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Abstract. In recent years, the emerging technologies in the context of Industry
4.0 have led to novel approaches in process monitoring and control, such as the
introduction of Reinforcement Learning and Digital Twins. Consequently, large
amounts of data, precise modelling and exhaustive simulations are required. The
aim of this work is to propose a methodology based on the technique of backward
selection to reduce the number of reference points in the simulation stage of man-
ufacturing processes, enhancing the efficiency of data generation and the simplic-
ity of the simulations. The methodology is proved in the particular case of plastic
injection moulding simulations.
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1. Introduction

Simulations are widely used in several fields, but one of their most relevant applications is
in manufacturing, where they are established as a powerful tool for evaluating, validating
and optimizing design and manufacturing processes [1]. Additionally, they also allow
the digitalization of the manufacturing system, being able to provide knowledge without
perturbing the real system.

The current manufacturing paradigm is drifting towards data-driven systems. These
define the core of what is known as Industry 4.0. Under this paradigm, new tools and
techniques based on data and artificial intelligence are introduced as drivers for inno-
vation that impact in the productivity. The treatment with advanced analytic techniques
of the information acquired during the manufacturing process allows gathering complex
and precise knowledge about the system as well as to enable the deployment of predic-
tive quality and maintenance protocols [2]. Machine Learning (ML) techniques have in-
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creased their relevance to address manufacturing problems, since they can deal with high
dimensional data and they are able to uncover and model nonlinear relationships [3].

Supervised and unsupervised ML methods have been the most usual techniques ap-
plied in manufacturing to date, although Reinforcement Learning (RL) has started to
show its high potential in this field [4].

The Digital Twin (DT) is one of the latest technology trends in the framework of
Industry 4.0. It consists in a digital version of a physical entity that exists in a virtual
space and that it is in constant interaction with the physical space [5]. At present, there
is a strong interest in the research and development of DTs, since they are able to use the
information of a real-world system into a virtual system, enhancing the knowledge of the
operating status and optimizing its performance.

The implementation of DTs requires difficult modelling through exhaustive simu-
lations. Moreover, to effectively apply ML techniques, and in particular RL strategies,
a large amount of data needs to be generated. In the particular case of manufacturing,
the experimental data is costly and involves the waste of raw materials, making the ac-
quisition of data under non-productive conditions difficult or unfeasible. In this scenario
simulations become the main source of data. However, generating data using simulations
models of the manufacturing processes is time consuming and computationally expen-
sive. The direct consequence is the difficulty in the development of DTs or the application
of RL in manufacturing. A possible solution to this problem is to combine simulations
with ML predictive techniques to enhance and speed up the virtual data generation.

The approach of combining simulations and ML can be used to build simpler phys-
ical models, which reduce the computational resources that complete models require.
These kind of models are usually called surrogate models or response systems, which
represent the system in a simpler but representative way. Hence, the data is obtained
efficiently without a relevant lost of knowledge about the system [6].

In this work, we explore the hybridization of physical phenomenological simulations
with ML prediction techniques and we develop a methodology to increase the simulation
efficiency, in the particular case of plastic injection moulding. The goal of this hybrid
model is to combine ML predictions with a reduced number of simulation nodes with
the goal of describing a more complete phenomenon. In the proposed study the best
points to simulate in order to obtain a reliable description of the process are identified.
Additionally, an adapted backward selection methodology is used for node selection task.

2. Plastic Injection Moulding Simulation

Plastic injection moulding consists in the injection of melted plastic into a mould where
it cools down and solidifies to acquire the desired shape [7]. The process comprises dif-
ferent steps: First, the plastic is melted inside a barrel applying temperature, pressure and
shear using a rotational screw. Then, the injection of the required plastic into the mould
is carried out through a shot. Afterwards, a packing pressure is applied to guarantee part
dimensional characteristics.

In this study, the objective is to increase the efficiency of data generation in plastic
injection moulding process. For this reason, simulations of the process have been per-
formed with the Moldex3D mold flow analysis commercial software [8], based on Finite
Element Analysis (FEA). The studied part is a cap injected in a mould cavity. In Figure
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Figure 1. Sketch of the cap form different perspectives. The melted plastic enters through the blue runner. The
red dots are the sensed points and the numbers are used to identify the different pressure sensors.

Table 1. Values of the packing pressure (PP) and the injection speed (v) for the 15 generated configurations.
The marked configurations (*) are used for testing.

Configuration PP(MPa) v(mm/s) Configuration PP(MPa) v(mm/s)

conf 1 PPre f +0.1PPre f vre f conf 9 PPre f vre f −6
conf 2* PPre f +0.2PPre f vre f conf 10 PPre f vre f −4
conf 3 PPre f +0.3PPre f vre f conf 11* PPre f vre f −2
conf 4 PPre f −0.1PPre f vre f conf 12 PPre f vre f +2

conf 5* PPre f −0.2PPre f vre f conf 13 PPre f vre f +4
conf 6 PPre f −0.3PPre f vre f conf 14* PPre f vre f +6
conf 7 PPre f vre f conf 15 PPre f vre f +8
conf 8 PPre f vre f −8

(a) (b)

Figure 2. Pressure evolution in the simulation of the process for all the configurations in (a) SN5 and (b) SN8.

1, the geometry of the cap is illustrated. Moreover, nine virtual or simulated sensors have
been displayed in the geometry: SN1 - SN9. The sensors measure the cavity pressure
evolution in these nine selected points, since it has been identified in the literature as one
of the most relevant variables for the quality of the final product [7].

To extend the study to different conditions, several configurations have been gener-
ated changing two parameters of the simulations: the injection speed (v) of the plastic
into the mould and the value of the packing pressure (PP), as shown in Table 1. These
parameters have been modified around their nominal working values vre f and PPre f .
The result are 15 configurations representing the conditions of a real-environment. The
simulations last in the range of 40 to 50min per configuration.

The output of the simulations is the evolution of the cavity pressure exerted by the
melted plastic in the nine points where the sensors are located. Initially, the sampling
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time in Moldex3D for the pressure data is different for each simulated configuration. In
order to homogenize them, we apply a resampling each 0.01s to homogenize all the con-
figurations, obtaining 750 samples per configuration. In Figure 2, the pressure evolution
behavior is shown for all the different configurations in two of the sensed points. It is
worth noting the heterogeneity of the results for different sensors and configurations.

3. Experimental Setup and Methodology

In this section, we present the experimental set-up that aims to understand up to which
extend simulation nodes can be replaced with ML predictions. To this end, two experi-
ments are carried out: An individual assessment of each sensor and a global assessment
for the complete set of sensors. In this article, we adopt a methodology that systemat-
ically replaces simulated sensors by predicted ones by means of a backward search. In
particular, the sensors selected for testing purposes are such that they define the worst
case scenario, ensuring that any other choice would achieve better scores.

3.1. Experimental Setup

From the nine different simulated sensors, three of them will be used for assessing the
quality of the prediction system. The three selected target pressure sensors will be pre-
dicted using the remaining simulated sensors data. Additionally, to ensure the general-
ization of the algorithm on independent test data, the set of 15 configurations is split in
11 configurations for training and a 4 configurations for testing (see values in Table 1
marked with a star). The test configurations have been chosen to be intermediate values
of the simulation parameters (injection speed and packing pressure).

To select the target testing sensors, we use the concept of similarity between the
samples of the time series of the pressure sensors. Then, we compute the mean similarity
[11] between the pressure curves of the sensors tsim(X ,Y ) as follows,

tsim(X ,Y ) =
1
n

n

∑
i=1

numSim(xi,yi) (1)

where X = x1, ...,xn and Y = y1, ...,y2 are time series of two pressure sensors and
numSim(xi,yi) = 1− |xi−yi|

|xi|+|yi| is the similarity between two samples in the same instant of
time. The operation range of tsim(X ,Y ) lies in the interval [0,1]. tsim(X ,Y ) = 1 refers to
two identical pressure curves.

Figure 3 is the result of computing the mean similarity between the different sensors
averaging for the 4 test configurations. This result drives the selection of the less simi-
lar sensors for the prediction, with the intention to use non-trivial cases to validate the
presented methodology.

Comparing Figure 3 with the localization of the sensors in the cap (Figure 1), we
can observe the symmetry relations displayed in the Mean Similarity Matrix between the
sensors SN3 and SN4 and the sensors SN6 and SN7. These sensors will be discarded
for prediction because they will not suppose a difficulty for the algorithm, that will use
the corresponding symmetric sensor to obtain a very good prediction. The remaining
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Figure 3. Mean Similarity Matrix averaged over the 4 test configurations. The spatial regions of the cap can
be differentiated in this matrix. The first 5 sensors are in the superior part of the cap and the last 4 in the lateral.

sensors are not symmetric due to the position of the runner. The three sensors with less
similarity are SN5, SN8 and SN9. Due to the central position of SN5 in the cap, we are
interested in the real value of the cavity pressure in that point. We prefer not to include
SN5 in the set of target sensors and replace it with SN2, which has no symmetries in the
cap geometry. Summarizing, in a first approach, the sensors SN2, SN8 and SN9 will be
predicted using the values of the rest of pressure sensors. As mentioned, this defines a
worst case scenario.

3.2. Backward Selection Methodology

In the previous section we have defined a set of three target sensors that will be predicted
using the data from the six remaining sensors. This means that in future simulations six
points will still have to be sensed. In order to minimize the number of sensed points for
future simulations and explore to which extend these can be replaced by ML predictions
we propose to use a methodology based on the technique of backward selection [12].

The technique consists in the elimination of the input features of a ML algorithm,
using a metric that allows to decide which feature is the best to drop in a greedy manner.
Starting from a set of k = 1, ...,M input features and i = 1, ...,L test configurations, the
elimination of features is carried out through the following iterative process:

1. Use the current number of features M to predict the target.
2. Compute the error metric for each of the test configurations, the Mean Squared

Error (MSE) in our case.
3. For all the k = 1, ...,M current features:

(a) Predict the target without using the feature k.
(b) Compute the error metric for all the test configurations.
(c) Calculate diffM−1,M

i (k), the error difference with and without feature k for
each test configuration as follows,

diffM−1,M
i (k) = MSEM−1

i (k)−MSEM
i (2)

(d) Perform the weighted average tM
con f (k) described in the following Eq. (3) of

the differences over the test configurations for the eliminated feature k.

tM
con f (k) =

L

∑
i=1

ci(k)diffM−1,M
i (k) (3)
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where ci(k) =
MSEM

i
∑L

j=1 MSEM
j

4. Select the smaller value of tM
con f (k) and drop the corresponding feature k.

5. Repeat the process with the new set of features of size M = M−1.

The process ends when the number of desired features is reached or when the error
overcomes a given threshold. Observe that the value of diffM−1,M

i (k) may be negative
if the elimination of the feature k improves the prediction algorithm performance. The
proposed methodology takes into account the value of error metric for each test config-
uration to decide which is the best feature to drop, since it is preferable to optimize the
predictions of the configurations that have a higher error.

4. Results and Discussion

4.1. Baseline Prediction Results

The reduction of the sensed points is realized with the application of a ML regression
algorithm that uses as input data coming from a few locations to predict the rest of the
points. Before that, we perform an algorithm comparison in order to know the prediction
capability of some regression algorithms to all the available data. Therefore, we will
randomly merge the data from all the configurations, obtaining a dataset composed by
750× 15 samples and 9 features. Selecting a target sensor to predict and using all the
others for training, we will implement a 10-Fold CV [9] to choose a candidate algorithm.

(a) (b) (c)

Figure 4. Average Mean Squared Error (MSE) of a 10-Fold CV for algorithm comparison between Linear
Regression (LR), k-Nearest Neighbours Regressor (KNN), Random Forest Tree Regressor (RF) and Gradient
Boosting Regressor (GradBoost). Target predicted sensor: (a) SN2. (b) SN8. (c) SN9.

Figure 4, shows the error performance comparison of four different regression tech-
niques applied to the complete dataset. Random Forest Tree Regressor [10] achieves a
lower error rate and will be used for the rest of the experiments.

4.2. Individual Sensor Reduction Assessment

The purpose of this study is to demonstrate the feasibility of achieving an important re-
duction of the number of sensed points without having a high impact in the prediction
error. As explained in the experimental setup section, we will reduce the number in-
put sensors used to predict the set of three target sensors, by applying the methodology
presented in section 3.2.
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(a) (b)

(c) (d)

Figure 5. MSE in test configurations for target SN9. The black curve indicates the reference MSE from the
previous step of the elimination process and the colored curves indicate the MSE with the drop of one of the
sensors. (a) 5 sensor selection. (b) 4 sensor selection. (c) 3 sensor selection. (d) 2 sensor selection.

The different steps of the backward selection process are displayed in Figure 5,
where the MSE for each test configuration is represented when we eliminate the input
sensors. The curve of reference MSE does not suffer a relevant variation during the stages
of the process, meaning that the prediction capability of the algorithm remains despite
the discarded sensors. It refers to the MSE computed with M sensed points and it is used
to evaluate the predictions with M−1 sensed points through the use of Eq. (3).

Figure 6 shows the result of the selection process for each one of the target sensors.
The evolution of the mean MSE of the 4 test configurations allows to identify a threshold
in three input sensors. Below this threshold, the use of less input sensors induces the
error metric to start having a relevant increase. By inspecting these values, Table 2 shows
the three best input sensors for individually predicting each target sensor.

Table 2. Best input sensors for the corresponding target sensors.

Target sensor SN2 SN8 SN9

Best input sensors SN1, SN3, SN6 SN6, SN1, SN5 SN6, SN4, SN1

4.3. Global Sensor Reduction Assessment

The results in the previous section 4.2 open the possibility of reducing the number of
sensed points, showing that each individual sensor can be predicted using 3 sensed points
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(a) (b) (c)

Figure 6. Evolution of the mean and the standard deviation over configurations with the number of input
sensors used in the prediction. (a) SN2. (b) SN8. (c) SN9.

without a relevant effect in the error. However, the results show that different nodes re-
quire of different sensors for a good performance. In this subsection we consider whether
a small common set of sensors may suffice for predicting all targets.

In order to do so, we will select the most repeated input sensors to predict all the
target sensors. With the information of Table 2, we can identify that SN1 and SN6 are
important for the prediction of the 3 target sensors. Additionally, we will choose the SN5,
since it has a central position in the cap geometry (Figure 1). Accordingly, the final set
of input sensors is formed by SN1, SN5 and SN6.

The defined final set of input sensors is used to predict the pressure of the target
sensors. In Figure 7, the error metric MSE is compared when the prediction is done with
6 or 3 input sensors. If we use the individual set of 3 sensors of Table 2, we achieve
a decrease of the error in most of the cases. Elseways, the use of the common set of
sensors leads to a higher prediction error, but it allows to reduce the number of sensed
points in the simulations. Moreover, the common set of sensors is not only able to predict
the target sensors but also it yield good predictions for all the remaining sensors that
the methodology has discarded. Figure 7d shows these results and it demonstrates the
generalization capability of the proposed methodology. In the framework of industrial
problems, it can be useful to include previous knowledge in a human - AI interaction that
aims to help the global system performance, as shown including SN5 in the common set
of input sensors.

As a final result, Figure 8 shows simulated and predicted pressure curves of the target
sensors for a certain configuration. As observed in Figure 7, the variability of the accu-
racy of the prediction is highly dependent on the target sensor and the test configuration.
Figure 8c shows the worst case prediction. Regardless of not being a perfect prediction,
some relevant features of the injection moulding process such as the maximum value of
the curve or the duration of the different stages are correctly characterized [7]. This result
is of high importance as in manufacturing processes, the control a few relevant process
variables is enough to determine the global performance of the system.

5. Conclusions

In this work, we have studied the hybridization of simulations with ML predictions ap-
plied to increase efficiency in a plastic injection moulding simulation process. The main
results show that sensor nodes can be replaced with predicted versions using a very small
set of real simulated data. This has been tested in experiments where process parameters
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(a) (b)

(c) (d)

Figure 7. MSE comparison using 6 input sensors, the final set of 3 input sensors or the best 3 selected sensors
for each individual target sensor. Target sensor: (a) SN2. (b) SN8. (c) SN9. (d) MSE of the prediction of the
sensors SN3, SN4 and SN7 as target with the selected set of 3 input sensors.

(a) (b) (c)

Figure 8. Comparison example between the simulated and the predicted temporal evolution of the pressure
using the 3 selected input sensors. (a) Target SN2, conf 14. (b) Target SN8, conf 2. (c) Target SN9, conf 5.

(packing pressure and injection velocity) are different from those used for the data in
the training set. Although in specific configurations the results may be worsened due to
the reduction in the sensed nodes, the predictions obtained still preserve the critical pro-
cess variable values, namely, maximum pressure value, duration of the process stages,
etc. This is an important result because the global performance of the system is highly
dependent on these values.

Although the proposed methodology has been used for a particular manufacturing
problem, it can be extended to other applications. For instance, in the generation of the
experimental data, it may be interesting to use less sensors to obtain the same amount of
data due to the economical impact of these devices. On the other hand, in the simulation
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field, the adaptation of the methodology for a more general scenario with a larger number
of points to reduce may still be a challenge to address. The generation of more complex
similar surrogate models could have a high impact in the efficiency of simulations. The
decrease of the nodes used for simulation could lead to lower simulation times, which
are an issue in some common simulation methods like Finite Element Method (FEM).

Finally, future research focus on increasing the efficiency of the data generation by
means of more complex surrogate models that are based on the hybridization of simu-
lations and ML. In the context of Industry 4.0, this will immediately boost the devel-
opment of promising data-driven technologies that need a large quantity of data to be
implemented, such as the DTs or RL.
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