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Abstract. Point clouds are currently used for a variety of applications, such as de-
tection tasks in medical and geological domains. Intelligent analysis of point clouds
is considered a highly computationally demanding and challenging task, especially
the segmentation task among the points. Although numerous deep learning models
have recently been proposed to segment point cloud data, there is no clear instruc-
tion of which exactly neural network to utilize and then incorporate into a system
dealing with point cloud segmentation analysis. Besides, the majority of the devel-
oped models emphasize more on the accuracy rather than the efficiency, in order
to achieve great results. Consequently, the training, validation and testing phases
of the models require a great number of processing hours and a huge amount of
memory. These high computational requirements are commonly difficult to deal
with for many users. In this article, we analyse five state-of-the-art deep learning
models for part segmentation task and give meaningful insights into the utilization
of each one. We advance guidelines based on different properties, considering both
learning-related metrics, such as accuracy, and system-related metrics, such as run
time and memory footprint. We further propose and analyse generalized perfor-
mance metrics, which facilitate the model evaluation phase in segmentation tasks
allowing users to select the most appropriate approach for their context in terms of
accuracy and efficiency.

Keywords. Deep Learning, Neural Networks, Point Clouds, Segmentation, Analysis,
Benchmark

1. Introduction

Nowadays, point cloud data is utilized as input for a great assortment of applications,
including the creation of 3D models for manufactured parts, detection and identifica-
tion procedures in medical, geological and autonomous-driving domains and engineering
simulations [1]. A point cloud is a set of points in 3D space, characterized by the x, y, and
z coordinates, that can be mainly acquired by 3D sensors, such as LIDARs and RGB-D
cameras. These devices are able to capture with detail surface and geometrical properties
of objects [2]. Indeed, point cloud data of a 3D object may contain millions of points
with highly detailed information, but they also contain scattered, disjointed information
and in most cases with a lot of noise [1].
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In fact, the rapid advancements of the 3D sensing technology in recent times are
increasing the demand for 3D point cloud processing techniques in order to extract im-
plicit information. In this sense, deep learning approaches are the most frequently used
techniques providing intelligent solutions in a wide range of applications. However, the
intelligent analysis of such huge data is a highly computationally demanding and com-
plex task, especially the segmentation task among the points [3]. The segmentation pro-
cess is the categorization of the points of an object into different parts and groups. It
is based on the notion that the points belonging to a specific area of an object have the
same properties. The segmentation of scattered and huge data such as point clouds is a
challenging process and usually segmentation models mainly focus on the improvement
of accuracy [4] rather than efficiency.

Numerous intelligent approaches achieve great accuracy in segmenting parts of ob-
jects and whole scenes of point cloud data [5,6]. While some of them include measure-
ments of the computational power per second (i.e. FLOPS), such as [6], or investigate
memory costs of operations[7], there is still a big open question on the efficiency of the
accurate models. It is considered highly important to include all feasible metrics for a
proposed model, as pointed out by [8], but to the best of our knowledge, at the time of
this writing, there is no specific performance evaluation approach that evaluates the point
cloud data segmentation accuracy of a model concerning the time and memory allocation
needed to achieve the best accuracy score. In this article, we address this issue and exper-
iment with five of the most accurate Neural Networks2 for segmenting parts of objects
represented with point cloud data. Specifically, we analyse PointNet [9], PointNet++
[10], Kernel Point Convolution (KPConv) architecture [5], Position Pooling (PosPool)
architecture [7] and Relation-Shape Convolutional (RSConv) neural network [6].

Thus, our paper makes three contributions: (i) We analyse the performance of the
used models in relation to time and average memory allocation, apart from accuracy, (ii)

We propose and formulate novel performance metrics taking into account both learning-
related, such as mIoU , and system-related metrics, such as run time and memory foot-
print, (iii) We analyse in-depth these metrics to define clear and meaningful insights on
the accuracy and efficiency of the models and the trade-off between them.

2. Related Work

Point cloud segmentation using deep learning models is an emerging study field and
have recently caught the attention of a vast majority of researchers, mainly due to the
presence of unique challenges, such as the lack of structure and the high dimensionality
of the data [3]. Apart from that, numerous review studies present multiple deep learning
models handling point clouds with a great accuracy [3,1,11]. The groundbreaking neural
network dealing with such tasks was PointNet [9] and after its release, a great extent of
models came out improving the segmentation and classification accuracy of it [11].

In the original study of PointNet, Qi et al. [9] include a short time and complexity
analysis of it. However, their analysis do not take into consideration multiple comparison
dimensions among the other published neural networks. More recently, Liu et al. [7],
compare their proposed model to other studies showing a benchmark that is mostly fo-

2https://paperswithcode.com/sota/3d-part-segmentation-on-shapenet-part
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cused on accuracy and endogenous parameters of the neural networks, for example,
width and depth of the architectures. In addition, the majority of the new and state-of-the-
art models, such as [12,5,10], focus primarily on the improvement of the segmentation
accuracy, providing basic or no information regarding efficiency.

There are also approaches, that consider other metrics apart from accuracy of the
model. Coleman et al. [13] present an evaluation approach of deep learning models tak-
ing into account system-related and learning-related performance metrics, such as train-
ing time and accuracy respectively. They provide a benchmark that compares the training
time needed to achieve the state-of-the-art accuracy, as well as, the the time it takes to
infer having the best accuracy. Additionally, an extensive research of time-to-accuracy
performance analysis is presented in [14]. However, these studies focus on image classi-
fication and segmentation tasks, involving imagery data, i.e. 2D data but not point clouds.

On the other hand, Garcia-Garcia et al. [8] present an interesting study on deep
learning techniques with an application to segmentation task. They put on foreground
not only the accuracy but also the efficiency of a wide range of methods involving not
just 2D image data but even 3D point cloud data. They highlight that there is a need
for performance evaluation of segmentation models to be considered useful and valid in
practice. Even though, they claim that the most important metrics for the evaluation of
deep learning segmentation models should be the execution time, the memory footprint
and the accuracy, stating that the trade-off among them should be parameterized depend-
ing on the system’s or analysis’ objective, their analysis provide only accuracy-related
results.

We consider there is a gap in benchmarking in-depth segmentation models on point
cloud data, taking into consideration dimensions such as execution time, memory foot-
print and accuracy, that allow users to validate and select the appropriate model for their
specific application or context.

3. Proposal

We propose a performance benchmark for deep learning algorithms for the task of point
cloud part segmentation. Our main inspiration is derived from [13,8] and the lack of stud-
ies highlighting which is the best Neural Network in terms of accuracy and efficiency
for the part segmentation task. Please note, that by the term accuracy in the segmenta-
tion process, we denote the performance in the metric of point Intersection over Union
(IoU), which is explained onwards. Also, the term efficiency describes the least amount
of resources of a method in run time and memory footprints. Therefore, we experiment
with a well-known point cloud dataset, and we analyse five of the most accurate deep
learning models providing not only segmentation accuracy, i.e learning-related metrics,
but also system-related metrics, such as run time and memory footprints.

We acknowledge that accuracy is necessary in any intelligent system. However, other
performance dimensions should also be considered and evaluated. Thus, we propose
novel performance metrics aiming to balance the decision border between accuracy and
efficiency, taking into consideration both learning-related and system-related metrics.

Considering learning-related metrics, the point Intersection over Union (IoU) per-
formance metric is the most typical metric to evaluate 3D point cloud part segmentation
models. IoU is simply defined as IoU = A∩B

A∪B , where A is the area of points of ground-
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truth point cloud and B of the predicted point cloud. It appears in the majority of the
research studies working in the aforementioned field, such as [9,10,5,7,6]. Specifically,
two variants of the IoU metric are the most used ones, the mean Intersection over Union
(mIoU) obtained by averaging across all Classes (CmIoU) and all Instances (ImIoU).
For clarification, the ImIoU is the average of the mIoU across all point clouds, i.e. all
learning instances. The CmIoU metric is the average of the mIoU across all point clouds
belonging to specific classes and then averaged again on the number of classes. The
details of the aforementioned metrics are also described in [6].

Aside from the learning-related performance metrics, we further measure the
system-related metrics such as run time and average amount of memory allocated by the
Graphics Processing Unit (GPU) of the whole learning procedure of each utilized neural
network.

3.1. Proposed Metric

Specifically, we propose the FCmIoU , FImIoU and Fgeneral and we analytically explain the
formulation of them below, in equations (1), (2) and (3) respectively. We formulate the
FCmIoU (Eq. 1) that provides a per class segmentation accuracy (CmIoU) as well as the
efficiency of the model involving the total run time (ttotal), which is the total time spent
to finish the whole learning process of training, validation and testing, and the average
percentage of GPU memory allocation (GPUmem) that is used for computations in the
whole learning process. In a similar way, we formulate the FImIoU (Eq. 2), which aims to
balance the decision border in model selection among ImIoU , ttotal and GPUmem. Finally,
in an attempt to give a more generalized metric facilitating further the model selection
procedure, considering both general accuracy and efficiency of the models, we propose
the Fgeneral (Eq. 3), which is the arithmetic mean between the FCmIoU and FImIoU . For
comparison purposes across the different metrics, we normalize all the values per metric
in the range [0,1].

In FCmIoU (Eq. 1), we denote β the coefficient that balances the decision border
among CmIoU , ttotal and GPUmem metrics. Higher β values portray more focus on the
learning-related metric of CmIoU . In the notion of system-related metrics, i.e time and
memory, the best model is considered to be the one having the lowest time duration and
with the smallest memory footprint. Thus, in an attempt to highlight this, we formulate
the time-related component in the equation as (1− ttotal) and the memory-related com-
ponent as (1−GPUmem). Likewise, in FImIoU (Eq. 2) we denote α the balance coefficient
among ImIoU , ttotal and GPUmem. Note that both β and α coefficients take values in
the range of [0,1] and the sum of the weight factors in the equations is equal to 1, i.e.
β + (1−β )

2 + (1−β )
2 = 1 and α + (1−α)

2 + (1−α)
2 = 1. All the proposed metrics, i.e. FCmIoU ,

FImIoU and Fgeneral , take values in the range [0,1].

FCmIoU = β ∗CmIoU +
(1−β )

2
∗ (1− ttotal)+

(1−β )
2

∗ (1−GPUmem) (1)

FImIoU = α ∗ ImIoU +
(1−α)

2
∗ (1− ttotal)+

(1−α)

2
∗ (1−GPUmem) (2)
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Fgeneral =
FCmIoU +FImIoU

2
(3)

Note that the proposed metrics can be used stand-alone (Eqs. 1 and 2) or combined
in a unique metric (Eq. 3) for more generalized performance evaluation, depending on
the objective of the application.

4. Evaluation

This section presents the segmentation models, the data used and the benchmark protocol
in our evaluation process. Finally, we show and analyse our results.

4.1. Models

We investigate five of the most accurate neural networks dealing with 3D point cloud
part segmentation. Following, we briefly describe them.

PointNet [9] is considered one of the fundamental and pioneering deep learning
architectures on point cloud data, which handles both classification and segmentation
tasks using point-wise operations. It focuses on the global structure of a point cloud while
being symmetrical or invariant by the input order of point clouds. Additionally, it features
point-wise robustness against noisy elements, perturbation or missing data. However, the
point-wise feature extraction operations of PointNet do not take into consideration the
topology of the points, i.e. neighbourhoods of points.

PointNet++ [10] is the successor of the PointNet architecture that is capable to fo-
cus on both the global and local structure of a point cloud object. Moreover, it also con-
siders the geometrical properties and is robust to size variance and point density variance
per point and per neighbourhood of points. One strong point of PointNet++ is that it is
adequate to deal with surfaces of point clouds.

KPConv [5] approach emphasizes on local aggregation computations among the
points. Specifically, it uses kernel operations, which are defined by a set of points dis-
tributed in a sphere. The convolutions are based on a defined metric system and are de-
pendent on the dimensions of the input data. Thus, they need to be adjusted to adequate
sizes for each problem. KPConv is one of the best state-of-the-art point cloud segmen-
tation algorithms, which achieves great performance while being robust against varying
density neighbourhoods.

PosPool [7] emphasizes also, like the KPConv architecture, on local aggregation
computations among the points. It uses a more simple way of computing the local prop-
erties of point clouds rather than using complex structures. The authors claim that the
PosPool neural network has similar computational capabilities and is more robust to
noisy or missing data than most of its competitors, even by using zero learnable param-
eters for local aggregation operations.

RSConv [6] architecture focus, on local aggregation computations. Equivalent to
2D convolutional operations are used to extract meaningful features from the input point
cloud. They are defined by a spherical shaped neighborhood, which is characterized by
subsets of input points as centroids. Mainly the point features are derived by a selected
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relation, for instance the euclidean distance, between the points and the aforementioned
centroids. RSConv is considered to be a generalization of the traditional 2D convolutions,
as the weights of the convolution matrix are dependent on the position of each point
in relation to the center of the convolutional operation. Additionally, it is invariant to
permutations, robust to rigid transformations and captures well the relations between the
points.

It should be noted that all the aforementioned models evaluate their performance
focusing mainly on learning-related metrics, such as mIoU .

4.2. Data

We use the ShapeNet dataset for part segmentation, namely ShapeNet-Part3. The utilized
version of dataset contains 16881 models of 3D point clouds categorized in 16 distinct
shapes. In each category, from two to six parts are annotated, summing up to 50 annotated
parts in total. The labeled categories are: aeroplane, bag, cap, car, chair, earphone, guitar,
knife, lamp, laptop, motor, mug, pistol, rocket, skateboard and table. More information
on ShapeNet data can be found in its official and published articles [15,16].

4.3. Benchmark Protocol

We have created a benchmark protocol, according to which all the selected models have
been trained, validated and tested. The utilized system for the experiments has the fol-
lowing configuration: (i) CPU: Intel Core i9-10900, (ii) RAM: 32GB, (iii) GPU: Quadro
RTX 5000 - 16 GB, and (iv) OS: Ubuntu 20.04. In addition, we used the Torch-Points3D
[17] framework, using Python 3.8.5, CUDA 10.2 and PyTorch 1.7.0 version.

Regarding the training, validating and testing of the utilized networks, we utilize the
original split following the [15]. Specifically, we use a training set size of 12137 point
clouds, a validation set size of 1870 and a test set size of 2874. The batch size is set to
be 16 and the optimizer of the networks is the Adam. Additionally, to tackle overfitting
issues, we use exponential learning rate decay and batch normalization techniques, both
of them evaluated at every epoch. Finally, we trained all the networks for 200 epochs.
After the training phase on each epoch, the models are validated and tested.

4.4. Results

Figure 1 displays the total run time of each model in relation to the total number of epochs
and highlights when the best CmIoU and ImIoU are recorded in the testing phase of each
one of the models. The first observation is that all the models require different run time
per epoch to complete the learning process, with the fastest one being the PointNet++
and the slowest one the PPNet. Additionally, the models achieve their best accuracy in
different epochs having distinct time duration in their learning processes.

Following our initial observations, we detail the measurements of the learning pro-
cess of models in Table 1. We observe that RSConv is the best method in test data
achieving an ImIoU score of 85.47 and a CmIoU of 82.73. PointNet++ comes second
in terms of ImIoU and CmIoU metrics, achieving scores of 84.93 and 82.50 respec-
tively. Additionally, PPNet achieves the same CmIoU metric of 82.50 as PointNet++.

3Available at: https://shapenet.cs.stanford.edu/media/shapenet part seg hdf5 data.zip
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Figure 1. Comparison of Models - Time vs Epochs. The Total Run Time is denoted in hours.

Table 1. Deep Learning Models - Performance Evaluation of the learning process in 200 epochs. We display
the best achieved CmIoU and ImIoU evaluation metrics in training, validation and test sets. We further denote
the time spent to finish the whole learning process of training, validation and testing as ttotal(h), the time spent
to achieve the best performance in relation to CmIoU and ImIoU metrics in the test data as CmIoUbest

time(h),

ImIoUbest
time(h) respectively, and the average GPU memory allocation in percentage in whole learning process as

GPUmem(%). We use dark grey and light grey cell colors to denote the best and the second best score per metric
respectively.

Method Training Set Validation Set Test Set ttotal(h) ImIoUbest
time(h) CmIoUbest

time(h) GPUmem(%)

ImIoU CmIoU ImIoU CmIoU ImIoU CmIoU

PointNet 89.80 89.81 86.39 79.87 84.24 79.03 5.55 4.77 4.99 33.7

PointNet++ 90.45 90.85 86.83 83.08 84.93 82.50 4.55 2.03 3.36 36.3

KPConv 91.99 91.91 86.61 82.43 84.22 82.39 23.01 6.21 21.96 60.4

PPNet 92.37 92.89 86.46 82.56 83.87 82.50 29.28 24.71 22.33 89.0

RSConv 91.53 92.39 87.12 82.82 85.47 82.73 12.06 4.35 11.81 55.5

An interesting observation is that PointNet++ is the fastest neural network with a total
run time (ttotal) of 4.55 hours, while being the second best in accuracy. It also achieves
its peak performance in test data faster than all its competitors, i.e. ImIoUbest

time(h) = 2.03

and CmIoUbest
time(h) = 3.36 hours. RSConv and PointNet come second in ImIoUbest

time(h) and

CmIoUbest
time(h) respectively.

In terms of average GPU memory usage, PointNet finishes in the first place with
33.7% although the second one, PointNet++, has approximately the same GPU memory
usage with a value of 36.3%. Also, PPNet utilizes 89% of total GPU memory while needs
about 29.28 hours of time for its computations, appearing to be the most inefficient in
terms of memory and time spent. In addition, PPNet reaches the highest performance
in learning-related metrics in training set with 92.37 in ImIoU and 92.89 in CmIoU .
However, its poor performance in test set may indicate overfitting issues. Considering
our results, the first observation is as follows:

Observation 1. Learning-related and system-related metrics have different win-
ners and the winners of one metric demonstrate lower scores on the others.
Thus, a generalized metric that reflects the different behaviour of each model
across all scores is needed.
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Table 2. Deep Learning Models - Generalized Performance Evaluation. We use dark grey and light grey cell
colors to denote the best and the second best score per metric respectively.

Method β = 0.3, α = 0.3 β = 0.5, α = 0.5 β = 0.8, α = 0.8
FImIoU FCmIoU Fgeneral FImIoU FCmIoU Fgeneral FImIoU FCmIoU Fgeneral

PointNet 0.76 0.69 0.72 0.61 0.49 0.55 0.38 0.20 0.29

PointNet++ 0.88 0.96 0.92 0.82 0.96 0.89 0.73 0.95 0.84

KPConv 0.34 0.54 0.44 0.30 0.65 0.47 0.25 0.80 0.53

PPNet 0.00 0.28 0.14 0.00 0.47 0.23 0.00 0.75 0.38

RSConv 0.76 0.76 0.76 0.83 0.83 0.83 0.93 0.93 0.93

Our results suggest that certain methodology should be taken into consideration in
order to select the best model, according to the use-case’s requirements, which is practi-
cally accurate but also efficient in time and memory needed for the learning procedure.
As shown in Table 1, the most accurate model for part segmentation is the RSConv, ac-
cording to the ImIoU and CmIoU metrics on the test dataset. Additionally, we observe
that the most efficient model, taking into account the time and GPU memory allocation
is PointNet++, while being second in terms of accuracy.

In Table 2 we evaluate our proposed metrics (see section 3.1). We choose to dis-
play three different scenarios simulating the final user’s needs. In the first scenario, we
select values of α = 0.3 and β = 0.3, which indicate that the model selection pro-
cess will be more biased towards the system-related behaviour of the models. It is clear
that PointNet++ architecture achieves the best scores of FImIoU = 0.88, FCmIoU = 0.96,
Fgeneral = 0.92. In the second scenario, where α = 0.5 and β = 0.5, we present a bal-
anced approach, giving the same weight in learning- and system-related metrics of each
model. In this case, RSConv comes first in FImIoU metric with a value of 0.83 although
the PointNet++ performance is nearly equal with a FImIoU = 0.82. However, PointNet++
outperforms all the other methods in FCmIoU and in Fgeneral metrics. Finally, the third sce-
nario, where α = 0.8 and β = 0.8, displays a learning-related model selection process.
RSConv seems to be the prime, achieving the best FImIoU of 0.93 although comes second
in FCmIoU . However, according to the generalized metric Fgeneral , RSConv maintains the
highest score of 0.93. Our results raise a second observation:

Observation 2. A generalized metric facilitates the model selection procedure
according to the user’s needs, providing a meaningful insight on the trade-off
between efficiency and accuracy.

The three different scenarios presented, show the ability to select the best segmenta-
tion model according to an individual’s needs. For instance, adjusting the β and α values,
to values higher than 0.5 indicates that accuracy is the main concern and values lower
than 0.5 indicate that the process concerns efficiency more than accuracy. For a balanced
performance evaluation procedure, aiming to select the model that balances accuracy and
efficiency, a value of 0.5 should be selected.

To sum up, our initial results confirm, to an extent, the accuracy results, that appear
in the literature, for each one of the models analyzed. One important aspect that is derived
from our evaluation process is that the learning-related or system-related metrics if used
in isolation do not provide clear instruction to a user on which is the best deep learning
model. This clearly highlights the need for unified metrics, taking into account both
learning- and system-related metrics.
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Our findings set us apart from the majority of previous research in this field. While
the work in [13,14] presents a time-to-accuracy analysis with a focus on image classifi-
cation and segmentation tasks, i.e. 2D data, we provide an analysis involving accuracy,
run time and memory footprint on point cloud data, i.e. 3D data. Other studies, such as
[8], clearly indicate that is of utmost importance to evaluate deep learning segmentation
models on the execution time, the memory footprint and the accuracy of them. However,
their analysis presents only accuracy results of the utilized models. On the contrary, we
analyse all of the aforementioned metrics, providing significant insights.

Actually, examining Figure 1, we could identify some additional remarks, such as (i)

there is a difference between the epochs where the best CmIoU and ImIoU are obtained,
and (ii) the PPNet model is the only model of the five that we have investigated, that
achieved first the best CmIoU and second the ImIoU . Potential next steps are to enrich
our proposed metrics by focusing on exploiting this information and taking into account
these additional factors and to further analyse the features of each class of the ShapeNet
dataset to include the concept of per-point classification accuracy. We expect that the in-
clusion of all this additional information in our metrics and the rigorous experimentation
with more available datasets for the point-cloud part segmentation task may produce new
insights into the models.

5. Conclusion

The majority of the research studies in part segmentation analysis using point clouds
mostly focus on the improvement of the learning-related metrics of CmIoU and ImIoU ,
i.e. accuracy, and there is a little emphasis on the system-related metrics, i.e. efficiency,
and in the trade-off between them. Therefore, the scope of this article has been limited to
the analysis of learning-related and system-related performance metrics, which extends
considerably the point of view of the current literature in point cloud part segmentation.

This paper provides experimental insights aiming to balance the decision border of
the model selection procedure in point cloud part segmentation methodologies. We have
analysed five neural network models, namely PointNet, PointNet++, KPConv, PPNet,
RSConv, using the mostly utilized ShapeNet dataset in the task of 3D point cloud part
segmentation. The first outcome of our analysis is that the most accurate model seems
to be the RSConv architecture and the most efficient the PointNet++. We propose the
FCmIoU , FImIoU , and the arithmetic mean of those Fgeneral . Our metrics aid the bench-
marking of different models and provide insights on the trade-off between accuracy and
efficiency. We conclude that in a case with a balanced trade-off between accuracy and ef-
ficiency, i.e. α = 0.5 and β = 0.5, the selected model should be PointNet++, which is the
most efficient while achieves the second highest CmIoU and ImIoU values in test data.
Note that our proposed metrics portray the ability to personalize the model selection,
by selecting the trade-off between accuracy and efficiency depending on the research
objective.

We believe that there are possible further exploration directions, such as the devel-
opment of a benchmark taking into consideration varying comparison dimensions. As
future work, we consider that additional factors should be included in the metrics, such
as robustness.
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