and the batch size is 512.  

Environment Setting. We implemented the proposed model using Python with the 

Keras and Tensorflow frameworks, and the baseline models using the Pytorch 

frameworks. All experiments are run on a workstation equipped with two Intel (R) 

Xeon (R) gold 6132 CPU, @ 2.60GHz 256GB memory, four pieces of NVIDIA Tesla 

V100 SXM2 32GB GPU, and CentOS Linux. 

4.2. Experimental Results 

The effect of loss functions. We compare the effect of two loss functions: the modified 

binary cross-entropy lmodify defined in Eq. (14) and the equilibrium cross-entropy 

lequilibrium defined in Eq. (18). The results are shown Table 3. From this table, we can see 

that the modified binary cross-entropy lmodify is better than the equilibrium cross-entropy 

lequilibrium for the dataset BQ, while lequilibrium is better than lmodify for the dataset LCQMC. 

The reasons may be that the modified binary cross-entropy focuses on the training 

samples that are not easy to distinguish, and the equilibrium cross-entropy 

distinguishes the fuzzy boundary and eliminates the blurring phenomenon. As a result, 

we use the modified binary cross-entropy as the loss function for BQ, and the 

equilibrium cross-entropy for LCQMC. 

Table 3. The effect of loss functions 

Dataset Loss Function Accuracy Precision Recall F1_score 

BQ lmodify [8]  84.93 84.96 84.94 84.87 

 lequilibrium[7]  81.60 84.97 76.78 80.56 

LCQMC lmodify [8]  85.73 80.64 94.04 86.78 

 lequilibrium [7]  87.70 88.77 86.49 87.57 

The effect of models. We compare the proposed model with the baseline models. The 

results are shown in Table 4. In most cases, the accuracy, precision, and F1_score of 

the models using character/word granularity are better than that of other models. This 

indicates that using multi-granularity can improve the performance of the model. 

Among the models, the performance of MGIER, ESIM, and ICE using soft alignment 

attention is also better than that of other models in most cases. Thus, soft alignment 

attention is beneficial to Chinese SSM. Generally, the accuracy of MGIER, 

outperforms that of the baseline models for the dataset LCQMC and BQ. This is 

because MGIER uses multi-granularity and soft alignment attention to capture the fine-
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grained information and internal/external correlation information. Also, MGIER 

employs residual connections to preserve semantic information. 

Table 4. The performance of models 

Dataset Model Accuracy Precision Recall F1_score 

BQ MGIERchar+word 84.93 84.96 84.94 84.87 

 ESIMchar [1] 83.69 78.19 94.22 85.46 

 ESIMword 81.59 83.87 78.74 81.23 

 MGFchar+word [7] 82.61 89.65 73.75 80.83 

 ICEchar+word [8] 84.05 83.31 85.10 84.12 

 DRCNchar+word [9] 76.78 78.13 74.38 76.21 

 BiMPMchar [14] 82.23 80.41 85.74 82.99 

 ARC-IIchar[27] 76.68 75.94 78.10 77.01 

 MatchPyramidchar[28] 67.09 65.47 72.35 68.74 

LCQMC MGIERchar+word 87.70 88.77 86.49 87.57 

 ESIMchar 84.83 78.19 94.22 85.46 

 ESIMword 83.69 75.50 94.42 83.90 

 MGFchar+word  85.86 81.45 92.89 86.76 

 ICEchar+word 86.15 81.93 92.70 86.94 

 DRCNchar+word  78.93 72.10 94.42 81.76 

 BiMPMchar  82.23 75.53 95.47 84.34 

 ARC-IIchar 82.35 88.53 74.34 80.81 

 MatchPyramidchar 72.47 67.01 88.43 76.26 

Comparison with pre-trained models. We compare MGIER with the pre-trained 

models as shown in Table 5. From the results in Table 5, we can see that the accuracy 

of MGIER is higher than that of other pre-trained models, with fewer parameters. This 

is probably because MGIER can capture more and deeper semantic information. 

Table 5. Comparison with pre-trained models 

Dataset Model Accuracy/Parameters Dataset Model Accuracy/Parameters 
BQ MGIER 84.93 (21.25M) LCQMC MGIER 87.70 (21.25M) 

 Bert 83.23 (169.62M)  Bert 87.57 (169.62M) 

 
NEZHA-Base 84.79 (97.16M) 

 NEZHA-

Base 
86.07 (97.16M) 

 

NEZHA-Base-

WWM 
84.67 (97.16M) 

 

NEZHA-

Base-WWM 
86.35 (97.16M) 

 Roberta-wwm-

ext 
84.11 (97.16M) 

 Roberta-

wwm-ext 
84.86 (97.16M) 

Ablation Experiments. We conduct an ablation study for the proposed model MGIER 

on the datasets BQ and LCQMC. The results in Table 6 demonstrate the effectiveness 

of the residual encoding layer as well as the internal-external correlation encoding layer.  
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First, we remove the residual encoding and only preserve the output features of 

BiLSTM and LSTM, denoted case (1). Table 6 shows that the accuracy, precision, and 

F1_score drops obviously, which demonstrates the effectiveness of residual encoding. 

Next, we remove the internal correlation encoding from MGIER, denoted case (2). 

The precision drops to 82.77% and 84.65% for the datasets BQ and LCQMC, 

respectively. We remove the external correlation encoding from MGIER, denoted case 

(3), and the recall drops to 79.36% for BQ, and the precision drops to 87.3% for 

LCQMC. This suggests that computing the internal/external correlation of the 

sentences is useful to improve the performance of the model. 

Table 6. Ablation experiments 

Dataset Model Accuracy Precision Recall F1_score 

BQ MGIER 84.93 84.96 84.94 84.87 

 (1) No residual encoding 83.76 84.51 82.62 83.47 

 (2) No internal encoding 83.48 82.77 84.55 83.57 

 (3) No external encoding 82.81 85.19 79.36 82.11 

LCQMC MGIER 87.70 88.77 86.49 87.57 

 (1) No residual encoding 84.35 78.86 93.84 85.65 

 (2) No internal encoding 86.81 84.65 89.88 87.15 

 (3) No external encoding 87.65 87.30 88.14 87.67 

5. Conclusions 

We propose a Chinese SSM model, MGIER, to capture deep semantic information 

from the bottom embedding layer to the top prediction layer. Experimental results for 

two Chinese datasets demonstrate that the proposed method outperforms the state-of-

the-art methods. Moreover, the proposed method is more efficient than pre-trained 

models. Although the MGIER model has achieved remarkable performance, there are 

still some important points that need to be considered. Through analyzing the 

incorrectly-predicted examples by the MGIER model, we find that different parts of a 

sentence have greater influence on the semantic matching results. For example, if the 

subject of the sentence does not match but the rest of the sentence does match, the 

result predicted by the MGIER model is matching when in fact it does not. Moreover, 

the MGIER model just considers the character and word granularity, but the phrases 

and themes of the sentence also have important semantic information. In the future, we 

will attempt to utilize phrases, themes, and subject-verb-objects of sentences to further 

improve the performance of MGIER for Chinese SSM. 
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