
On Determining Suitable Embedded
Devices for Deep Learning Models

Daniel PADILLA a,b, Hatem A. RASHWAN a and Domènec Savi PUIG a

a DEIM, Universitat Rovira i Virgili, Tarragona, Spain
b Department of Research & Development, Quercus Technologies, Reus, Spain

Abstract. Deep learning (DL) networks have proven to be crucial in commercial
solutions with computer vision challenges due to their abilities to extract high-level
abstractions of the image data and their capabilities of being easily adapted to many
applications. As a result, DL methodologies had become a de facto standard for
computer vision problems yielding many new kinds of research, approaches and
applications. Recently, the commercial sector is also driving to use of embedded
systems to be able to execute DL models, which has caused an important change
on the DL panorama and the embedded systems themselves. Consequently, in this
paper, we attempt to study the state of the art of embedded systems, such as GPUs,
FPGAs and Mobile SoCs, that are able to use DL techniques, to modernize the
stakeholders with the new systems available in the market. Besides, we aim at help-
ing them to determine which of these systems can be beneficial and suitable for
their applications in terms of upgradeability, price, deployment and performance.

Keywords. Embedded systems, Deep Learning, FPGA, GPU, DSP, SoC

1. Introduction

Deep learning (DL) has been considered to be one of the most cutting-edge Artificial
intelligence (AI) techniques. However, AI companies must overcome a huge problem
that they must upgrade their old systems based on traditional ML and computer vision
techniques to successful and established products with new features based on DL. Old
embedded systems, such as surveillance cameras, are the ones that can make more bene-
fits from DL techniques. And, even though some intelligent cameras are able to process
images with lightweight ML algorithms, but these systems have many times low pre-
cision for complex problems, e.g., object detection. Thus, upgrading such systems into
something more intelligent and reliable that can actually extract information from the
input data is the next target for many AI companies.

Not only the high precision achieved by the DL solutions and the low effort to be
accomplished comparing to manual engineered (hand-crafted) solutions make them a
promising technology. But also, the acquisition and storage of data become more avail-
able. The only drawback for using these techniques is the significant increase in the com-
putation complexity that not all commercial applications can afford.

Since DL training is a heavy computational task, the mainstream research device is
to use GPUs. Ordinarily, a PCIe card fit for a PC or Server. However, with devices with

Artificial Intelligence Research and Development
M. Villaret et al. (Eds.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210147

285



limited resources, such as CPU, Memory or even space, and the requirements for high
throughput like real-time solutions, DL solutions seem to be a bit far away until now.
For example, surveillance cameras can not be expanded with a PCIe card to use GPUs.
Not only because they will not have enough space in its case, but also because inserting
a PCIe card would mean redesign the whole camera hardware with lots of implications.
As a result, some applications are not yet ready to work with DL techniques. However,
the technology giants are moving towards more capable tools of making DL integration
possible even in a mobile phone.

Several works are focusing on the main hardware options, however some of them are
partial and others are not focused enough on the commercial side. For example, several
surveys have focused on specific devices, such as Nvidia Jetson Series, with an overview
of other devices like FPGAs [16]. Regarding FPGAs, there also are other kinds of surveys
that involve several domains tagging and taxonomy [3,18].

In this work, we will first state the main problem related to the performance of DL
models on embedded systems. We will then list and overlook some of the alternatives to
the current systems. After that, we will state some of the characteristics of every device.
Finally, making a decision based on some defined parameters to help the stakeholders to
determine which of these embedded systems can be beneficial and suitable for their ap-
plications in terms of upgradeability, price, deployment and performance characteristics.

2. Methodology

We will analyse the current status of common embedded devices, such as FBGA, GPUs,
CPUs, DSP, etc. Besides, we will define some formulae that can help in adapting an
embedded product by adding or replacing some components to substitute the traditional
computer vision solution with a DL solution. Thus, to precisely evaluate each embedded
device and offer the reader the possibility to adapt the decision to its necessities, and
based on a weighting value λ that factor score from 0 to 1, we evaluate each device with
four different factors:

Upgradeability (U): For each embedded system to be upgraded, this factor mea-
sures the system ability, which means to move from the previous system to one capable
of using DL techniques in terms of hardware changes. We use this ranking formula for
weighting redesigns on the system:

U = (1− γ)λU0 + γλU1,

where λU0 stands for a subjective value for the number of changes required for the system
design to include a new device and λU1 measures the number of components that have
to be changed to include this new device. γ is a weighting value between 0 to 1.

In this work, we set γ = 0.4, since redesigning the whole system to introduce a new
block should penalize more than adapting the printed circuit board (PCB) of that device.

Deployment (D): This factor is related to software difficulties when applying the
developed DL model to the target device. On the formula, we equally weight the num-
ber of frameworks (TensorFlow, Pytorch, etc.) being used (λD0) and the time used for
different operations, such as compiling, compressing or readjusting the DL model to the
deployment mode (λD1) from the checkpoint mode. As a rule of thumb, we set:

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models286



λD0 =


1 if n = 1
0.5 if n = 2
0 if n > 2

,

λD1 =


1 No need for operations
0.5 Few and quick operations
0 Operations takes long time

,

where n is the number of frameworks being used.

D = (1−α)λD0 +αλD1,

where α is a weighting value between 0 to 1.
In this work, we set α = 0.6, since we consider the compilation time and modifi-

cation of the model (compression, etc.) are slightly more important than the number of
frameworks used.

Price (P): Since every company has a target for its budget to decrease the final cost
of a low-end product. The P factor ranks the prices for the embedded device required
to use. Assume the target price of the required device is Tp set in this workaround 100
Eur that can be considered the target price of most standard distributed architectures of
embedded systems of AI companies. Consequently, we will use the following formula to
evaluate the price factor:

P = 1− ((mean(p)−Tp)/max(p)),

where p is the list of prices for available devices that can be used in the new target
systems. The P value will be close to 1, if the mean(p) is close to the target price. Thus,
the devices with low prices will have a high value, while low values will be related to
expensive devices.

Performance (A): Finally, this factor measures the precision and speed (inference
time or frames per second) of the new device. Since various devices will individually be
tested, even with the same model (different frameworks, quantization, device’s optimal
adjustments, etc.), we need to know the variability between the performance on a PCIe
GPU and the selected device. For that, we compute the Performance factor based on:

A = (1−θ)λR0 +θλR1,

λR0 =


1 if λIn f <= 1.5
0.5 if 1.5 < λIn f < 2
0 if λIn f >= 2

,
λIn f =

∑
j
i=1 log In fi

j

where In fi stands for each inference time of Table 2 for that device, and j is the number
of available inferences in the table for the same device.

λR1 =


1 if λPrec <= 1
0.5 if 1 < λPrec < 5
0 if λPrec >= 5

,
λPrec =

∑
k
i=1(PPCIei−Pi)

k

where PPCIei is the precision value of the DL system on PCIe GPU devices, Pi is the
precision values in Table 2 for each device, and k is the number of available precision
values in the table for each device.

In this work, we set θ = 0.2. Since performances values are more subjective to com-
pression and model modifications done to fit into low hardware.

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models 287



3. DL Networks study

Deep Neural Networks (DNN) are known for their large quantity of parameters and op-
erations, such as enormous quantities of trainable parameters. That is translated into a
complex structure and, in terms of memory, a big data bulk. In contrast, embedded sys-
tems tend to reduce the capacity in terms of memory and computation time. The most
common deep convolutional neural networks (DCNN) on low-end embedding systems
for object classification are VGG-16 [23] and MobileNet [22] and their variations. These
networks are characterized by having low complexity and good enough precision com-
pared to other deep architectures with more precision. In addition, there are three impos-
ing families of Object Detection architectures: YOLO V1 to V5 [21], RCNN [6], and
SSD [15,22]. The fastest algorithms amongst them is those based on YOLO.

There is a constant flow of research to make the DNN compact, quicker or simpler
to reduce the overall resources needed for a DL inference application. These works de-
pend on two different main lines. The first line is to reduce the number of connections,
parameters, and architecture to reduce the model complexity. Examples of such types
of LD models are tuning networks to get simpler ones, such as in MobileNet V2 [22].
While the other works go to compress the DNN networks [8]. In turn, the second line
focuses on changing the operations insides of DNN networks to get quicker and/or more
efficient operations. For instance, some works used Fourier Transforms [13], and bina-
rized models [11] or even they have modified internal network architectures looking for
faster operations [5].

In this work, we use the most common DNN networks to provide a fair compar-
ison between several embedded devices. The tested networks are MobileNetv2, VGG-
16 and VGG-19 for Object Classification, and YOLO tiny, YOLOv2, YOLOv3 and SS-
DLite+MobileNetv2 for Object Detection.

4. Hardware

Since the main focus of this paper is to enhance an AI physical product using DL, the
ideal solution would be simply changing the Integrated Circuit of the product allowing
us to improve the product with DL. That is not often possible since changing an IC
usually means changing many more hardware components. Different devices and some
specific classifications can allow us to work with DL techniques. We will focus on the
most desirable embedded system by AI companies: GPUs, FPGAs and NPUs in turn,
ASIC, CPUs and DSPs will be out of scope in this paper.

To be able to compare the different market devices, we have added Table 2 with a
compilation of various embedded systems with comparable experiments using trained
DL models. We performed three Object Classification tests and 4 Object Detection tests
based on well-known DNN network references.

For Object Classification, the most referenced models are MobileNetV2, VGG-16
and VGG-19 that were trained using the ImageNet dataset. The results are given with
two factors: the inference time (In f .(ms)) expressed in milliseconds and Top-1 accuracy
(Top1), as shown in Table 2). For the Object Detection problem, the referenced models
are YOLO tiny, YOLOv2, YOLOv3, SSDLite-MobileNetV2 that were trained with the

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models288



Device Type CPU Nvidia PCIe GPU Nvidia Jetson Series FPGA Mobile SoC

Model

In
te

lX
eo

n
E

5-
26

50

Ti
ta

n
X

R
T

X
20

80
Ti

G
T

X
10

80

G
T

X
10

50
Ti

N
an

o

T
x1

T
X

2

A
G

X

X
ili

nx
V

ir
te

x
7

Z
yn

q
So

C
Z

-7
10

0

A
rr

ia
10

G
X

C
yc

lo
ne

V

St
ra

tix
V

K
ir

in
99

0
5G

Sn
ap

dr
ag

on
85

5+

Sn
ap

dr
ag

on
83

5

Sn
ap

dr
ag

on
82

1

Sn
ap

dr
ag

on
82

0

H
el

io
P2

2

MobileNetV21
Inf.(ms) 6.6 1 0.7 1 - 16 - - - - - - - - 6 15 181 75 98 243
Top1 71.9 71.9 71.9 71.9 - 71.9 - - - - - - - - 69.6 70.5 71.9 72 71.9 71.9

VGG-16
Inf.(ms) - - - - - - 347 - - 519 - 110 1928 254 - - - - - -
Top1 - - - - - - - - - - - - - - - - - - - -

VGG-19
Inf.(ms) - - 0.6 - - 100 - 43 7 - - - - - 42 182 3754 - 4995 7053
Top1 - - - - - - - - - - - - - - - - - - - -

YOLO tiny
Inf.(ms) - 5 - - - - 150 58 - 125 - 15 - - - - - - - -
mAP(%) - 57.1 - - - - - 32 57.1 - - 57.1 - - - - - - - -

YOLOv2
Inf.(ms) - 15 - - - - - 172 - - 80 54 - - - - - - - -
mAP(%) - 76.8 - - - - - 51 - - 69.1 76.1 - - - - - - - -

YOLOv3
Inf.(ms) 133 - - 31 - - - - - - - - - - - - - - - -
mAP(%) 30 - - 30 - - - - - - - - - - - - - - - -

SSDLite- Inf.(ms) - - - 28 16 26 - - - - - 18 - - - - - 200 - -
MobileNetV2 mAP(%) - - - - 77 - - - - - - 73 - - - - - - - -

References *1,2 *1,3 *1,4 *1,2 *5,2 *6 *7 *8,9 *10,11*7 *12 *5,13,14 *12 *13 *1 *1 *1 *15 *1 *1

1 [9] 2 Omni-benchmarking Object Detection. 3 [30] 4 RTX 2080 Ti Deep Learning Benchmarks with TensorFlow. 5 [14]
6 Jetson Nano: Deep Learning Inference Benchmarks 7 [7] 8 Giant Leaps in Performance and Efficiency for AI Services, from the Data Center
to the Network’s Edge 9 [10] 10 Jetson AGX Xavier: Deep Learning Inference Benchmarks 11 [29] 12 [17] 13 [28] 14 [30]
15 [22]

Table 2. Comparison between different devices.

Model Estimated Price (Eur)
Intel Xeon E5-2650 875
Titan X 1200
RTX 2080 Ti 1150
GTX 1080 500
GTX 1050 Ti 150
Nano 100
Tx1 300
Tx2 4G 272
TX2 416
TX2i 718
AGX 8G 618
AGX 909
Zynq SoC Z-7020 100
Xilinx Virtex 7 300
Zynq SoC Z-7100 3K
Arria 10 GX 800 - 2K5
Cyclone V 50
Stratix V 6K -16K
Stratix 10 GX 7K - 40K
Kirin 990 5G 800m

Snapdragon 855+ 420m

Snapdragon 835 150m

Snapdragon 821 100m

Snapdragon 820 75 m

Helio P22 100m

Table 1.: Prices of different de-
vices. Where m stands for the price
listed for the mobile using this SoC.

COCO dataset. For object detection, the result of
inference time is maintained, but the mean Aver-
age Precision (mAP%) is used instead of Top-1
accuracy. Finally, we add an Estimated Price ex-
tracted for some of these devices and in cases of
Mobile SoCs, the mobile associated.

4.1. GPUs

The first ideal solution is the one with less effort
for the researchers by using GPUs. The solution is
a training environment that the company can only
transfer the trained DL model to a target device and
execute it. The GPUs, such as the NVIDIA Titan
series, can be easily integrated with a PC or even a
dedicated server with dedicated PCI cards. But in-
cluding these solutions could be an overshoot, be-
cause of the higher prices of these GPUs. Thus we
can note this solution is not the preferable solution
for the industry.

2https://towardsdatascience.com/omni-benchmarking-object-detection-b390cc4114cd
4https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/
6https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
8https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

tesla-product-literature/t4-inference-print-update-inference-tech-overview-final.pdf
10https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models 289



However, NVIDIA has detected this niche and has promptly developed some smaller
units for embedded devices. We are talking about the Jetson Series: Mini-Computer mod-
ules with a specific power needed to execute some DL networks. These low-end Jetson
GPU modules allow some CUDA capabilities, being very easy to run the same model as
your high-end desktop PC’s GPU. The computational power and memory of these series
limit the complexity of DL models.

With lower prices of the Jetson modules is not weird to see a large number of aca-
demic developments focused on Jetson Nano. That is very popular in robotics [24,25,31],
also in other applications like adapting YOLO[21] network to fit into this low-end mod-
ule [29]. Other modules like Jetson TX2 is used in medical image-analysis [19] or in
other cases, such as detecting ships [32]. But since the price goes up, as expected, the
research tends to lessen, although different benchmarks from unofficial parts [9,1]12 and
official ones34 seems to indicate their good performance for real-time embedded systems.
All in all, Jetson modules seems a good solution for upgrading embedded system.

Table 2 listed different capabilities for computer power evaluation and approximated
prices for some of NVIDIA’s GPUs and NIVIDIA Jeston series.

4.2. FPGAs

Recently, there are many discussions about another desirable device for applying DL
techniques5, which is related to the Field Programmable Gate Arrays (FPGAs). Since
their output results are not instructions-based anymore. Several articles have been pre-
sented for improving even further FPGAs. performance [27,12]. However, one of its main
important flaws is in the compilation and programming experience. Although nowadays
there are possible frameworks for programming FPGAs [20,4], which provide us with a
better programming experience for FPGAs, these frameworks are on top of the other DL
frameworks (i.e., Tensorflow and Pytorch). Therefore, these FPGA frameworks are not at
the same accessibility as CPU/GPU cores yet. Besides, FPGA needs to be reprogrammed
for every little change on the DL models, contrary to the GPUs where the change is made
on memory and GPU has not to be changed.

The historical weak point of FPGA was the floating-point operations. That is main-
tained with the help of specialized DSPs blocks embedded in FPGAs to enhance floating-
point operations. These blocks had granted a big impact of FPGAs on DL techniques.
Thus, in combination with high memory bandwidth and very fast response, FPGAs be-
come a tough competitor for NVIDIA’s GPUs. Indeed, large companies like Microsoft
and Google move towards these solutions. There are already some interesting applica-
tions achieved on cheaper FPGAs, e.g., Zynq 7000, like Facial Expression recognition
[33], and Underwater real-time image recognition [33], and other research available on

1RTX 2080 Ti Deep Learning Benchmarks with TensorFlow: https://lambdalabs.com/blog/
2080-ti-deep-learning-benchmarks/

2NVIDIA Jetson AGX Xavier Benchmarks: https://www.phoronix.com/scan.php?page=article&
item=nvidia-jetson-xavier&num=4

32019 Machine Learning Benchmark: https://www.nvidia.com/en-us/data-center/
2019-machine-learning-benchmarks/

4Jetson AGX Xavier: Deep Learning Inference Benchmarks: https://developer.nvidia.com/
embedded/jetson-agx-xavier-dl-inference-benchmarks

5Why use an FPGA instead of a CPU or GPU? https://blog.esciencecenter.nl/
why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models290



benchmarks with Intel’s Arria 10 [14]. Promising results with FPGAs have been sum-
marised in Table 2.

However, there exist a large gap between low-end and high-end FPGAs price. For in-
stance, high-end FPGAs use SoCs that are used in GPUs. These SoCs tend to have more
computational Power per Euro ratio1. It is noted that any embedded system with a big
budget for upgrading will get the most benefits in terms of performance and efficiency,
as shown in Table 3.

4.3. NPUs

The final targets are those low powered and low-cost Mobiles. Many manufacturers had
proposed their solutions for mobiles and smartphones. For instance, tensor processing
unit, neural network processor, intelligence processing unit, vision processing unit and
graph processing unit are some of the names doted by manufacturers known more glob-
ally by Neural Processor Unit (NPU). These SoCs have less performance than dedicated
GPUs, however, with their tiny modules and cost, they can be more suitable and afford-
able solutions for real-time applications for embedded systems.

Until recently, mobile applications with such kind of AI applications were server-
based. These applications packed and sent the input data (e.g., voice or video) to a dedi-
cated server to make the inference. This could take some time and real-time applications
will be more difficult. Nowadays, we have several SoCs with DL features to allow us to
jump that barrier of online applications and execute the DL model in the same smart-
phone [26]. In this case, we can, for example, execute YOLO for object detection in an
iOS mobile [2] and the inference is done inside an iOS system and not in a cloud-based
server.

There are several new SoCs[9] that gives us a similar performance to old GPUs and
even better performance than CPUs. Table 2 summarise some of these values with the
MobileNetV2 network. We can observe that inference times can go under 10 msec with
the latest SoC at the expense of 2 percentiles in precision, while some of the precision
values near the CPU baseline can go up to speeds of 75 milliseconds per inference, which
should be enough for some real-time applications. Being able to get prices for SoCs is
very difficult.Usually, manufacturers do not give prices for a single SoC, and their values
are limited. However, we can compare the cost of the mobiles themselves that come
with these SoCs. For example, Table 2 shows some current prices for some mobiles. The
prices range is between 20-200 Euros, with a mean of 80 Eur.

5. Discussion

In this paper, we have reviewed the state of the art including the system upgrading from
traditional AI systems to promising DL-based systems. For the industry, upgrade an AI
embedded system has its cost. However, the high precision, which could achieve with
DL, may well deserve it. The community is also going through many different types of

1GPU vs FPGA Performance Comparison White Paper 2: https://www.bertendsp.com/pdf/
whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models 291



GPU FPGA NPU

U
λU 0 0 0.5 1
λU 1 0.5 0.5 0.75
Total 0.1 0.5 0.9

D
λD0 1 2+ 2
λD1 1 0 0.75
Total 1 0.1 0.5

P Total 0.41 0.19 0.95
A Total 0.5 0.8 0.6
E 2.01 1.59 2.95

Table 3.: Evaluation factors values for each
SoCs based on four factors.

research to improve devices to run more
complex models, i.e., DL models, and im-
prove the efficiency of the networks. We
depend on the four factors mentioned in
section 2 (i.e., Upgradeability (U), De-
ployment (D), Price (P) and Performance
(A)) to evaluate the three well-known em-
bedded ystems: GPUs, FPGAs and NPUs.
The final evaluation factor (E) can be de-
fined as a weighted sum of the four fac-
tors:

E = ξ1U +ξ2D+ξ3P+ξ4A,

where we set ξ1=ξ2=ξ3=ξ4=1.
As shown Table3, we presented quantitative results of the three embed-
ded systems with the four factors. NPUs provided the best evaluation

Figure 1.: FPGA, GPUs, NPUs evaluation
scores.

value of 2.95 in terms of U, D, P and
A factors. In turn, with FPGAs, the eval-
uation value was degraded to 1.59. Al-
though FPGAs provided the best perfor-
mance value (A = 0.8) among the three
systems. Similarly,in Figure 1, the results
show NPUs should be the best target em-
bedded system for AI companies, fol-
lowed by GPUs and finally FPGAs sup-
porting our discussion.

The mobile market is a great push for
the DL embedding sector. It may not have
the best performance, and some kind of
trade-off is usually needed when choosing
between these devices, but the prices of

their ICs, the current investment of the sector in DL and the deployment, may well make
these ICs the best ones to be used when upgrading old embedded products.

As things are, this mobile sector will be the ones which, most probably, will quickly
grow in the coming years due to the growing demand. Besides, even though other
solutions may suit better when they are appropriately chosen, they are much more
application-specific. A good example would be where there is no need for an operating
system, which the FPGA could fit quite well. Or a large-case product with already I/O
pins could be easier to adapt with an NVIDIA Jetson SoM. Mobiles are already capable
of running low-end models. And the complexity of these models will keep increasing
as the sector moves toward using more AI locally. We can add the low price of devices
compared to other ones and, although we would think that low precision and speed may
be limited. Thus, we could use several methods to make the trade-off:

• Limit the speed: not all embedded systems must be real-time
• Accept a little loss: The cost could compensate the little loss
• Use the lower cost: The system could upgrade and improve weak points (i.e. using

more sensors, extra memory, etc)

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models292



References

[1] Mario Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I Venieris, and Nicholas D Lane. Em-
Bench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity De-
vices. 2019.

[2] Maneesh Apte, Simar Mangat, and Priyanka Sekhar. Yolo net on ios. Technical report, 2017.
[3] Ahmed Ghazi Blaiech, Khaled Ben Khalifa, Carlos Valderrama, Marcelo A.C. Fernandes, and Mo-

hamed Hedi Bedoui. A Survey and Taxonomy of FPGA-based Deep Learning Accelerators, sep 2019.
[4] Roberto Di Cecco, Griffin Lacey, Jasmina Vasiljevic, Paul Chow, Graham Taylor, and Shawki Areibi.

Caffeinated FPGAs: FPGA framework for convolutional neural networks. In Proceedings of the 2016
International Conference on Field-Programmable Technology, FPT 2016, pages 265–268. Institute of
Electrical and Electronics Engineers Inc., may 2017.

[5] Wei Ding, Zeyu Huang, Zunkai Huang, Li Tian, Hui Wang, and Songlin Feng. Designing efficient accel-
erator of depthwise separable convolutional neural network on FPGA. Journal of Systems Architecture,
97:278–286, aug 2019.

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation Tech report (v5). Technical report, 2014.

[7] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and Huazhong Yang. From
model to FPGA: Software-hardware co-design for efficient neural network acceleration. In 2016 IEEE
Hot Chips 28 Symposium, HCS 2016. Institute of Electrical and Electronics Engineers Inc., may 2017.

[8] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. oct 2015.

[9] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van Gool. AI
Benchmark: Running Deep Neural Networks on Android Smartphones. Technical report, 2018.

[10] Duseok Kang, Dong Hyun Kang, Jintaek Kang, Sungjoo Yoo, and Soonhoi Ha. Joint optimization
of speed, accuracy, and energy for embedded image recognition systems. In Proceedings of the 2018
Design, Automation and Test in Europe Conference and Exhibition, DATE 2018, volume 2018-January,
pages 715–720. Institute of Electrical and Electronics Engineers Inc., apr 2018.

[11] Jaeha Kung, David Zhang, & Gooitzen Van Der Wal, Sek Chai, and Saibal Mukhopadhyay. Efficient
Object Detection Using Embedded Binarized Neural Networks. 2018.

[12] Meng Jhe Li, An Hong Li, Yu Jung Huang, and Shao I. Chu. Implementation of deep reinforcement
learning. In ACM International Conference Proceeding Series, volume Part F1483, pages 232–236.
Association for Computing Machinery, 2019.

[13] Sheng Lin, Ning Liu, Mahdi Nazemi, Hongjia Li, Caiwen Ding, Yanzhi Wang, and Massoud Pedram.
FFT-based deep learning deployment in embedded systems. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), volume 2018-Janua, pages 1045–1050. IEEE, mar 2018.

[14] Zhongyi Lin, Matthew Yih, Jeffrey M. Ota, John D. Owens, and Pinar Muyan-Ozcelik. Benchmarking
Deep Learning Frameworks and Investigating FPGA Deployment for Traffic Sign Classification and
Detection. IEEE Transactions on Intelligent Vehicles, 4(3):385–395, sep 2019.

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu, and
Alexander C. Berg. SSD: Single shot multibox detector. In Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9905
LNCS, pages 21–37. Springer Verlag, 2016.

[16] Sparsh Mittal. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson
platform, aug 2019.

[17] Hiroki Nakahara and Tsutomu Sasao. A High-speed Low-power Deep Neural Network on an FPGA
based on the Nested RNS: Applied to an Object Detector. In Proceedings - IEEE International Sympo-
sium on Circuits and Systems, volume 2018-May. Institute of Electrical and Electronics Engineers Inc.,
apr 2018.

[18] Razvan Nane, Vlad Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting
Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen Bertels. A Survey
and Evaluation of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 35(10):1591–1604, oct 2016.

[19] Bojan Nokovic and Shucai Yao. Image Enhancement by Jetson TX2 Embedded AI Computing Device.
pages 1–4. Institute of Electrical and Electronics Engineers (IEEE), jul 2019.

[20] Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Deming Chen, Jason Cong, and Wen-
Mei W. Hwu. FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs. In 2009 IEEE

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models 293



7th Symposium on Application Specific Processors, pages 35–42. IEEE, jul 2009.
[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified,

Real-Time Object Detection. jun 2015.
[22] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang Chieh Chen. Mo-

bileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 4510–4520, jan 2018.

[23] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. sep 2014.

[24] Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove, Matt Schmittle, Colin Summers, Matthew
Rockett, Joshua R. Smith, Sanjiban Choudhury, Christoforos Mavrogiannis, and Fereshteh Sadeghi.
MuSHR: A Low-Cost, Open-Source Robotic Racecar for Education and Research. aug 2019.

[25] Teixeira, Nogueira, Dalmedico, Santos, Arruda, Neves-Jr, Pipa, Ramos, and . Intelligent 3D Perception
System for Semantic Description and Dynamic Interaction. Sensors, 19(17):3764, aug 2019.

[26] Marian Verhelst and Bert Moons. Embedded Deep Neural Network Processing: Algorithmic and Pro-
cessor Techniques Bring Deep Learning to IoT and Edge Devices. IEEE Solid-State Circuits Magazine,
9(4):55–65, 2017.

[27] Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. DLAU: A scalable deep learning
accelerator unit on FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 36(3):513–517, mar 2017.

[28] Dong Wang, Ke Xu, and Diankun Jiang. PipeCNN: An OpenCL-based open-source FPGA accelerator
for convolution neural networks. In 2017 International Conference on Field-Programmable Technology,
ICFPT 2017, volume 2018-January, pages 279–282. Institute of Electrical and Electronics Engineers
Inc., feb 2018.

[29] Alexander Wong, Mahmoud Famuori, Mohammad Javad Shafiee, Francis Li, Brendan Chwyl, and
Jonathan Chung. YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network
for Object Detection. oct 2019.

[30] Xianchao Xu and Brian Liu. FCLNN: A Flexible Framework for Fast CNN Prototyping on FPGA with
OpenCL and Caffe. In Proceedings - 2018 International Conference on Field-Programmable Technol-
ogy, FPT 2018, pages 241–244. Institute of Electrical and Electronics Engineers Inc., dec 2018.

[31] Kailun Yang, Xinxin Hu, Hao Chen, Kaite Xiang, Kaiwei Wang, and Rainer Stiefelhagen. DS-PASS:
Detail-Sensitive Panoramic Annular Semantic Segmentation through SwaftNet for Surrounding Sensing.
Technical report, 2019.

[32] Hongwei Zhao, Weishan Zhang, Haoyun Sun, and Bing Xue. Embedded deep learning for ship detection
and recognition. Future Internet, 11(2), 2019.

[33] Minghao Zhao, Chengquan Hu, Fenglin Wei, Kai Wang, Chong Wang, and Yu Jiang. Real-time un-
derwater image recognition with FPGA embedded system for convolutional neural network. Sensors
(Switzerland), 19(2), jan 2019.

D. Padilla et al. / On Determining Suitable Embedded Devices for Deep Learning Models294


