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Abstract. Causal Estimation is usually tackled as a two-step process: identification,
to transform a causal query into a statistical estimand, and modelling, to compute
this estimand by using data. This reliance on the derived statistical estimand makes
these methods ad hoc, used to answer one and only one query. We present an alter-
native framework called Deep Causal Graphs: with a single model, it answers any
identifiable causal query without compromising on performance, thanks to the use of
Normalizing Causal Flows, and outputs complex counterfactual distributions instead
of single-point estimations of their expected value. We conclude with applications
of the framework to Machine Learning Explainability and Fairness.
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1. Introduction

Artificial Intelligence requires causal knowledge to determine how its actions or pre-
dictions may affect or be affected by the outside world. As an example, the association
between ice-cream sales and shark attacks might seem causal, when it is in fact due to a
latent confounder between them, summer, which makes it spurious. Defining the causal
graph that specifies each dependency is just the first step, as we also need an estimation
engine to compute the result of causal queries (i.e., ”what is the effect of administering
the treatment on a patient?”). Causality is also key to black-box Explainability and Fair-
ness, as we can explain the effect of certain input features as interventional effects, or a
prediction’s fairness on an individual as the counterfactual effect of protected features,
such as gender or race.

This relies on our ability to estimate causal queries (i.e., p(salary | do(education =
undergraduate)), meaning, the probability of having a certain salary were we forced to get
an undergraduate degree). Estimation usually entails a preprocessing step, identification,
which transforms our causal query into a statistical estimand that can be estimated with
observational data. The problem with this framework is that its models are ad hoc to the
causal query at hand: were we to ask a new question, we would need to train an additional
model. Moreover, most are designed to only estimate the expected value of the target
distribution, which does not account for multimodality, skewness, etc.

The contributions of this paper are twofold. Firstly, we introduce Deep Causal

Graphs (DCG), a sampling-based framework with which we can answer any identifi-
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able causal queries in a graph with the same trained model. Secondly, we propose Nor-

malizing Causal Flows, an implementation of this specification based on Conditional
Normalizing Flows, which allows us to model complex continuous distributions that can
be integrated in our DCGs. Finally, we provide experiments that showcase the quality
of our model’s estimations and the applicability of these techniques to the fields of Ma-

chine Learning Explainability and Fairness. Additionally, we provide a PyTorch li-
brary which includes all DCG implementations in this paper and functionality for running
experiments on the showcased applications. The code can be found in a public repository
(github.com/aparafita/ccia2021supp) along with the supplementary material.

2. Related Work

Causal Theory and their applications have mainly been studied from two perspectives:
Potential Outcomes [1] and Causal Graphs [2]. Our work focuses on the latter, specially
regarding Structural Equation Models (SEM). Nevertheless, the Potential Outcomes
perspective is compatible with the Causal Graph literature, and we incorporate some of
the findings in [3] in our work.

Deep Causal Graphs model the aforementioned SEMs, but also leveraging the ex-
pressive power of deep neural networks. From this point of view, they are directly related
to two previous works. CausalGAN [4] represented each random variable as a neural
network with their parents’ values as the input. Our previous work, Distributional Causal
Nodes [5], extended this idea by assuming a known parametric probability distribution for
each node. Our current approach subsumes the latter by modelling arbitrary distributions
using Normalizing Flows [6], instead of known parametric families. Independent work in
[7] also proposes Normalizing Flows for Counterfactual Estimation applied to MRI scans.

In terms of applications, Deep Causal Graphs are specially suited to counterfactual
explanations. Counterfactual reasoning has been proposed as an important ingredient
for explainability and fairness analysis (i.e., [8,9,10]), but in most of these frameworks,
counterfactuals are understood as samples with minimal alterations in the input that
change a black-box prediction. This definition does not take into account the causal
effects of these alterations on the rest of the variables, therefore providing non-actionable
explanations. Our model does work with intervened distributions, circumventing this
issue. Additionally, it allows a practical implementation of Counterfactual Fairness [11],
which measures the effects of interventions of protected variables on the target variable.

3. Background

We define a Structural Equation Model (SEM) as the tuple M=(V,E,U,P(E),P(U),F):

1. V = {V1, . . . ,VK}, the measured random variables.
2. E = {E1, . . . ,EK}, the exogenous noise variables, one for each Vk.
3. /0 ⊆ U ⊆{U{k,l}}k,l=1..K,k<l , the latent (non-measured) confounder variables U{k,l}

that explain unmeasured common causes between Vk and Vl .
4. P(E) and P(U), the prior distributions for all non-measured variables.
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Figure 1. Salary dataset causal graph. Bidirectional arrows represent latent confounders.

5. F = { fk = fk(Pak,U{k,.},Ek)}k=1..K , the functional relationships1 Vk = fk(.) be-
tween a node Vk, its measured parent set Pak � V, its parent latent variables U{k,.}
(if any) and its corresponding Ek.

F implicitly defines a directed graph GM = (V := V∪E∪U,E ) where E , its edges,
are defined by all input-output relationships in F: E =

⋃
k=1..K{(V,Vk) | V ∈ Pak} ∪

{(U,Vk) | U ∈ U{k,.}}∪ {(Ek,Vk)}. Any directed edge represents a causal dependency
between source/cause and target/effect. A common assumption is that GM is a Directed
Acyclic Graph (DAG). See figure 1 for an example.

3.1. Interventions and Counterfactuals

There are two important operations to consider in Causal Theory. Firstly, the interven-

tion, that alters the distribution represented by the model. Specifically, a constant-value
intervention, normally represented by do(X = x), means replacing the generative func-
tion X = fX (.) by an assignment X = x. This constant value x comes predefined by the
intervention and does not depend on the parents of X . Therefore, the intervened SEM
replaces fX by this assignment and the corresponding intervened graph is the subgraph
where all edges pointing at X are removed. This subgraph encodes a different distribution,
the intervened distribution.

Secondly, the counterfactual. Given a certain observational sample e′ of E ′ ⊆ V and
an intervention do(X = x), a counterfactual is the result of an hypothetical experiment in
the past, what would have happened to the values of variables Y ⊆ V had we intervened on
X by assigning value x. Counterfactual expressions are of the form p(Yx | e′), with Yx the
counterfactual variables under intervention do(X = x). Pearl [2] defines counterfactuals
as a three-step process: abduction, compute the posterior distribution2 of the latent
variables E and U conditioned on evidence e′, p(E,U | e′); intervention, apply the desired
intervention do(X = x); prediction, compute the required prediction in the intervened,
counterfactual model M̂ defined by the abducted priors and the modified set of functions
F̂, where fX has been replaced by X := x.

3.2. Identifiability and Structural Causal Models

An essential matter in causal inference is that of a query’s identifiability. Given a causal
query for a certain generative process described by a graph G and a distribution P(V),
we say it is identifiable if we can derive an statistical estimand (only using observational
terms) for this query using the rules of do-calculus [2]. Two SCMs both representing P(V)
with the same causal structure G will output the same result for such a causal query. In

1Note that, although fk is deterministic, the effect of Ek makes it stochastic w.r.t. Pak , U{k,.}.
2We refer to these new distributions as the abducted priors.
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other words, if we model an SCM M that represents the same distribution while following
the same causal structure as the generative process, it is guaranteed to generate the correct
estimations for any identifiable causal query (including counterfactuals), no matter if the

functions in FM nor the latent priors P(E),P(U) do not match the real generative

process.

In order to determine identifiability, there are automatized solutions for different types
of queries: purely interventional queries (i.e., p(y | do(X = x))) [12], post-intervention
conditional queries (i.e., p(y | do(X = x),z)) [13], and counterfactual queries in an ar-
bitrary number of parallel, counterfactual worlds [14]. As such, one can automatically
determine if our techniques can be used for the estimation of a certain causal query. If
not, alternatives such as instrumental variables, more restrictive parametric assumptions
(when they apply) or randomized experiments (even for the counterfactual case, using the
latter referenced work) could circumvent this issue.

4. Method

4.1. Deep Causal Graph

A Deep Causal Graph (DCG) is an abstract specification of the required functionality for
a Deep Neural Network to work with causal queries. The only assumption is positivity:
p(v)> 0 for all v in the domain of V. In other words, all possible configurations of the
graph’s variables are possible, no matter how unlikely. DCGs model the SEM described in
section 3: given a SEM M = (V,E,U,P(E),P(U),F), we represent each random variable
in V as a subcomponent called the Deep Causal Unit (DCU), with three operations:

• sample(parents): sample a new realization of the variable, given its parents values.
• loglk(sample,parents): compute the log-likelihood of the sample, given its par-

ents values. This operation must be differentiable w.r.t. the DCU’s parameters.
• abduct(sample,parents): sample from the abducted noise (Ek | Xk,Pak,U{k,.}).

Given these three operations for each node, we can perform estimation across the
graph. Assuming nodes in topological order, sampling consists of iteratively applying each
node’s sample operation. Any latent variables in E and U can be sampled from their priors
P(E) and P(U) directly. Interventions are performed by replacing the sample operation
with an assignment to the intervened value. However, computing log-likelihoods is more
nuanced. Given a sample v of variables /0 �V ′ ⊆ V (some may be missing), let us define
Z := U∪ {EX ∈ E | X ∈ V \V ′}. If Z is empty, no variable is missing, which allows
us to apply the conditional independencies entailed by the graph GM (d-separability,
[2]): log p(v) = ∑k=1..K log p(vk | pak). If Z is not empty, given a sample z ∼ P(Z), we
can generate a value for each missing variable in V ′ deterministically. Then, log p(v) =
logEZ [p(v | Z)] ≈ log 1

N ∑N
i=1 exp∑k;Vk∈V ′ log p(vk | pak,i,u{k,.},i), with N i.i.d samples

zi ∼ P(Z), from which we can obtain every u{k,.},i and every pak,i. In this case, we only
compute the log-likelihood of the variables in V ′, not every measurable variable in the
graph. Additionally, we employ the log-sum-exp trick for numerical stability.

The requirement for the DCU’s loglk operation to be differentiable entails that the
graph’s loglk is also differentiable. As a result, we can train all nodes simultaneously
by Maximum Likelihood Estimation: assuming i.i.d. data, we can train with Stochastic
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Gradient Descent by maximizing the average log-likelihood of the dataset. Be warned
that, despite being able to compute log-likelihoods of incomplete samples, one should
not train with missing data blindly, as the missingness mechanism could induce biases
in P(V). An identification of feasible scenarios for training with missing data is left for
future work.

The final operation is counterfactual, which, given evidence e of variables /0 � E ⊆ V
and an intervention do(X = x), generates vx = (v(i)x )N

i=1 ∼ P(Vx | e), N counterfactual
samples. To do that, we follow the three-step process defined before: abduction (call each
node’s abduct operation), intervention (apply do(X = x)) and prediction (sample each
counterfactual node Vx). If there were missing values in our evidence (E � V) or latent
confounders in the graph (U �= /0), we would not have access to every parent’s value, which
is required by the abduct operation. In that case, we use importance sampling, which
provides us with samples vx = (v(i)x )N

i=1 and corresponding weights w = (w(i))N
i=1. These

weighted samples allow us to 1) compute counterfactual queries from this distribution, us-
ing weighted averages, and 2) study the counterfactual distribution directly, by generating
a weighted Bootstrap subsample of (vx,w). The generation of these samples and weights,
along with practical considerations on the implementation of these techniques, is left for
the supplementary material due to space restrictions.

4.2. Deep Causal Unit

This subsection discusses two possible implementations of the DCU. Distributional Causal
Nodes (DCN) [5] assign a parametric probability distribution to every node Vk (i.e.,
Gaussians, Exponentials or Categoricals) with parameters Θk and model their distribution
by defining a neural network fk that takes the node’s parents as input and computes the
distribution’s parameters Θk as the output (Θk = f (Pak,U{k,.})). With this we can perform
all three DCU operations: 1) sample, by using Ek as an independent noise signal with a
reparametrization trick [15] for the assumed distribution; 2) loglk, by using the density
of the assumed parametric distribution; 3) abduction, by inverting the reparametrization
formula. This inversion might not always be possible, in which case we could use rejection
sampling. In particular, Bernoulli and Categorical distributions can be abducted when
using the Gumbel-softmax trick [16] as the sampling step. There are, however, two
disadvantages to DCNs. On the one hand, users need to specify a well-matched distribution
for each node in the graph, which can be costly on graphs with many variables. On the
other hand, standard distributions might not be sufficient to properly adjust complex
datasets.

To avoid these two issues, for continuous DCUs, we propose instead Normalizing

Causal Flows (NCF). A Conditional Normalizing Flow models probability distributions
P(X | Z) by transforming a continuous random variable X into a base distribution EX
(usually a standard normal distribution) of the same dimension as X , with a parametric
function fZ invertible w.r.t. X whose parameters depend on the conditioning variable Z.
Here Z consists of the parents values of node X , PaX and U{X ,.}; therefore, f allows us to
model P(X | PaX ,U{X ,.}), which is precisely what we need in our DCU. Moreover, this
invertible function between X and EX is guaranteed to exist under certain regularizing
conditions [6]. The main advantage of this setup is that we can compute PX (x | z) =
PEX ( fz(x)) · |detJfz(x)|, where Jfz(x) is the Jacobian of fz on x. Normally, we model this
function using a conditioner-transformer architecture (see [6] for more details) with the
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Table 1. Metrics on IHDP and Jobs datasets, for the training and test sets. Lower is better.

IHDP JOBS√
ePEHE eAT E RPOL eAT T

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

LR1 5.8 ± .3 5.8 ± .3 .73 ± .04 .94 ± .06 .22 ± .00 .23 ± .02 .01 ± .00 .08 ± .04
LR2 2.4 ± .1 2.5 ± .1 .14 ± .01 .31 ± .02 .21 ± .00 .24 ± .01 .01 ± .01 .08 ± .03
BNN 2.2 ± .1 2.1 ± .1 .37 ± .03 .42 ± .03 .20 ± .01 .24 ± .02 .04 ± .01 .09 ± .04
TAR .88 ± .02 .95 ± .02 .26 ± .01 .28 ± .01 .17 ± .01 .21 ± .01 .05 ± .02 .11 ± .04
CFR .71 ± .02 .76 ± .02 .25 ± .01 .27 ± .01 .17 ± .01 .21 ± .01 .04 ± .01 .09 ± .03
DCG 1.0 ± .05 1.2 ± .09 .20 ± .01 .25 ± .02 .22 ± .01 .24 ± .05 .05 ± .02 .04 ± .01

DCG* .94 ± .04 1.0 ± .06 .20 ± .01 .23 ± .02 .11 ± .02 .12 ± .04 .05 ± .01 .05 ± .01

conditioner depending on the conditioning input z, while the transformer is an invertible
neural network with certain architectural constraints to make this inversion possible
and its determinant tractable. As a result, our flow f is capable of: 1) sampling from
P(X | paX ,u{X ,.}) by sampling an ε ∼ p(EX ) and transforming it back to X with x =

f−1
paX ,u{X ,.}(ε); 2) computing the log-likelihood of a realization x as described before; 3)

computing the εx ∼ p(EX ) such that fpaX ,u{X ,.}(x) = εx (abduction).
In summary, any type of conditional Normalizing Flow can be used in a graph to

model complex continuous random variables thanks to their high expressiveness, while
also avoiding DCN’s node-wise distributional assumptions.

5. Experiments

To evaluate our technique, we will study two benchmark datasets: the Infant Health
and Development Program (IHDP dataset, [17]) and the study in [18] about National
Supported Work (Jobs dataset). We follow the setup and results from [3], focusing on
four metrics, two for each dataset, respectively: estimated Precision on Estimation of
Heterogeneous Effect (ePEHE ), error in Average Treatment Effect (eAT E ), error in Average
Treatment effect for the Treated (eAT T ) and Policy Risk (Rpol(π f )). Both datasets contain
many replications of its samples, so that it is possible to obtain a confidence interval of
each metric by training a model with each replication. For fairness in comparison, we
only train the DCU of the target variable, as the rest of the models do. Details about
the experiment setup, model implementation and the actual code can be found in the
supplementary material. For reference, training each of our models in a GPU takes on
average 16 seconds on IHDP and 28 seconds on Jobs.

Additionally to the base DCG estimation, we consider a variant that computes the
counterfactual outcome also using y f , the factual outcome. When analyzing alternative
outcomes ex post facto (such as discussing a loan rejection in a bank, and asking for the
alternative outcome had we changed a certain variable), we do have access to the factual
outcome, and using it results in better estimation of the counterfactual, as we will see. In
contrast with DCGs, some of the methods with which we compare do not provide this
functionality, since they do not consider the required abduction step in the counterfactual
process. We include this extra case to compare the performance of our method with the
rest of the benchmark, for cases where such an input is available.
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Results can be found in table 1 for: Linear Regression (LR1), separate LR for each
treatment (LR2), Balancing Neural Network (BNN, [19]), as well as Treatment Agnostic
Representation Network (TAR, TARNet) and its variant with balancing regularization,
Counterfactual Regression with Wasserstein distance (CFR) (both from [3]). We include
our model as DCG and its variant using y f as DCG*. DCG achieves comparable results
with TARNet in

√
ePEHE in both sets. For eAT E , DCG is the best model (only surpassed

by LR2 in training, but not in test). In the Jobs dataset, DCG achieves comparable results
to BNN on the Policy Risk metric, far from the results with TARNet, but not in the case
of DCG*, with which we surpass every other method. Finally, eAT T in training seems to
be significantly worse than far-simpler methods, but not in test, where DCG surpasses
every other model in both its variants.

TARNet and CFR obtain better results in some instances (PEHE and Policy Risk),
even though our network structure also uses their bi-headed networks and they are
mostly equivalent (except for CFR’s balancing regularization). This difference in results
can be attributed to the fact that DCGs learn the distribution of these outcomes, in
contrast with the other networks, which just return the expected value. This broader
objective might hinder the accuracy of the expectation estimation, but it can be worthwhile
nevertheless since we can analyze the distribution afterwards, looking for multi-modality,
high skewness, etc., as we will see in the next section. Hence, considering this additional
feature, we find that our method is comparable to the other two.

6. Applications

The objective of this section is to apply DCGs to Explainability and Fairness of black-box
predictors. We created a synthetic gender wage gap dataset containing several mechanisms
that create bias against women in terms of salary (see figure 1). Gender affects the choice
of field, due to societal pressures, and seniority, due to management bias in promoting
men and women. Additionally, we consider a plausible form of selection bias resulting
from parents who leave work to take care of their children, with more incidence on women.
This process biases the data so that people who are still working while being older (hence
more likely to have children) are mostly men. We model this bias with a latent confounder
between gender and age. The final dataset contains 6,479 samples.

We train a DCG with NCFs and Bernoulli-DCNs (depending on each node having
continuous or Bernoulli distributions, respectively) with the same configurations as in the
experiments. Additionally, we train a Multi-Layer Perceptron (MLP) regressor of salary,
which will be our black-box. The objective is twofold: explain the predictions of the MLP
with a causal perspective (how would our prediction be had we changed any variable) and
measure and reduce the Counterfactual Unfairness of these predictions w.r.t. gender.

6.1. Machine Learning Explainability

If we want to estimate the effect of gender on the salary prediction, we compute E[Ŝ |
do(G = male)]−E[Ŝ | do(G = f emale)]. For that we sample using each intervention,
generating values for every variable in the graph, and then use them as the input of the
MLP, obtaining (ŝi)i=1..n. The averages of these samples approximate each expectation,
which allows us to compute the desired effect: $3,549. In contrast, were we to estimate
the observational query E[Ŝ | G = male]−E[Ŝ | G = f emale], we would get $4,878.
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Figure 2. Observational (blue) and interventional effect of three continuous variables on salary. The latter is
estimated with DCGs (orange) and with the Back-Door Adjustment formula (green) for comparison.

Next, we will study the effects of several continuous variables on salary. Most
causal estimation methods argue that their techniques can be easily extended to the
continuous case, but many fail to provide examples of this. Figure 2 contains the effect of
age, education and seniority on salary. In orange, we plot the expected value for each
intervention (each x value) with a 95% confidence interval (generated by sampling 1,000
points per intervention and aggregating them). In blue, we include the observational effect
(p(salary | X)) for every variable as a reference to compare between interventional and
observational effects. In green, we estimate each interventional effect with an estimand
derived from the Back-Door Adjustment formula. Both the blue and green curves are fitted
using a 5-degree polynomial basis with Linear Regression. Both interventional curves
should and do match, with the only exception of the outlying values (notice the ticks
on the x-axis), which is to be expected. Nevertheless, note that with the usual method,
we need a different ad hoc model for each new query, in contrast with DCGs, which are
trained once and can be used on all (identifiable) queries. No matter how complex the
estimand might be, DCGs will always be trained equally (using MLE) and will estimate
any identifiable query using the same procedures.

Finally we study counterfactuals, to explain predictions on a particular individual.
Given evidence e, what would the predicted salary Ŝ be had we intervened with do(X = x).
This kind of query is normally answered as an expectation; however, since we can sample
from the counterfactual distribution, we will plot its density instead. Figure 3 shows
counterfactual distributions based on evidence {woman, 30 years old, $30,000 annual
salary}. On the left, we intervene by changing her gender and find a bi-modal distribution.
The green vertical line represents the average counterfactual salary; note that this average
would not inform us of the two modes and provides an unlikely counterfactual outcome.
On the right, we intervene on 50 values of age (50 equidistant quantiles of age from 2.5%
to 97.5%) and plot the corresponding densities, with colour representing each value of
age. In orange we can see the original salary as the factual outcome. As age increases, the
salary distribution moves to higher values, as one would expect.

6.2. Counterfactual Fairness

To conclude, we will study how to mitigate the unfairness of the MLP regressor. Before,
we saw that gender did have an effect on salary that created a significant gender wage gap.
We can also measure it on a specific individual: on sample 4,746, a woman with predicted
salary $34,551, the average counterfactual salary had she been a man results in $43,077, a
difference of $8,526 (much higher than the average for the population, in her case).
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Figure 3. Counterfactual salary density curves with interventions on gender (left) and age (right). Both plots
are based on evidence v := {woman, 30 years old, $30,000 annual salary}.

Next, we will train a fairer predictor through Counterfactual Fairness [11], a measure
of bias between observational and counterfactual samples. Let us define Counterfactual
Unfairness of degree k as CUk := EV

[
EE,U|V

[|Y1−x(E,U)−Y (E,U)|k]] where X are the
intervened (protected) variables, Y the observed target variable and Y1−x the counterfactual
target variable. The CU1 of salary (the average unsigned difference between counterfactual
and real values) is $3,883, which shows a significant bias in the model. Note that we can
train a differentiable model adding CU2 as a regularization term; the resulting model (with
regularization weight of 10) has a CU1 of $234, making it, indeed, fairer. If we test this
new regressor on the previous woman, the predicted and counterfactual salary estimations
become $38,960 and $39,379, respectively, with a bias of $419.

Note that a drop in performance is to be expected, as we are modelling a non-biased
distribution, not the original. In this case, it might be preferable to ensure that the resulting
ordering (inside each group) matches the one in the dataset. The original predictor, which
had an R2 score of 98%, has a Spearman correlation (w.r.t. the original data) of 99%
for both genders, while the fair model’s correlation is of 90% and 89% for women and
men, respectively, even though its R2 decreases to 68%. Therefore, the choice of metric is
essential, since the original data might not reflect the fair world we want to model.

7. Conclusions

We propose Deep Causal Graphs, a flexible and powerful Causal Estimation framework
that allows answering any identifiable causal query in a graph by training only once with
Maximum Likelihood Estimation. Its fitting capabilities are guaranteed by the use of any
Conditional Normalizing Flow and/or Distributional Causal Node. Instead of returning
point estimates of causal queries, by its sampling-based nature, it can output complex
distributions that result in richer objects of study. Additionally, we showcase many appli-
cations of Causal Estimation, powered by DCGs, to the fields of black-box Explainability
and Counterfactual Fairness. Further work on alternative implementations of Deep Causal
Units or on training with other forms of data (i.e., multivariate node variables, like images,
or non-i.i.d. data, like time series) could further extend the applicability of the framework.
A PyTorch library is also included for further testing and extensions of the technique.
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