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Abstract. Digital breast tomosynthesis (DBT) is one of the powerful breast can-
cer screening technologies. DBT can improve the ability of radiologists to detect
breast cancer, especially in the case of dense breasts, where it beats mammogra-
phy. Although many automated methods were proposed to detect breast lesions in
mammographic images, very few methods were proposed for DBT due to the un-
availability of enough annotated DBT images for training object detectors. In this
paper, we present fully automated deep-learning breast lesion detection methods.
Specifically, we study the effectiveness of two data augmentation techniques (chan-
nel replication and channel-concatenation) with five state-of-the-art deep learning
detection models. Our preliminary results on a challenging publically available
DBT dataset showed that the channel-concatenation data augmentation technique
can significantly improve the breast lesion detection results for deep learning-based
breast lesion detectors.
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1. Introduction

Worldwide, breast cancer is one of the most common cancers in women and a leading
cause of death [1]. The earlier breast cancer gets detected, the better of getting success-
ful treatment. Mammography (X-ray images of the breast) and breast ultrasonography
(BUS) are the most common diagnostic tools to detect breast cancer. However, the sen-
sitivity and specificity of breast lesion detection in mammographic and BUS images are
often limited by the presence of high breast density (dense fibro glandular tissue in the
breast). The main reason for this limitation is the 2-D imaging modality of these images
[2].

Digital breast tomosynthesis (DBT)—a new 3-D breast cancer screening technique—
has been introduced to reduce the effects of the superposition and overlapping problem
of dense tissues in mammographic images by providing depth information, which yields
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enhanced breast lesion detection rate [3]. In DBT, a sequence of mammographic im-
ages is acquired by moving the X-ray tube in an arc over a stationary compressed breast
at multiple angles [4]. These individual mammographic images are then reconstructed
into a series of 3-D and high-resolution slices by computer software. These 3-D images
significantly reduce the effect of dense tissues that can hide breast lesions or make it
difficult to be detected [5].

Although DBT has the ability to address the limitation of tissue superimposition in
mammography [4] by providing superior tissue visualization, radiologists are required to
examine a greater number of slices per breast volume, which creates clinical workflow
challenges. Furthermore, as the number of slices to evaluate grows, physicians’ oversight
of findings increases. As a result, computer-aided detection (CAD) is necessary for clin-
ical DBT and offers a larger clinical role in increasing work performance than traditional
digital mammography. It is also likely that CAD will perform better with DBT images
than with mammographic images due to the higher mass margin visibility [6].

Traditional CAD systems can lead to drawbacks as it relies on hand-engineered fea-
tures. By contrast, the development of deep learning-based CAD systems, which relies
instead on learning the features and classification decisions end-to-end, has been demon-
strated to outperform traditional computer aid software in many computer vision prob-
lems. Deep learning has gained popularity in biomedical image analysis with a promis-
ing results in cancer classification [7] and lesions detection [8]. Practical experiments
show that deep learning algorithms are robust and more accurate across datasets.

Recently, deep learning has been employed in DBT images to improve Lesion or
cancer detection accuracy. Many researchers have employed several deep learning archi-
tectures to identify and classify breast cancer [9]. Fan et. al [10] introduced a deep learn-
ing framework based on a 3-D version of the Mask-RCNN model for mass detection
and segmentation in DBT images. The main idea of this study is to use ResNet-Feature
Pyramid Network (ResNet-FPN) as a backbone for their model. The DBT slices of the
same image were passed into the mask-RCNN model one by one to generate bounding
boxes for each slice with a confidence score of detected mass. These bounding boxes of
a breast mass from the same set of DBT images are combined, if they have overlapping
ratios (i.e. intersection over union ratios) greater than 0.5.

In [11], Lai et. al. presented a DBT mass automatic segmentation algorithm using
a U-Net architecture. Their method consists of six stages: data pre-processing, patch
extraction, data augmentation, U-Net segmentation, voting stage, and post-processing.
In data pre-processing, a top-hat transform was applied to enhance the contrast between
tumor location regions and background tissues. Images were split into patches and these
patches were rotated by 90 degrees to increase the number of data for patch extraction
and data augmentation steps. U-Net model with 23 layers was used to perform an end-to-
end pixel-wise segmentation. For the voting stage, a probabilistic prediction was made
using the U-Net segmentation model for each slice. These predictions are then fused
into the final image label using one of multiple voting schemes. Finally, they imposed
volumetric constraints by removing clusters in the segmentation obtained by the U-Net
to deal with small clusters that were mistakenly classified as breast masses.

Lotter et. al. [12] proposed a three-stage annotation-efficient deep learning model
for breast cancer detection in mammographic and DBT images. In the first stage, a pre-
trained ResNet model was trained for lesion classification. This trained ResNet then is
used as a backbone model for RetinaNet which is trained for lesion detection as a second
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stage. In the third stage, the ROI extracted from the second stage is used to classify
optimized 2-D images condensed from DBT.

Buda et. al [13] developed a single-stage deep learning model to detect masses and
architectural distortions in DBT images. The proposed model employs YOLO for 2-D
object detection with DenseNet. In this work, different loss functions have been tested
including binary cross-entropy, weighted binary cross-entropy, focal loss, and reduced
focal loss. The results showed that their model performed best using focal loss.

Breast cancer detection in mammographic and DBT images is still a challenging
task due to variability in breast lesion shapes and sizes and breast density. However,
many automated lesion detection approaches were proposed in the literature to accurately
detect breast cancer in mammographic images, very few approaches for DBT have been
presented due to a lack of enough annotated DBT images for training object detectors.
In this paper, we develop five automated deep learning-based breast lesion detection
models for DBT images based on robust object detection models like YOLO [14] and
Faster R-CNN [15]. Additionally, we investigate the impact of two data augmentation
techniques called channel-replication and chancel-concatenation in improving the breast
lesion detection results of deep learning models.

The remainder of this paper is designed as follows. Section 2 describes the proposed
detection system. The experimental results and discussion are presented in section 3.
Section 4 concludes the paper and provided some lines for future work.

2. Proposed Lesion Detection System

Figure 1 shows the proposed lesion detection method. The key elements of the proposed
method are data augmentation, deep learning-based detector, and non-maximum sup-
pression (NMS). Below, we describe the proposed method in detail.

Output Tumor

Input DBT Image Detection

Data Deep learing ™| | non maximum
Augmentation Detection Model suppression

Figure 1. Lesion detection in breast tomosynthesis images based on deep learning models and robust data
augmentation techniques.

2.1. Data augmentation

In data augmentation techniques, the number of training images is increased with differ-
ent image manipulation algorithms. We use two different data augmentation techniques
in this study.
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e Augmentation technique 1 (Augl): channel replication. We flipped all images

in the training set horizontally, then for each original and flipped image I; we ap-

ply gamma correction to adjust the overall brightness of an image using Equation
1.

I )
255
Where I, is the output image for gamma correction and Y is the gamma correction
factor.

Also, we apply the contrast limited adaptive histogram equalization (CLAHE) to
enhance the image Local Contrast [16]. To calculate the clip limit for the CLAHE
algorithm, we used Equation 2.

(11 (S 1) @)
Where W x H is the number of pixels in each histogram calculated region, L is
the number of gray-scales, ¢ is a clip factor, and S,y is the maximum allowable
slope. However, S, should set to four for still X-ray images.

Augmentation technique 2 (Aug2): channel-concatenation. We used a new 3-
channel data augmentation method by concatenating the original image with two
post-processed images as proposed in [17]. With this augmentation technique,
rather than concatenating the three gray-scale images, we used two filtered images
(Iy with y = 0.5 and .;43. With a = 1) to concatenate with the original gray-scale
image I,. So, for each image in the training set, we produce a new 3-channel
Image I as shown in Equation 3.

I,=255x ( M

cliplimit =

I = Concat (I, Iy, Iciane ) )

Here, 1.I,.I,, and I ;4 is output image, image after gamma correction and im-
age after CLAHE equalization, respectively. Figure 2 shows sample visualization
different data augmentation techniques.

Figure 2. Samples for different data augmentation techniques. a. The original image, b. Outputs of Augl and
c. The output of Aug?2.
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2.2. Individual deep learning based detection models

To build the individual deep learning-based detection models, we employed two widely
used and efficient deep learning-based object detectors: YOLO and Faster-RCNN.

YOLO [14] is an object detection model that implements all of the detection stages
to detect an object using a single neural network. The YOLO algorithm has obtained
impressive specifications that outperform the leading detection algorithms in terms of
both speed and accuracy for detecting and determining object location. The main idea
of the YOLO algorithm is to apply a single neural network to the full image and then
divide the image into a grid cell with the size of S x § (7 x 7 default). If the center of
an object falls into a grid cell, that grid cell predicts bounding boxes includes confidence
probabilities for the objects.

The YOLO algorithm was upgraded to five versions (including the original version)
since the time of its publication. In 2020, Bochkovskiy et. al [18] presented YOLOv4
with many of the most innovative ideas coming out of the computer vision research
community for each part of the model architecture. After a few months, Glenn Jocher
released YOLOVS. Unlike previous YOLO versions that picked the five best-fit anchor
boxes for the COCO dataset and use them as default, YOLOVS integrates the anchor
box selection process by learning the best anchor boxes automatically for the training
images and use them during training. Besides, YOLOVS uses mosaic augmentation that
combines four images into four tiles of random ratio, helping the models to detect small
objects.

Faster R-CNN detector [19] usually comprises four major parts: 1) a feature extrac-
tor stage—usually using a CNN, 2) a region proposal (RPN) algorithm to predict bound-
ing boxes of possible objects in the image with a confidence score, 3) a classification
layer to predict which class this object belongs to, and 4) a regression layer to make the
coordinates of the object bounding box more precise. The main idea of Faster R-CNN is
using a convolutional network for RPN, instead of using a selective search algorithm to
generate the region proposals that yield accelerating training time and improving feature
representation.

2.3. Implementation

In our work, Firstly, the DBT images dataset was split into training and testing sets
(patient-wise splitting). In the training phase, we apply data augmentation techniques
mentioned in section 2.1 to produce two training sets (training set by data augmentation
technique 1 and training set by data augmentation technique 2). For each of these training
sets, we train each of the mentioned detectors individually. It is worth noting that for the
YOLOVS5 detector, we train four models with different sizes (YOLO-Small (S), YOLO-
Medium (M), YOLO-Large (L), and YOLO-XLarge (XL)).

Secondly, in the testing phase, the trained models are used to predict bounding boxes
for each DBT image in the test set. Each bounding box consists of a class that the object
may belong to, a coordinates list [x1,y1,x2,y2] and confidence score. The confidence
represents scores reflect how confident the model is that the box contains an object,
i.e. any Tumor in the box, P(Tumor). All predicted bounding boxes from a single DBT
image are combined in a single bounding boxes list. Then, this list is passed to (NMS)
algorithm to select the best bounding box out of a set of overlapping or duplicated boxes.
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The selection criteria are based on the confidence probability threshold along with the
intersection over union (IoU) overlap measure threshold.

To reduce the computational complexity, we resized the original DBT images to
640 x 640. In the training phase, we implement two data augmentation techniques to in-
crease the number of training data. It worth noting that, in this work we used the pytorch
implementation of the YOLOvS [19] and Faster-RCNN [20]. We utilized the patch size
8, and the maximum number of training epochs was 50 for the YOLO model and 20 for
the faster-RCNN model.

2.4. Evaluation Metrics

In this study, we use three of the most popular metrics used to evaluate object detection
models [21]: the true positive rate (TPR), F1-score and PASCAL VOC mean average
precision (mAP) to assess the performance of the lesion detection models. The true pos-
itive rate (TPR, also called sensitivity) is the probability that an actual positive will test
positive and calculated By Equation 4.

TP

TPR= ——F—
TP+FN

“

where TP, and FN is true positive and False Negative detections, respectivly. The F1
score is the harmonic mean of precision and recall, and calculated as follows

Precision = ——— R = —— (@)
7
ecision s eca N

Fl— score — 2 x Prect}vt:on X Recall ©)
Precision + Recall

Where FP is the false positive detections, precision is the ratio of the number of true pos-
itives to the total number of positive predictions and recall is the same as TPR. The mean
average precision (mAP) is precision averages across all recall values between 0 and 1
at various IoU thresholds. By interpolating across all points, mAP can be interpreted as
the area under the curve of the precision-recall curve.

3. Experiments and discussion

3.1. Dataset

In our experiments, we used the DBTex challenge dataset [22]. It contains a total of 1000
breast tomosynthesis scans from 985 patients. Of 101 patients, only 224 DBT images
have annotations (the rest images are not fully annotated). It should be noted that in our
experiments we divided the DBT images dataset into training and testing sets (patient-
wise): 71 patients for training and 30 patients for testing.
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3.2. Experimental results

In the training phase, we used the two training sets produced from the two data augmen-
tation techniques (Augl and Aug2). With Augl, we produced a total of 1168 training
DBT images, while with Aug2 we produced a total of 292 training DBT images.

Table 1 presents a quantitive comparison between the four YOLOvVS models
(YOLO-S, YOLO-M, YOLO-L and YOLO-XL) and the faster R-CNN model trained
on the training dataset produced by Augl in terms of TPR, F1-score, and mean average
precision—-mAP (IoU threshold = 5). As one can see, YOLO-S achieved the best lesion
detection results when compared to the other YOLO models. However, faster R-CNN
has more promising breast lesion detection results. It surpassed all YOLO models on all
measures. These breast lesion detection results demonstrate that the faster R-CNN could
be more suitable for DBT images, however, it has a higher computational complexity
than YOLO models.

Table 1. The performance of the deep learning detection methods with Augl.

YOLOV5
Faster R-CNN
S M L XL
TPR 348 31.8 242 227 50
F1-Score 485 457 36.1 357 54.1
mAP [iou=0.5] | 31.8 34.1 262 26.7 45.1

Table 2. The performance of the deep learning detection methods with Aug?2.

YOLOV5
Faster R-CNN
S M L XL
TPR 47 394 394 47 56.1
F1-Score 525 517 566 514 57.4
mAP [iou=0.5] | 48.7 389 404 41.8 46.8

Table 2 compares the breast lesion detection results of the models when trained on
the training dataset produced by Aug?2 in terms of TPR, F1-score, and mAP. As shown,
when comparing values from Table 2 to values from Tablel, we can argue that training
the deep learning detectors based on Aug2 can yields noticeable improvements on all
TPR, F1-Score, and mAP metrics. With Aug?2, the performance of the YOLO-S model
was also increased by 17 points in terms of mAP. Besides, the TPR and F1-score of the
faster RCNN were also advanced 6% and 3.3%, respectively.

Figure 3 presents the breast lesion detection results of the YOLO models and faster-
RCNN. The red boxes stand for the ground truth while the green boxes indicate the
detected lesions with confidence scores with IoU greater than 0.5. As shown, the breast
lesion detections performed by the models trained with the Aug? training dataset (second
row) have higher confidence scores than models trained with the Augl training dataset
(first row). In turn, the faster R-CNN predicts the most accurate bounding boxes (IoU >
0.8).

On the basis of the above analysis, we can conclude that to second data augmentation
technique (Aug2) can significantly improve the breast lesion detection results for deep
learning-based breast lesion detectors like YOLO models and faster R-CNN.
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Figure 3. Examples of lesion detection using YOLOVS and faster R-CNN. Note that the first row includes
the results of Augl while the second row includes the results of Aug2. a and ¢ show the detection results
of YOLO-S, YOLO-M, YOLO-L and YOLO-XL from left to right, respectively. b and d show the detection
results of Faster R-CNN.

All the experiments were performed using Pytorch framework using a 64-bit Ubuntu
operating system with 3.6 GHz intel core i7 with 32GB of RAM and Nvidia GTX1080
with 8GB of video RAM.

4. Conclusions

In this paper, we investigated the strength of two data augmentation strategies (channel-
replicate and channel-concatenation) while building five breast lesion detection models
based on deep learning for digital breast tomosynthesis. We demonstrated that applying
the channel-concatenation data augmentation strategy helps improve the detection accu-
racy of all deep learning models. With a publicly available digital breast tomosynthesis
dataset, our experiments showed that the mAP score of YOLO models was increased by
17% approximately, while the F1-score of the faster-RCNN detector was improved by
3%. The future work will be focused on the development of a lesion detection approach
based on the combination of robust deep learning-based detectors.
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