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Abstract. The study of mental workload becomes essential for human work effi-
ciency, health conditions and to avoid accidents, since workload compromises both
performance and awareness. Although workload has been widely studied using sev-
eral physiological measures, minimising the sensor network as much as possible
remains both a challenge and a requirement.

Electroencephalogram (EEG) signals have shown a high correlation to specific
cognitive and mental states like workload. However, there is not enough evidence
in the literature to validate how well models generalize in case of new subjects per-
forming tasks of a workload similar to the ones included during model’s training.

In this paper we propose a binary neural network to classify EEG features across
different mental workloads. Two workloads, low and medium, are induced using
two variants of the N-Back Test. The proposed model was validated in a dataset
collected from 16 subjects and shown a high level of generalization capability:
model reported an average recall of 81.81% in a leave-one-out subject evaluation.
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1. Introduction

A cognitive state is the state of the mind, often named cognitive status, and it is related
with the human performance and awareness in a specific time. Usually, cognitive states of
workload, distraction, and fatigue are among the most studied due to their association to
human performance and reliability and their risks for catastrophic effects in, for instance,
aviation and automotive accidents [1,2,3].

In particular, if we define mental workload as the cognitive and psychological effort
to conclude a task [4] we can observe that when workload is too heavy or too light it
can degrade the human performance [5,6]. Mental workloads have high effects on the
daily life human performance, since the more difficult the task is, the greater the mental
workload [7] results. Thus, the study of workload becomes essential to prevent accidents,
since it could compromise human task performance [8].

Since workload involves cognitive, neuro-physiologic, and perceptual processes to
resolve a task, it is affected by individual capabilities, motivation, as well as, its physical
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and emotional state [9]. Although this multifaceted nature of workload prevents to study
workload directly, it is feasible to be inferred from different quantifiable variables [10].
There exist many proposals for recognizing workload based on physiological features,
such as hearth rate, eye movement and dilation, electroencephalogram (EEG) and elec-
trocardiogram (ECG) [11,12].

Besides, the recent emerging of low cost EEG headsets has driven them to new
researches (like interaction with home devices, teaching-learning educative methods or
mentally control robotic arms) further than medical screening of neurological disorders.
In the particular case of cognitive state assessment, EEG alone is becoming the preferred
sensor for addressing its characterization [13,14,15]. However, there is not enough ev-
idence in the literature to validate how well models generalize in case of new subjects
performing tasks of a workload similar to the ones included during model’s training.

In this paper we propose the use of EEG for characterizing workload by means of a
neural network and show its ability to generalize the model across a wider population.

The remainder of this paper is organized as follows: Section 2 presents relevant
related works, Section 3 explains the process followed to collect the data. Section 4
presents our proposal for the analysis of EEG generalization capabilities, while Section
5 is devoted to present the results of our experiments. Finally, Section 6 outlines the
conclusion and future work.

2. Related work

The most generalized mechanisms to measure workload can be split in two main cate-
gories [7,11,1]: subjective measures based on the subject perception and objective scores
based on physiological responses.

On the one hand, subjective measures are still the most used to assess mental work-
load, being the NASA Task Load Index (TLX) [16] the most prominent test to gain in-
sight about the perceived workload levels while a subject works with various human-
machine interface systems [4,17]. This questionnaire measures the mental workload
based on a weighted average of six sub-variables: mental demand, physical demand,
temporal demand, performance, effort and frustration and it is widely used in aviation to
assess mental workload of pilots while interacting with plane controls [18,19].

On the other hand, physiological measures provide a more reliable data of workload
by measuring physiological dynamic changes which cannot be controlled consciously, so
they are becoming more popular among researchers in recent years [20,21,22]. The most
common sensors to record physiological data are: electrocardiogram (ECG) to register
heart’s electrical activity, electromyograph to read skeletal muscles electrical activity,
electroencephalogram (EEG) to detect electrical activity in the brain, photoplethysmog-
raphy to register volumetric changes in the blood flow, respiration rate sensors, electro-
dermal activity (EDA) to read skin surface temperature, oxygen density in the blood
in the brain, and eye movement trackers, among others [23]. TLX surveys allow to as-
sess the perceived workload [16], but it is highly subjective. However, physiological
data occurs spontaneously, and, together with TLXs, provide a more reliable informa-
tion [20,11,4].

The combination of several physiological sensors to classify workload states gives
better results than using a single one. The approach proposed in [24] combines EEG,
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ECG, and electrooculography (EOG) and results show a highest predictive power for
their combination (80%) rather than the analysis of each one independently (70%). Be-
sides, the study in [12] reports an accuracy average of 85.2 (± 4.3%) combining EEG,
ECG, respiration rate, and EDA to classify 4 mental states. The work in [25] still shows
better results combining EEG, ECG and EDA than using only EEG signal from classify-
ing four mental states, although results from the single sensor are promising (86.66%).

At that point, Deep Learning (DL) approaches are gaining ground over more clas-
sical machine learning techniques due to their ability to automatically extract the fea-
tures [23,26]. For instance, the study in [8] proposes a concatenated structure of deep
recurrent and 3D convolutional neural networks to combine both raw and spectral EEG
data and assess two degree of mental workloads reporting an average accuracy of 88.9%
in a cross-task assessment.

However, none of the last previous works were tested on a dataset totally unseen in
the training set, being their ability to generalize an unknown.

In this work, we propose to investigate the ability of 1D-CNN models to recognize
two levels of mental workload from EEG signals and generalize the model to an unseen
population in the training set. To induce low and medium workload, we propose several
modifications of the N-back test [27] to collect data from subjects. Regarding workload
classification, we use a neural network ensemble (NN) trained on the power spectrum
of filtered EEG theta waves. To assess the generalization abilities of models we propose
a personalized model trained for each individual and a generalist one trained on the
whole data set. Results obtained in a dataset collected from 16 subjects show a high level
of generalization capability with average recall of 81.81% in a leave-one-out subject
evaluation.

3. Data Set Collection

When performing different tasks along the day, people experiment different levels of
mental workload depending on the level of attention required, the difficulty of such task
and how many sub-tasks are needed to take care off. In order to induce different levels
of workload in a controlled manner, we propose to use N-Back-tests [27].

N-Back-tests are memory demanding games requiring the resolution of tasks accord-
ing to a stimulus presented N trials before. We used three variants of the N-Back-tests to
induce low, medium, and high mental workload:

1. Position 1-back for low workload. A square appears every few seconds in one of
eight different positions on a regular grid over the screen. Players must press a
keyboard key in case the position of the square on the current screen is the same
as the square of the previous grid.

2. Arithmetic 1-back for medium workload. An integer number between 0 and 9 ap-
pears every few seconds on the screen while an audio message says an arithmetic
operation (plus, minus, times and divide). Players have to solve this operation
using the current number and number that appeared in the previous screen.

3. Dual arithmetic 2-back for high workload. This test combines the two previous
ones. An integer number between 0 and 9 appears every few seconds in one of
eight different positions on a regular grid. At the same time, for each number that
appears on screen, an operator is presented with an audio message. As before,
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players have to solve this operation using the current number and number that
appeared in two screens before. In addition, players have to press a key in case the
position of the current number is the same as the position of the number shown
two screens before.

The neurophysiological response of a subject against mental demanding tasks de-
pends on its baseline state, which is prone to vary across time. In order to account for
differences in the baseline state of subjects, previous to the N-back-tests participants
watched a relaxing video for 10 minutes. For each experiment (low, medium and high
workload), we call the video watching, phase 1, and the N-back-test, phase 2. After the
game, participants ask a TLX questionnaire to collect their subjective perception of game
difficulty and workload.

Although, this work presents results on EEG, we also recorded the electrocardio-
gram (ECG) data during the video watching and the game. For EEG recording, we used
the EMOTIV EPOC+ headset [28] which has 14 electrodes placed according to the
10/20 system. This sensor provides both raw data and power spectrum for the main brain
rhythms (theta, alpha, beta low, beta high, and), at 128 Hz and 8 Hz, respectively. Fig-
ure 1 illustrates the distributions of electrodes of this sensor (a) and a volunteer during a
session task (b).

(a) (b)

Figure 1. Data collection with Emotiv Epoc+ headset. (a) Electrodes distribution over the head scalp. (b) A
volunteer during a N-Backtest.

A total of 24 subjects participated in the experiment. Subjects were adults between
20 and 60 years, all of them were healthy without any condition that might have cause
an imbalance in the data recorded. The sequence of tasks were randomly assigned to
subjects, and recording of each session was in different days and hours.
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4. Machine learning approaches

In order to assess to what extend a general model trained over a set of individuals can suc-
cessfully predict a new unseen individual, we have considered the following approaches
for the analysis of EEG generalization capabilities:

• Personalized model for each individual. A different model is trained for each
subject of the data set to account and compensate for large intra subject variability
in EEG signals.

• Generalist model for the population. A single model using all subjects is trained
to assess whether inter subject variability can be properly modelled.

For both approaches we implemented a binary neural network trained to classify
between workload (phase 2) and base lines (phase 1) phases. The experiment used to
define the training data of the WL class was the phase 2 of the second experiment (noted
as WL2). The phase 2 of the first experiment was discarded as training data because,
according to TLX, it did not demand any significant mental effort for most users (Fig-
ure 2.a). The phase 2 of the third experiment was also discarded as training data because,
according to TLX and users’ performance, most users considered the task too difficult
and gave up at some point of the experiment ( Figure 2.b). Regarding the baseline class,
all phases 1 can be considered for training. This data will be noted BLi, i=1,2,3, for i
indicating the experiment. In order to discard any dependency of models with respect
base line acquisition, we trained 3 different models for each approach using a different
BLi for the base line class: WL2 vs BL1, WL2 vs BL2 and WL2 vs BL3. Additionally,
for the generalist approach we trained an extra model using all 3 baselines phases in
an attempt to account for any variability across them and better model the space of the
baseline class. This model will be noted as BLall vs WL2.

(a) (b)

Figure 2. TLX-based subjective perceptions. (a) Perceived difficulty of tasks. (b) Achieved performance on
tasks.

Given that proposed N-back tasks are memory demanding stressing games and base
line phases consist in watching a relaxing video, the theta wave [29] is the best candidate
for discriminating the different mental loads of our experimental phases. In this work,
we use the power spectrum of theta wave (4–8 Hz) sampled at 8 Hz.

J. Yauri et al. / Mental Workload Detection Based on EEG Analysis272



Eye blinking and sudden head movements introduce abrupt sharp peaks of large am-
plitude in the power spectra wave that should be filtered before using them as predictors
of a mental state [20].

In particular, we use an Inter Quartile Range (IQR) [30] filtering strategy to detect
outlier values associated to muscular movement wave peaks. Our IQR filtering is based
on setting the value of the 99% percentile of the distribution to all points above it.

To ensure a high quality of signals, we further filter data according to the quality of
the EEG during recordings provided by the headset itself. For each sensor and recorded
sample, Emotiv reports the quality of the recording in a discrete scale with values in
0,1,2,3,4 indicating how good the contact between sensor and head is: 4 for optimum; 3
for good; 2 for medium; 1 for bad; 0 for none. For the sake of data with the highest pos-
sible quality while keeping a reasonable sample size signals with a 25% of bad record-
ings are discarded (< 3). Further, since there is no evidence about what are the most
discriminative sensors that best correlate to the detection of mental workload, the whole
phase is discarded if the signal of two or more of the sensors has a low quality. Finally, a
subject is discarded if either all its base line or its workload phases are discarded, since,
in this case, there is not enough data to define the binary classification. After this quality
filtering, only 16 of the 25 subjects were selected for models training and testing.

In order to feed data to models, θ signals were cut in temporal windows of 5 seconds
without overlap [12]. So the input data of the networks are the concatenation of the 5
second windows for the 14 EEG sensors ( 14 * 40 = 560-dimensional feature space). In
order to account for the difference in units and magnitudes, input data was standardized
using the mean and standard deviation of the training set.

Table 1 shows the architecture of the proposed neural network and its chosen net-
work parameters after cross validation. For training, the NN used a batch size of 128, the
weighted cross-entropy loss to compensate unbalances between baseline and workload
phases, Adam [31] as optimization method, and reported the best results at 100 epochs
with a learning rate of 0.0001.

Table 1. The proposed neural network architecture.

Layer type Input size Hidden unit Parameters

Linear 560 128 71,808
Dropout (0.1) 128 - -

ReLU 128 - -
Linear 128 2 258

SoftMax 2 2 -

5. Results

The performance of the different approaches for detection of mental workload has been
assessed using the accuracy (or sensitivity) for each class. Sensitivity measures the ca-
pability of the system to detect BL and WL classes. Since we have a binary classifica-
tion problem with WL the positive class, then the sensitivity for BL corresponds to the
specificity of the model.
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In order to validate the reproducibility of each model, the following experiments
have been conducted:

1. Model Personalized for each Individual. Reproducibility of personalized mod-
els has been assessed at intra-experiment level. For each model trained with a
different base line, WL2 vs BLi, i=1,2,3, 10% of the samples were randomly
chosen for testing the capability of discriminating workload at different times of
the task. A high accuracy would proof that the variability of the EEG is stable
and low while continuously repeating the same task.

2. Generalist Population Model. The validation of the capability for modelling a
population was tested using a leave-one-out scheme for the 4 models considered:
the 3 trained using a single baseline, BLi vs WL2, i=1,2,3, and the one trained
using all 3 baselines phases, BLall vs WL2.

Table 2 summarizes the recall of baselines (BL) and workload (WL2) for the intra-
experiment reproducibility. We report the 95% confidence interval for each class com-
puted for all subjects (for each subject the average of BLi vs WL2, i=1,2,3 is computed).
The overall recall for both classes is above 90%, which shows that workload and base
line signals are different regardless of the time the experiment was conducted. However,
the variability is large, which might be attributed to a suboptimal size of the temporal
windows and the variability in mental effort across the task.

Table 2. Personalized model. Intra-experiment Reproducibility.

BL WL2

92.8±7.03 91.17±5.35

Table 3 summarizes the recalls of baselines (BL) and workload (WL2) for the gener-
alist model trained using a single BL and the aggregation of the three. The model trained
aggregating the 3 baselines has a higher performance in detecting baseline states. Ac-
cording to a Student t-test of paired data this difference is significant (p-val= 0.0054) with
an average improvement range of (-17.2522, -3.5812). Regarding detection of workload
phases, both approaches perform similarly (p.val= 0.7159). For both approaches, there
are 3 outliers in WL detection rate that, given the small sample size, are highly influen-
tial. If we remove them, we have that for the remaining 80% of the subjects, the average
detection of idle and work load stages for the model that aggregates all BLs for train-
ing is, respectively, 76.08% and 73.23%. This suggests that the variability and nonsta-
tionarity that psychophysiological data exhibits could be modelled if enough data from
subjects was gathered.

Table 3. Generalist Model.

Model trained with single BL Model trained with all BLs

BL WL2 BL WL2
All population 66.57±13.11 65.42±25.59 78.06±10.75 65.00±24.90

80% of population 66.10±13.87 73.95±18.62 76.08±10.87 73.23±19.07
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6. Conclusions

The first experiment (Table 2) shows that work load and base lines signals are different
regardless of the time the experiment was conducted. However, the large variability in ac-
curacies indicates that the temporal window might be suboptimal and should be adapted
to the variant mental effort across a given task. Results of the generalist model show that
the variability in baseline cognitive states can be modelled provided that enough training
data is available. This is supported by the higher performance of models aggregating all
baselines.

The analysis of the results suggests the following improvements. A delicate issue
that has an impact in the performance of methods is the filtering of signals required to
remove muscular motion peaks and other artefacts. EEG pre-processing approaches have
not been standardized, and even small changes in artefact removal strategy may result in
differences with large effects on particular portions of the signal. In this study, we have
adopted a filtering approach based on signal probabilistic distribution for outlier removal
in the temporal space. We consider that muscular motion could be filtered calibrating
muscular signals before test recording to set either the values or the frequency ranges
associated to muscular motion. In this context, a classifier based on Fourier features will
be further investigated.

Also the size of the temporal window might be a critical issue in order to properly
include workload peaks. We have use 5 seconds windows following (Han, 2020), but
recent authors suggest to use longer windows to capture EEG non stationary nature. The
optimal window size should be further investigated.

In a future work, we have to ensure the availability of more data to achieve conver-
gence without overfitting and to train more complex architectures. Recent architectures
like convolutional/LSTM and Lambda Nets including attention modelling will be also
studied.
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