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Abstract. After being introduced to approximate two-dimensional geographical 

surfaces in 1971, the multivariate radial basis functions (RBFs) have been receiving 
a great amount of attention from scientists and engineers. In 1987 the idea was 

extended into the construction of neural networks corresponding to the beginning of 

the era of artificial intelligence, forming what is now called ‘Radial Basis Function 
Neural Networks (RBFNs)’. Ever since, RBFNs have been developed and applied 

to a wide variety of problems; approximation, interpolation, classification, 

prediction, in nowadays science, engineering, and medicine. This also includes 
numerically solving partial differential equations (PDEs), another essential branch 

of RBFNs under the name of the ‘Meshfree/Meshless’ method. Amongst many, the 

so-called ‘Multiquadric (MQ)’ is known as one of the mostly-used forms of RBFs 
and yet only a couple of its versions have been extensively studied. This study aims 

to extend the idea toward more general forms of MQ. At the same time, the key 

factor playing a very crucial role for MQ called ‘shape parameter’ (where selecting 
a reliable one remains an open problem until now) is also under investigation. The 

scheme was applied to tackle the problem of function recovery as well as an 

approximation of its derivatives using six forms of MQ with two choices of the 
variable shape parameter. The numerical results obtained in this study shall provide 

useful information on selecting both a suitable form of MQ and a reliable choice of 

MQ-shape for further applications in general. 
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1. Introduction 

Radial Basis Functions (RBFs),� , are commonly found as multivariate functions 

whose values are dependent only on the distance from the origin. This means that 

( ) ( )r� �� �x  with 
n�x n

 and r� , or, in other words, on the distance from a point 

of a given set � �jx , and ( ) ( )j jr� �� � �x x . Here, jr  is the Euclidean distance.  As 

illustrated in Figure 1, RBF networks (RBFNs) broadly consist of three layers;  1) Input 
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layer – This layer is for independent variables to be imported with their corresponding 

values. 2) Hidden layer – This is where all the imported data is subjected to the 

constraints of each neuron. 3) Output later – This layer summaries in a linear combination 

manner the semi-output variables with their associated weights (w1, w2, ..., wm) 

obtained from the previous layer. 
 

The very first problem of interpolation in multidimensional space that was 

approached by the concept of RBFNs is that documented by Powel [1]. This kind of 

problem requires as many centres as data points making it challenging for convectional 

interpolation schemes. With the capability of generating any non-linear mappings 

between stimulus and response, RBFNs have been developed and applied in a wide range 

of applications from machine learning to solving partial differential equations (PDE) [2]. 

Until nowadays, it can be summarized in general that researches on RBFNs are grouped 

into three branches [3]: i) kernels formation and development, ii) learning mechanism or 

weight optimization and judgments, and iii) the areas of application, of which the detail 

shall be provided below. 

 

 
Figure 1. Typical structure of RBFNs.  

 

 

Some successful applications are the approximation of function in 1-D and 2-D 

using polynomial with RBFNs [4], the solution to regulator equations based on a class 

of RBFNs [5],the use of DE- RBFNs for classifying weblog dataset [6], the use of  

RBFNs optimization for support vector machine classifiers [7], the application of 

Hermite collocation scheme for coupled PDEs [8], and the application of the modified 

MQ-RBFNs [9]. 

In all aspects of the application of  RBFNs mentioned so far, searching for a suitable 

and reliable choice of a shape parameter, embedded in most RBF forms, still remains a 

great challenge. In this work, we numerically investigate the effectiveness of two 

recently proposed choices in a variable manner of the parameter as well as focus on a 

wider range of versions of multiquadric basis function, called ‘generalized MQ’. One 

and two-dimensional problems are tackled; both the functions themselves and their 

derivatives. This work is organised as follows. Section 2 provides a short mathematical 

derivation of the RBFNs before the detail of generalized MQ is provided in section 3 

with the two versions of variable shape. Section 4 then demonstrates the main results of 

the experiment before all the crucial findings are listed in section 5.  
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2. Function Approximation by RBFNs 

It starts with considering the interpolation of a multivariate function :f � 	 , where

n� 
 n
, from a set of sample values � �� �

1

N

j j
f

�
x  on a discrete set � �

1
X=

N

j j�

 �x  (later 

referred to as ‘centres’). These multivariate functions can well be reproduced if 

appropriate linear combinations of univariate interpolation functions with the Euclidean 

norm
2


 are used. This process can be carried out using translates � �j� �x x  of a 

continuous real-valued function �  defined on , and by letting �  be radially 

symmetric; i.e., 

� � � �2
: �� �x x               (1) 

with a continuous function �  on 0

�
0

�
. In general science and engineering literature, �  

is often called a radial basis function with centres � �
1

N

j j�
x  and �  is the associated 

kernel. 

Interpolants F  to f  can be constructed as. 

� �
2

1

( )
N

j j
j

F a �
�

� ��x x x              (2) 

with real coefficients, � �
1

N

j j
a

�
 which can be determined by the following interpolating 

condition. 

( ) ( ),i iF f�x x               (3) 

for all 1, 2, ..., .i N�  and it leads to the following form.  

� �
2

1

( ) ( ) ,
N

i i j i j
j

f F a �
�

� � ��x x x x 1 i N� � ,           (4) 

Hence, what comes next is a system of linear equations with � �
1

N

j j
a

�
being the 

unknowns, expressed as follows.  

�φα f                (5) 

where ij N N
�

�
� �� � �φ  , � �1, ,

T
Na a�α �,

T
Na, N , and � � � �1 , ,

T
Nf f� � �� �f x x� �f � �Nf, � �Nf, �f �f, . The existence of 

the above system depends highly on the choice of RBF being used (will be more 

discussed later). Once the coefficient matrix is obtained, the solution calculation process 
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can then proceed as follows. For unknown locations � �
ˆ

1

ˆ ˆX=
N

j j�

 �x  and ˆX X=�� , the 

approximate values of the corresponding function � �ˆ ˆ jf x  can be carried out using the 

expression below.  

� � � �
2

1

ˆ ˆ ˆ ˆ( ) ,
N

j j j j i
i

f F a � �
�

� � ��x x x x             (6) 

for all ˆ1,2,...,j N� . Note that the shape parameter �  is added to the equation above to 

emphasize the objective of this work which deals with the effect of this crucial parameter 

when the popular multiquadric RBF is utilized.  

This similar assumption of approximation using RBFNs can be extended to the 

approximation of the n -order of function’s derivative, provided that the basis function 

is also n -order differentiable. It is done via the following relation.  

� � � �
( ) ( ) ( )

2
1

ˆ ˆ ˆ ˆ( ) ,
n n nN

j j j j i
ik k k

f F a
x x x

� �
�

� � �� � � �� � �� �� �� � ��x x x x           (7) 

The next section provides all components used and addressed in this investigation 

before some demonstrating 1D and 2D numerical tests are carried out in section 4. 

3. Generalized MQ and It’s Shape Choices 

The main focus of this work is on one of the popular form of basis function known as 

‘multiquadric (MQ)’ in its generalized form defined as follows.  

� � � �2 2 2 2 2( , ) ( ) ( )j j j jx y r x x y y
� �

� � �� � � � � � �          (8) 

where ..., 3 / 2, 1/ 2,1/ 2,3 / 2,...� � � � . These values give direct effect on the singularity 

of the interpolation matrix and, unavoidably, the effectiveness of the methods’ 

performance. Different values yield different shape curves depicted in Figure 2 (a).  

 

 

 
Figure 2.(a) Generalized MQ with six values of 's� , (b) distribution of centres, and (c) two-dimensional 

test function. 
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One crucial factor affecting the method’s performance is the shape parameter. 

Choices available in literature can be categorized into three forms; constant/fixed, 

variable, and iterative-based. This work focuses on two nonlinear-variable shape 

strategies (illustrated in Figures 3(a)-3(b)).  

� Strategy-1 (Stg-1): by Nojavan et.al. (2017) [10], defined as.  

1

min max min( ( )exp( ))j c c c j� �� � � �             (9) 

� Strategy-2 (Stg-2): by Xiang et.al. (2012) [11], defined as.  

min max min( )sin( )j c c c j� � � �            (10) 

with 1,2,..., .j N�  Apart from these chosen forms of shape selection strategies, those 

nicely documented in [12] and [13] are also hightly recommented for interested readers.  

 

 

Figure 3. Multiquadrics’ shape determining strategies; (a) Stg-1, and (b) Stg-2 both using min 1 / ,c N�  

max 3 / ,c N� and  30N � . 

4. Numerical Experiments and Results 

Results obtained from each case are evaluated using the mean absolute error norms 

defined as follows. 

ˆ

.

1

1
( , ) ( , )

ˆ

N
exact approx
i i

i
Mean Absolute Error u x y u x y

N �

 !
� �" #

$ %
�                                            (11) 

To cover all subcases involved, a great number of simulations were performed on a 

machine with Windows 10 (64bit), Intel Corei7-11800H CPU (2.30GHz ,26MB L3 4.60 
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GHz), 32 GB DDR4 3200MHz. Two main cases are under investigation and presented 

here. 

4.1. One-Dimensional Case 

The first case deals with the approximation of a function in one dimension expressed 

below. 

3

( ) cos(2 )xf x e x� �                                                 (12) 

To compare the overall accuracy, those shape values stated in the work of Maggie 

[14] were also tested. The total of 25 nodes uniformly distributed over a 1 1x� � �
domain was considered where the function’s values at 17 equally-spaced nodes were 

numerically approximated. The results were obtained from all six forms of MQ with two 

variable shapes (Stg-1 and Stg-2) together with fixed values are presented in Table 1. It 

can be shown in the table that all cases performed reasonably well with not much of a 

significant difference. One interesting finding worth mentioning is that those values 

obtained by using a fixed value were found the best ones. This might be attributed to the 

fact that Maggie [14] had actually performed a tremendous amount of experiments to 

find the best value of shape before utilizing that value for the actual experiment. 

 

 

Table 1. Mean absolute errors measured for approximation of the function and its derivative for all forms of 

generalized MQ when using different variable shape forms (compared with a fixed form from literature). 

 

 

4.2. Two-Dimensional Case 

A more complex problem is now visited and a two-dimensional function is addressed, 

defined as follows.  

( , ) cos( ) sin( )f x y y x� 
            (13) 

This is defined on a � � � �0,4 0,4& &� domain where the corresponding centres 

distribution is depicted in Figure 2(b), and its surface is being visualized in Figure 2(c). 

To focus on the two main variable shape strategies, the ones from the literature are 

omitted here. Five densities of centres were tested for each strategy to observe the overall 

Type Shape  2.50� �  1.99� �  1.03� �  0.50� �  0.50� � �  1.00� � �  

 

( )f x  

Stg-1 28.70E-05 12.00E-04 71.60E-05 27.00E-04 11.66E-05 40.57E-05 

Stg-2 61.07E-07 15.18E-06 42.77E-06 48.52E-06 42.48E-05 16.00E-04 

Maggie [14] 16.00E-04 16.00E-04 59.44E-05 89.55E-06 74.68E-07 54.15E-07 

 

( )f x'
 

Stg-1 22.00E-04 70.00E-04 35.00E-04 81.00E-04 12.00E-04 30.00E-04 

Stg-2 29.36E-05 71.61E-05 20.00E-04 23.00E-04 17.80E-03 66.00E-03 

Maggie [14] 33.00E-04 86.00E-04 20.00E-04 21.20E-05 10.05E-05 91.73E-06 
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behavior of the variable when dealing with larger sizes of datasets. The set of 17 17�
equally-spaced is used for the target locations for approximation. As depicted in Figures 

4-5-6, all three forms; the function itself, its x -direction derivative, and its y -direction 

derivative, reveal the same trends of accuracy. Those functions’ approximation produced 

by shape strategy 1 (or Stg-1) is found to be highly sensitive to the increase in centres 

( )N  while Stg-2 is not. This could be attributed to the fact that Stg-1 is in an exponential 

curve where it can easily be affected by the pre-judged values of minC and maxC , whose 

values depend on N . The best accuracy is found for Stg-1 when 0.50� � � and 225N � are 

used where the comparatively worst results are revealed when 2.50� � and 625N � are 

used, see Figures 4(a), 5(a), and 6(a). The opposite scenario is found in the use of Stg-2 

where 2.50� � is clearly seen to outperform the rest for all three targeted function forms, 

see Figures 4(b), 5(b), and 6(b). As can be anticipated, Stg-2 produces better solutions, 

for all values of 's� , when more supporting centres are involved, indicating the benefits 

one can achieve when deploying the strategy for larger datasets. It can also be seen from 

these same figures that the fastest reduction in error is obtained from 2.50� �   whereas 

the slowest one is from 1.00� � � .  

 
Figure 4. Mean absolute errors measured at different numbers of centres for approximation of 

( , )f x y  ; (a) using Stg-1, and (b) using Stg-2.  

 
Figure 5. Mean absolute errors measured at different numbers of centres for approximation of 

/f x� �  ; (a) using Stg-1, and (b) using Stg-2.  
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Figure 6. Mean absolute errors measured at different numbers of centres for approximation of 

/f y� �  ; (a) using Stg-1, and (b) using Stg-2.  

 

5. Conclusions 

Emerging as an alternative numerical tool for approximating and recoverying functions 

and  their derivatives, multiquadric radial basis function neural networks (MQ-RBFNs) 

are under investigation in this work. Six generalized forms of MQ were numerically 

applied using two popular choices of shape parameters. It was found that the exponential 

variable shape (Stg-1) is highly sensitive to the number of centres for all forms of MQ 

used. On the other hand, the trigonometric variable shape (Stg-2) provides a monotone 

of reduction in errors with the increase of centres indicating a more reliable aspect for 

larger datasets. With the effectiveness in approximating derivatives of a function being 

also under the study, Stg-2 is seen promising with a great level of accuracy when the 

form  � �5/2
2 2r� �  of MQ is used. This could well have a great effect in the era of solving 

partial differential equations which shall remain one of our future investigations.  
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