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Abstract.

Quality of retinal image is vital for screening of ailments pertaining to eye
such as glaucoma, diabetic retinopathy (DR) and age related macular degeneration.
Therefore, assessing quality of retinal image prior to any kind of diagnosis has as-
sumed significance in Computer Aided Desgin (CAD) applications. The rationale
behind this is that reliability of retinal image is to be guaranteed to have depend-
able diagnosis. In this paper, we propose a novel retinal fundus image quality as-
sessment (RIQA) method based on autoencoder network to assess retinal images
if the image is acceptable for screening or not. The autoencoder network architec-
ture is well suited to precisely to properly represent the key features of the image
quality, especially when the network can correctly reconstruct the input image. The
proposed model consists of encoder and decoder successive networks. The encoder
will be used for representing the features of the input image. In turn , the decoder
will be used for reconstruct the input image. The features get from encoder network
will then be fed to a classifier in order to classify the quality of retinal image to
two classes: gradable or ungradable. The experimental results revealed more use-
ful assessment and the proposed deep model provides a superior performance for
RIQA. Thus, our model can serve real-world Clinical Decision Support Systems in
the healthcare domain.

Keywords. Retinal Image, Quality Assessment, Autoencoder Network, Ocular
Diseases, Deep Learning

1. Introduction

Retinal diseases are on the rise due to the increase in the diabetic population and in-
creased life expectancy. A good example of the effect of age on retinal health is age-
related macular degeneration (AMD).The number of people having AMD disease is esti-
mated to be 196 million in 2020, and is expected in next twenty years will increase to 288
million. In addition, Glaucoma is a progressive optic neuropathy that causes blindness
in industrialized countries, and ocular hypertension is the main risk factor for glaucoma
[1].
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Poor quality retinal fundus images can lead to an incorrect automatic diagnosis of
eye diseases and classification of its severity. Therefore, an expert must first visually
classify the images as gradable or non-gradable. Visual analysis of large databases of
retinal images is a time-consuming task that can be distributed among a large number
of experts. However, this may lead to intervariability between the results in the quality
assessment or diagnosis of different experts. Therefore, automatic analysis of retinal im-
ages is a possible solution to the lack of human experts. Moreover, to better understand
the cause and progression of diseases, it may be necessary to analyze many images over
a long period of time. However, the accuracy of these tasks required high quality retinal
images. Automated quality analysis of retinal images can reduce the need for human in-
tervention and create better conditions for further studies, increasing the functionality of
retinal disease diagnosis based on computer aided design (CAD) systems.

Therefore, it is essential to have a measure to assess the quality of the retinal image
prior to processing it for diagnosis [2]. Different techniques are found in the literature
to assess the quality of retinal images. There are different metrics also used for measur-
ing the quality of retinal images. Most of previous works depend on hand-crafted com-
puter vision techniques, such as [3,2,4]. Nowadays with the progress of deep learning
techniques, recent works use different deep learning networks architectures to develop a
accurate retinal images quality assessment, such as [5,6,7,8].

All of the aforementioned eye diseases diagnosis systems scientifically depend on
the quality of retinal images. Thus, there is a need for an improved approach for reliable
and trustworthy retinal quality assessment for improving early detection of eye diseases.
Towards this end, in this work, we propose a deep learning framework, which consists
of two successive networks: an auto-encoder network depend on reconstruction image
and a CNN-based classifier. The encoder will used for extract the key features related the
quality of retinal images. These features get from encoder network are then fed to the
classifier in order to classify the quality of the input retinal images. Our contributions in
this paper are as follows:

• We propose an autoencoder network to correctly learn representative deep fea-
tures of the retinal fundus images via the encoder network. The decoder part is
used to reconstruct the input fundus image.

• We propose a CNN classifier fed by the features learned by the encoder network
to classify the input fundus images as gradable or ungradable.

• We propose the use of the mean-square-error metric (MSE) as a loss function
to train the autoencoder network. The MSE loss function calculates the sum of
squared distance between input image and reconstructed image by the decoder.
Also, we use a binary cross-entropy loss function to train the CNN classifier.

• We propose to integrate the losses of the two autoencoder network and the CNN
classifier into a single learning framework to solve the fundus image gradeability
problem.

The remainder of the paper is structured as follows. Section 2 reviews recent re-
lated literature to retinal image gradeability assessment. Section 3 presents the proposed
method. Section 4 presents experimental results. Section 5 concludes the paper and gives
directions for future scope of the research.
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Figure 1. Example of gradable (top) and ungradable (bottom) retinal fundus images.

2. Related Work

In this section, we present a quick review of previous works related to retinal image
assessment by using classical computer vision techniques and deep learning techniques.
Many methods are based on binary quality labels (i.e., Accept and Reject), and others
are based on a three-level quality grading system (i.e., Good, Usable and Reject). To our
knowledge, no method has been proposed so far to classify the quality of retinal images
through an autoencoder network like our model.

Just to name a few, [2] proposed a system for automatically detecting quality of
retinal images based on the RGB color-space. Their system uses vessel density, textural
features, global histogram features besides a metric known as non-reference perceptual
sharpness. They also concentrated on three Regions of Interest (ROI) such as lower reti-
nal hemispheres, upper retinal hemispheres and optic disc region. [3] also proposed a
novel method for retinal image registration based on a concept named Salient Feature
Region (SFR). The authors defined a measure called region saliency measure that is used
to obtain SFR using gradient field entropy and local adaptive variance. They also used
another method that combines gradient field distribution and computation of SFRs. How-
ever, it needs further enhancement for dealing with multimodal images. Besides, [9] in-
troduced to Distortion Identification-based Image Verity and INtegrity Evaluation (DI-
IVINE) to understand quality of distorted images. That identifies distortions and then as-
sess quality based on the estimated distortions. [10] also proposed a Blind Image Qual-
ity Assessment (BIQA) method based on gradient magnitude and Laplacian of Gaussian
response. [11] proposed a method named no-reference quality assessment metric for
assessing quality of video encoding. The metric has two models, coefficient distribution
model resulting in local error estimation and perceptual model resulting a quality score
for a test image. One of the drawbacks of this approach is that needs further enhancement
to avoid transmission errors.

Based on machine and deep learning, many methods have been proposed. For in-
stance, [12] proposed a quality assessment method based on S3D INtegrated Quality
(SINQ) Predictor that based on both univariate and bivariate statistical features obtained
from image. In turn, [13] proposed a method for BIQA based on learning quality lookups
and receptive fields. It used both local and global receptive fields. Their method needs
improvement to consider different distortions in the training images. [14] developed a
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framework for assessing 3D quality assessment of images containing filters to improve
the image quality and algorithms to assess this quality. It is based on a technique called
no-reference quality assessment. They used Artificial Neural Network (ANN) to achieve
the assessment task. [5] also proposed a framework for synthesis of retinal colour images
using an adversarial setting with generator and discriminator. Their framework needs
further enhancement to overcome exhibiting abnormal interruptions. Recently, [15] an-
alyzed the influences of different color-spaces on the retinal images assessment, and pro-
posed a deep network, called Multiple Color-space Fusion Network (MCF-Net). MCF-
Net integrated the different color-space representations (i.e., RGB, HSV and LAB) at a
feature-level and prediction-level to predict image quality grades.

3. Proposed Model

Fig. 1 represents the training and testing phase of the proposed model. In the training
model, we have uses an autoencoder network that consists of two serial networks: en-
coder and decoder. The encoder will be used for extracting the high-level features of the
input images. The extracted features will be then fed to the decoder network to recon-
struct again the same input image. Afterwards, another network, a classifier, will be fed
by the features gotten from the encoder network to classify the quality of a retinal image
into two classes: gradable and ungradable. The size of the input image is reshaped to
224224. In the testing model, we used only the trained encoder and the classifier network
in order to classify the quality of a retinal image.

3.1. Network Architecture

Our model is based on the UNet [16] network. It is an encoder-decoder deep network ar-
chitecture. UNet network is a full convolution network that does not include a fully con-
nected layer and is not demanding on the amount of dataset. This network is simple, effi-
cient, and easily used and adapted. It consists of two sub-netowrks, the first sub-network
is an encoder that obtains different image feature levels continuously sampled through
five convolution layers. The second one is a decoder that performed five deconvolution
layers on the top-level feature map and combined different feature levels in the down-
sampling process to restore the feature map to the original input image size and complete
the end-to-end segmentation task of the image. Besides, it uses the skip connection op-
eration to connect each pair of down-sampling layers and the up-sampling layer, which
makes the spatial information directly applied to much deeper layers and a more accurate
segmentation result.

The main task of using the UNet network is for semantic segmentation. However,in
this paper, we used UNet for reconstructing the input image. We believe that if the au-
toencoder network successed in reconstruct the same input image, that means the net-
work successed to learn the key features of the input image including visual quality fea-
tures. Thus, the input to our UNet network in a RGB image and the target is the same
RGB image.

For the quality classification network, we used very simple network. This classifier
consists of one fully connected layer followed with Sigmoid as an activation function.
This layer classify the features extracted by the encoder network to two quality labels
that are gradable or ungradable.
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Figure 2. General overview of the proposed model in train and test stage.

3.2. Training

To assess the performance for optimizing the training of the network, we tried to use
different loss function to compare the input image to the reconstructed image. This loss
function is named Lrec. The first tested loss function is a Mean squared error (MSE) de-
pends on the features extracted from both the input real image A and the reconstructed
image Â from the autoencoder network. MSE is the most commonly used a loss func-
tion for regression tasks. The loss is the mean overseen data of the squared differences
between true and predicted values, MSE is defined as follows:

Lrec =
1
n

n

∑
i=1

(Ai− Âi)
2, (1)

where A(i) is the input image of pixel i, Â(i) is the reconstructed image and the n is
the numbers of pixels in an image.

The second loss function is Mean absolute error (MAE). MAE is the mean overseen
data of the absolute differences between true and predicted values, which depends on the
features extracted from both the input real image A and the reconstructed image Â from
auto-encoder network, and it can be defined as:
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Lrec =
1
n

n

∑
i=1
|Ai− Âi|. (2)

The third loss function structural similarity index measure (SSIM) is a method for
predicting the perceived quality of digital images. SSIM is used for measuring the simi-
larity between two images. The SSIM index is a full reference metric for measuring the
quality of reconstructed images compared to input images. SSIM can be defined as:

SSIM(Â,A) =
(2μÂμA + c1)(2σÂA + c2)

(μ2
Â
+μ2

A + c1)(σ2
Â
+σ2

A + c2)
, (3)

where μÂ is the mean of Â, σμÂ
is the standard deviations of Â, μA is the mean of

A, σμA is the standard deviations of A, σÂA is the covariance of Â and b, c1 = 0.012 ,
c2 = 0.032, respectively.

The fourth loss function multi-scale structural similarity index measure (MS-SSIM).
The MS-SSIM approach is based on modeling of image luminance, contrast and struc-
ture at multiple scales and Multi-scale method is a convenient way to incorporate image
details at different resolutions. MS-SSIM can be defined as:

MS−SSIM(Â,A) = [LM(Â,A)]αm ·
m

∏
j=1

[Cj(Â,A)]β j · [S j(Â,A)]y j , (4)

where m represents the image quality assessment scale, which is obtained after Mi
iterations.At the j− th scale, the contrast comparison Cj (Â,A) and the structure compar-
ison S j(Â,A) and The luminance comparison LM(Â,A), and the exponents αm,β j, and y j
are used to adjust the relative importance of different components.

For the quality labelling task, we used the standard loss function Lc, cross-entropy
(CE), which depends on the predicted class from the classifier ŷ and corresponding target
value y. CE is defined as follows:

Lc =−
n

∑
i=1

yi · log(ŷi), (5)

where ŷi is the i-th scalar value in the model output, yi is the corresponding target value,
and output size is the number of scalar values in the model output. This loss is a very
good measure of how distinguishable two discrete probability distributions are from each
other.

In this context, yi is the probability that event i occurs and the sum of all yi is 1,
meaning that exactly one event may occur. The minus sign ensures that the loss gets
smaller when the distributions get closer to each other.

The final objective function, during the training for the model, is defined as follows:

Loss = (Lrec +Lc)/2. (6)

4. Experiments and Results

The experiments performed to evaluate the proposed model are described in this section,
datasets and the evaluation measures used in the experiments.
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4.1. Datasets

There are several publicly available RIQA datasets with manual quality annotations, such
as Eye-Quality (EyeQ) [15], HRF [17], DRIMDB [18] and DR2 [19]. Among them,
the EyePACS- Quality dataset is a publicly available database with about 31,032 images
labelled with gradable and ungradable without Data augmentation. we selected 29,033
for the training set and 1999 for the testing set. The second (EyeQ) dataset with 28,792
retinal images with manual quality labels (good, reject). Among them, the dataset is
divided into 12,543 for training and 16,249 for testing.

4.2. Data augmentation

CNN networks require large data sets in order to avoid overfitting. A class balanced
dataset is also desirable as well. One of the proven approaches that can yield good results
is to get more data from small datasets. In this study, we applied data augmentation tech-
niques to the training images as proposed in [20,15] to increase the number of training
samples under different conditions. Figure 3 shows the transformations applied to every
input image. The applied data augmentation is done in two steps. The first steps a copy
of the training examples of the small classes is done until they have the same number
of images as the biggest class. This generates an equilibrated training set. In the second
step, to every image, different transformations are applied in order to diversify the train-
ing, such as random uniform rotation and random flipping. Training data has two class
first class (1) gradable contain 21,812 image and(0) ungradable class contain 7,218,After
augmentations class 0 will be 28,872 and class 1 will be 29,083 , total for training for
each class (i.e., gradable and ungradable), we have 57,957 images

Orginal image Rotation left Rotation up Rotation Down

Figure 3. Transformations (flipping and rotation) applied to every real image in all transformations.

4.3. Parameter settings

We trained our networks. We used the Adam optimizer [21] with γ = 0.1, and an initial
learning rate of 0.001. A batch size of 2 and 50 epochs yielded the best combination. All
experiments were run on a 64-bit Core I7-6700, 3.40GHz CPU with 8GB of memory,as
well as one NVIDIA GTX 1080 GPU on Ubuntu 16.04 and the PyTorch [22] deep
learning framework. The computational time of the proposed method for the training
process takes around 1 hour and 13 minutes and 37 second for each epoch with a batch
size of 2 with train stage. In turn, the our model has a performance of around and 0.076
second for each image in train stage and 0.026 second for each image in test stage.
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4.4. Evaluation Metrics

In this work, to assess the proposed model, we use five different metrics to measure
the resulting performance that are Accuracy, Sensitivity (Recall), Specificity, Precision
and F1 Score. In medical diagnosis, sensitivity measures the model ability to correctly
identify high quality images, whereas specificity measures the model ability to correctly
identify low quality images.

4.5. Results and Discussion

To evaluate the performance of the proposed model, we compared its results against a re-
cent fundus image gradeability method called Multiple Color-space Fusion Network(MCF-
Net) [15]. Both models were trained with the two datasets (i.e., subsets from Eyepacs and
Eye-Quality). We tested different variations of loss functions with the proposed model:
MSE, MAE, SSIM and MS− SSIM (Section 3) to find the best loss function that can
help converge the network. Based on the two datasets, Table 1 and 2 show the results
(i.e, Accuracy, Sensitivity, Specificity, Precision and F1 score) of MCF-Net and four
variations of the proposed systems with the four loss functions. As shown in Table 1,
the proposed model with its four variations outperformed the performance of MCF-Net
in terms of the five evaluation matrices. Among them, our model with MSE as a loss
function yielded the best results with F1 score, sensitivity and specificity of 0.88, 0.83
and 0.91, respectively. For instance, our model with MSE yielded an improvement of 8%
with F1 score compared to the MCF-Net. In turn as shown in Table 2 and with the second
dataset EyeQ, the proposed model and its variations also outperformed the results with
MCF-Net. Our model with MSE achieved significant improvements of 16%, 10% and
38% with F1 score, precision and specificity, respectively. Besides, a small improvement
of around 1% with sensitivity.

Table 1. Comparison between the proposed model and MCF-Net [15] on the Eypces dataset [20]

Accuracy Sensitivity Specificity Precision F1-Score

MCF-Net Model 0.81 0.64 0.95 0.84 0.80

Our Model - SSIM Loss 0.815 0.95 0.65 0.84 0.82

Our Model - MS-SSIM Loss 0.86 0.94 0.76 0.87 0.86

Our Model - MAE Loss 0.85 0.84 0.86 0.85 0.85

Our Model - MSE Loss 0.875 0.83 0.91 0.88 0.88

Table 2. Comparisons of the proposed model and state-of-the-arts on (EyeQ) dataset [15]

Accuracy Sensitivity Specificity Precision F1-Score

MCF-Net Model 0.865 0.946 0.51 0.80 0.75

Our Model - SSIM Loss 0.93 0.94 0.90 0.88 0.90

Our Model - MS-SSIM Loss 0.935 0.93 0.91 0.94 0.93

Our Model - MAE Loss 0.94 0.95 0.88 0.90 0.91

Our Model - MSE Loss 0.942 0.954 0.89 0.90 0.91

For validating the gradability of retinal fundus image classification performance, we
also computed the confusion matrix and the overall classification accuracy on the test set
of the two datasets.
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This allows more detailed analysis than the mere proportion of high classification
rate. As shown in Table 3 , the numbers of true positives (TPs) and true negative (TNs)
of the proposed model with the EyePACS dataset are 960 and 765 out of 1999 images,
respectively. In the case of the EyeQ dataset, the numbers of TPs and TNs obtained by
the proposed model are 12432 and 2867 out of 16249 images, respectively.

Table 3. Two resulting confusion matrices with the test sets of the EyePACS and EyeQ datasets

EyePACS datasets EyeQ datasets

n=1999
Predicted

NO
Predicted

YES
n=16249

Predicted
NO

Predicted
YES

Actual:
NO

TN=765 FP=177
Actual:

NO
TN=2867 FP=353

Actual:
YES

FN=97 TP=960
Actual:

YES
FN=597 TP=12432

Based on the results shown in Tables 1 and 2, we recommended to use the MSE
function as the main loss function for calculating the the error between the input image
and the reconstructed image. In general, we can say that the proposed model based an
autoencoder network yields a promising results on improving RIQA for more accurate
ocular diseases classification systems.

5. Conclusions

In this work, we proposed a supervised deep learning model based on an autoencoder
network. The autoencoder is able to construct the same input image to correctly learn the
visual features of fundus image quality. The model also include a classifier that is fed by
the extracted features to classify the quality of a retinal image into gradable and ungrad-
ableds. The proposed model can generate more interest in the biomedical community to
improve the performance of the RIQA tasks, which plays a critical role in applications
such as retinal image segmentation and automatic disease diagnosis. Future work aims to
use the developed RIQA model for improving the accuracy of multi-task ocular diseases
classification.
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“End-to-end adversarial retinal image synthesis,” IEEE transactions on medical imaging, vol. 37, no. 3,
pp. 781–791, 2018.

[6] Y. Wang and S. Shan, “Accurate disease detection quantification of iris based retinal images using ran-
dom implication image classifier technique,” Microprocessors and Microsystems, vol. 80, p. 103350,
2021.

[7] M. Ortega, N. Barreira, J. Novo, M. G. Penedo, A. Pose-Reino, and F. Gómez-Ulla, “Sirius: a web-
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