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Abstract.
Financial networks represent the daily business interactions of customers and

suppliers. Research in this domain has mainly focused on characterizing different
network structures and studying dynamical processes over them. These two aspects,
structure and dynamics, play a key role in understanding how emergent collective
behaviors, such as those that arise during economic crises, propagate through net-
works. Business interactions between companies form a direct and weighted net-
work, where the financial distress of a node depends on the ability of its customers
to fulfill payments. In situations where there is no such inbound cash flow, a com-
pany may have to close down due to a lack of liquidity. Interconnection there-
fore seems to be at the core of systemic fragility. Whether the nature and form of
this connection may have an impact on how distress is propagated is still an open
question. In this paper, we study how disruptive events propagate through different
network structures, under different scenarios. For this purpose, we use a liquidity
model that describes how the economy of nodes evolves from a given initial state
in terms of their interactions. From our experiments, we empirically conclude that
most of the studied network dynamics reach a steady-state, even in the presence of
large noise values.
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1. Introduction

In a customer-supplier network, nodes refer to individual firms and connections map
their interactions or economic exchanges. This representation has allowed researchers to
study how information, money, materials or components can flow through networks of
different shapes and structures [1]. In the case of financial markets, a network approach
has been particularly successful in characterizing the dynamics of customer-supply net-
works. These networks play a fundamental role in the optimization of production chains
and the analysis of systemic risk [2]. Hence, studying the dynamics of these networks
is of outermost importance to predict emergent phenomena that could potentially have
negative consequences on individual nodes, as well as on the economy as a whole [3].
Even small disturbances can drive supply networks away from their desired state and
towards unstable regimes [4] where disruptions are amplified through the network [5].
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Financial distress propagation has been studied using different models and network
structures [6]. Recent studies have shown that there exist significant correlations between
the local topological properties of nodes in a financial network and their risk of default
[7]. Other studies have focused on understanding how this risk is propagated through the
network, leading to scenarios of systemic instability. Or, even, on understanding how a
node’s economy state evolves in time.

In particular, in [8] authors introduced an additive economic model that described
how node liquidity evolves in time using an equation that captures both exchanges be-
tween individuals and random speculative trading. This model has been assayed on a
synthetic, heterogeneous (power-law) network. In this type of network, some nodes are
highly connected, i.e. they have many links to other nodes. Yet, the overall number
of connections is low. As a result, phenomena such as preferential attachment emerge,
whereby new nodes tend to connect to nodes with larger degrees, i.e. hubs. In line with
these property, authors observed that a few agents tended to concentrate the majority of
the wealth, following a Pareto-tail distribution. This conclusion was drawn by using a
simple but effective equation where trading was introduced as two independent additive
noises over time. This model has been then further refined and adapted to study distress
propagation in [9]. In this follow-up work, the authors have shown that the proposed
model reaches a steady-state even in the presence of large noise volatility values, when
the system is composed of a single agent and a market node.

In this paper, we build on the intuition introduced in these two papers to evaluate
the convergence of the described model for different network architectures. To this end,
we expose a synthetic network, with initially given liquidity conditions, to specific dis-
ruption events, and simulate the evolution of the liquidity distribution until its conver-
gence. Notably, we study the evolution of the liquidity distribution for different generic
network topologies, in different scenarios that may or may not include a market node.
From our experiments, it is possible to extract meaningful insights about how the topol-
ogy affects distress propagation and what the impact of a market node is for ensuring
resilience against disruption.

2. Materials and methods

Time evolution of a financial network can be monitored by modelling the interactions
between the nodes at each time step and updating each node’s state accordingly. The
state of a node can be related to any given property. For example, its liquidity.

2.1. Liquidity model

Following [8], we can define the liquidity L(t) of a node as its amount of disposable
money. The liquidity of a node has a direct relationship with two different elements: the
economic exchanges between the considered node and the other nodes in the network,
and the market volatility. The economic exchanges are usually represented by the edges
of the considered network. The volatility, in turn, accounts for the uncertainty of the
market, and is defined as an external factor affecting each node independently. We can
approximate it by means of a Gaussian distribution.

To simulate the evolution of the liquidity over time for individual nodes, we intro-
duce a liquidity model that describes how the economic activity of each node evolves in
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terms of its interactions with other nodes, given an initial state. This initial state L(0)
stands for the initial liquidity conditions of each node at time 0. The larger its value, the
more money the considered node will dispose of to face potential economic volatility,
crises, and changes in the money flows through the network. Given this initial state, we
can compute the liquidity Li(t) of a node i at any given point in time t as:

Li(t+1) = Li(t)(1+η(0,σ))+ ∑
j∈Ni

w ji P(t)H(L j(t)−w ji)− ∑
j∈Ni

wi j P(t)H(Li(t)−wi j)

where η(0,σ) stands for the economic volatility represented as a Gaussian noise with
mean 0 and standard deviation σ , Ni stands for the set of neighbors of node i, w ji and
wik correspond to the weights of an edge from j to i and vice versa, P(t) is a random
variable which follows a Bernoulli distribution with probability p and, finally, H(Li(t)−
wi j) represents a Heaviside step function which evaluates to 1 if the node i has enough
liquidity to afford the considered money transaction and 0 otherwise.

A Gaussian distribution governs market volatility for each node. Following the pa-
rameters of this distribution, a random normal value is given to every single node for
each time-step simulation. Its impact on the liquidity is proportional to the liquidity at the
previous time step and may affect the outcome positively or negatively. For this reason,
the mean of the Gaussian distribution is set to zero (μ = 0).

The money exchanges are, in turn, controlled by the global parameter p, correspond-
ing to the probability of a Bernoulli distribution. The value of p ranges from 0 to 1. When
p = 1, the network is fully activated, meaning that all money exchanges take place. For
lower values of p, the network is not fully activated, i.e., certain due payments never take
place. Therefore, p can be understood as the fraction of active exchanges at any time.

The equation above allows us to simulate the evolution of a given network in time
under different initial conditions, encoded by the initial state Li(0) for each node. De-
pending on the considered network structure, we can study the effect of these conditions
in the overall state of the network by the time we reach convergence. In [9], authors have
shown that a single node network following this model reaches a steady-state even in
the presence of large noise volatility values. For that network, the interplay between the
outbalance of the initial income and outcome money flows, and the multiplicative noise
level σ leads to a symmetry in the final liquidity distribution. Here, we extend this sin-
gle node model system to more complex scenarios and assay this model in under dif-
ferent economic conditions. These conditions are defined by different initial states and
activation levels of the network. For each set of conditions we simulate the evolution of
liquidity in time, and verify that the proposed model converges to a stationary state.

2.2. Scenarios

In some cases we introduce a market node. This node accounts for unknown transactions
between the nodes of the network, i.e. for economic transactions conducted elsewhere.
Including these data is important to obtain a reliable approximation of the economic state
of each node in time. Combined with a large activation of the system, which means nodes
are capable of doing exchanges, a market node decreases the overall distress probability
of the considered systems.
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In our experiments we have assumed that the market node has infinite liquidity and
that it transfers money to the other nodes with a liquidity ratio equal to 1.5. In practice,
this means that for a full activation of the network (p= 1), individual nodes earn 1.5 from
their connections, including the market node, and pay back 1. Therefore, in each time-
step, profits are set to 0.5. Considering the amount of taxes and benefits that each node
must pay and earn, we consider this to be a realistic value [9]. Moreover, this allows us to
simulate economic exchanges within a growing economic context and avoids a general
default of the system, which is seldom observed in practice.

The first scenario we consider is a Star network. This network is an extension of the
single node network, where the different nodes are connected forming a star, as shown
in Figure. 1 (a). In this structure, each Ni node is linked to the market node N0, and
is independent of the remaining nodes Nj for j �= i, meaning that there is no exchange
of money among them. The market node provides liquidity to nodes and receives the
payments from it.
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Figure 1. Topology of the simulated networks: (a) Star, (b) Erdos-Renyi without market node, (c) Erdos-Renyi
with market node, (d) Power Law without market node, (e) Power Law with market node.

A more complex monetary exchange is that of an Erdos-Renyi network, where there
exist random edges among the nodes. In this configuration, any node Ni is linked with the
same probability to the other nodes. Each edge is included in the network with a certain
probability, which is independent for each edge. Therefore, each node is statistically
independent of the rest of Nj nodes for j �= i. This structure represents a collaborative
economy, where money flows through the agents. In this paper we study this network first
in absence of a market node, as shown in Figure. 1 (b). We later introduce this market
node as displayed in Figure. 1 (c) and evaluate its impact on the overall dynamics. When
having the market node N0, we assume all the remaining nodes are linked to it.

Finally, a more realistic scenario is that of a Power Law network. This type of net-
work replicates an economic structure that includes both prevalent and secondary compa-
nies, as generally observed in real markets. Some nodes Ni are highly connected, mean-
ing they have many links to other Nj nodes for j �= i. Yet, the overall number of con-
nections among all nodes is low. We can understand this configuration as representing
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a capitalist economy. Similarly to the Erdos-Renyi case, we consider this network with
and without a market node. In the former case, all nodes are connected to the market
node N0 to keep a constant liquidity ratio.

We have created synthetic networks according to the five scenarios described above.
In what follows, we study the convergence of each system’s liquidity and analyse how
disruptive events propagate through the different network topologies.

3. Numerical Simulations on Generic Networks

For the case of the Star network, we have created simulated scenarios with 100 nodes. For
both the Erdos-Renyi and the Power-law configurations, we have included up to 1,000
nodes. For the latter case, each new node adds three random edges, with a probability of
adding a new triangle after adding an edge of 30%.

For each of the five configurations, we have conducted 1,000 simulations during
5,000 time-steps for a volatility σ = 0.05 and σ = 0.3. These values are chosen following
[9] in order to represent two scenarios: low and high volatility. Or in other words, stable
and unstable economies. We have assumed every single node to have enough liquidity to
withdraw the first installment as an initial state. During each time step, we have simulated
money exchanges according to the Bernoulli probabilities associated with the different
nodes and computed their liquidity in time. Throughout the simulations, we have allowed
nodes to be indebted and to recover from this state.

3.1. Discussion of results

First, we evaluate the convergence of the median node liquidity in time for different
values of the Bernoulli probability p. In most cases, we observe a steady-state around
5,000 time-steps, when the median of the liquidity stabilizes. We also study the impact of
disruptions for the networks described in the previous section by analyzing the liquidity
distribution at the steady-state for each Bernoulli probability p, across 1,000 simulations.

3.1.1. Star Network

In order to analyze the effect of a central market node ruling the economy, we now
study the evolution of the liquidity for the Star network scenario. For both σ = 0.05 and
σ = 0.3, we observe that the median of the liquidity tends to a steady state, as shown in
Figure. 2 (a) and (d), for the different values of the Bernoulli probability p. Depending on
the value of p, we observe different growth rates of the median liquidity. For this network,
the market node supplies liquidity every time-step to the individual nodes. However, this
growth rate depends on the activation of the system. Thus, for higher activation values
the median liquidity is greater than for low activations.

As observed for the previous case, the liquidity reaches a steady state for any value
of p. The speed with which this steady state is reached depends on the volatility. For
σ = 0.05, the system reaches the steady state around t = 5,000, whereas for σ = 0.3
this happens around t = 200. Moreover, for this case, we observe a decrease for lower
activation rates. This is due to the greater market shocks that, combined with fewer trans-
actions, make nodes more susceptible to falling into indebtedness.
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(a) σ = 0.05 (b) σ = 0.05 (c) σ = 0.05

(d) σ = 0.3 (e) σ = 0.3 (f) σ = 0.3

Figure 2. (a)(d) Median of the total liquidity at time t for different combinations of Bernoulli probability p for
a Star network with market. (b)(e) Distribution of the system liquidity at time T = 5,000. Note that, y-scale is
logarithmic. (e)(f) Distribution of the system liquidity at time T = 5,000.

Figures. 2 (b) and (e) show the distributions of the core system liquidity at the steady
state. The liquidity distributions are not symmetric for any values of σ and p, although
we still observe a peak at t = 5,000. The peak increases and the tails flatten as volatility
increases, having more portion of nodes with debts in this case.

In Figure. 2 (c) and (f), where the boxplots display the different liquidity values at
the steady state across the different values of p, we also observe the asymmetry in the
liquidity distribution and the growth in the liquidity median. The injection of credit by
the market node and a major activation shape the liquidity distribution. A smaller spread
for high volatility is a consequence of greater market shocks.

3.1.2. Erdos-Renyi Network

We can represent a collaborative economy by means of an Erdos-Renyi network. In the
absence of a market node, the behavior of the liquidity is completely random, and it does
not converge to a steady state, as we can observe in Figures. 3 (a) and (d), where the
median liquidity values are plotted in time for volatility σ = 0.05 and σ = 0.3. These
show that an Erdos-Renyi without a market acts as a random and isolated system.

In Figures. 3.(b) and (e), the distributions of the core system liquidity at the steady
state are displayed. We observe a symmetry in the liquidity distribution at time t = 5,000.
That is, for higher volatility, the peak of the distribution increases, whereas the tails have
a lower spread. Moreover, some differences are observed in the liquidity boxplots for
different p at the steady state depicted in Figures. 3.(c) and (f). Here, for σ = 0.05, the
maximum spread of the liquidity is for the greatest activation of the system (p = 1). Yet
for σ = 0.3, the maximum swifts to p = 0.5.

Significant differences are observed when a market node is added to the Erdos-Renyi
network. Figures. 2 (a) and (d) show that the median of the liquidity tends to a steady
state for both σ = 0.05 and σ = 0.3 and the different values of the Bernoulli probability
p. Again, the presence of a market node has an effect on the evolution of liquidity, with
different growth rates for the different values of p, as observed for the Star network.
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(a) σ = 0.05 (b) σ = 0.05 (c) σ = 0.05

(d) σ = 0.3 (e) σ = 0.3 (f) σ = 0.3

Figure 3. (a)(d) Median of the total liquidity at time t for different combinations of Bernoulli probability p for
an Erdos-Renyi network without market. (b)(e) Distribution of the system liquidity at time T = 5,000. Note
that, y-scale is logarithmic. (e)(f) Distribution of the system liquidity at time T = 5,000.

(a) σ = 0.05 (b) σ = 0.05 (c) σ = 0.05

(d) σ = 0.3 (e) σ = 0.3 (f) σ = 0.3

Figure 4. (a)(d) Median of the total liquidity at time t for different combinations of Bernoulli probability p for
an Erdos-Renyi network with market. (b)(e) Distribution of the system liquidity at time T = 5,000. Note that,
y-scale is logarithmic. (e)(f) Distribution of the system liquidity at time T = 5,000.

Similarly, the system reaches the steady state around t = 5,000 for σ = 0.05,
whereas only 200 time-steps are needed for σ = 0.3. Contrarily, we do not observe a
decrease for lower activation rates in these cases. The inter-connectivity of the different
individual nodes, makes this network more resilient to distress propagation.

As opposed to the cases discussed above, where the distribution of the overall liquid-
ity value was symmetric around 0, for the case of the Erdos-Renyi network with a mar-
ket node, shown in Figures. 4.(b) and (e), we observe a right-tailed liquidity distribution.
This asymmetry is greater for larger values of the Bernoulli probability p. However, dif-
ferences observed for the different values of p become smaller as the volatility increases.
Both right and left tails flatten with increasing values of σ , whereas the peak increases,
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as was seen before. This asymmetry can also be observed in Figure. 4.(c) and (f), where
boxplots show the distribution of liquidity for different activation probabilities.

3.1.3. Power Law Network

(a) σ = 0.05 (b) σ = 0.05 (c) σ = 0.05

(d) σ = 0.3 (e) σ = 0.3 (f) σ = 0.3

Figure 5. (a)(d) Median of the total liquidity at time t for different combinations of Bernoulli probability p for
a Power Law network without market. (b)(e) Distribution of the system liquidity at time T = 1000. Note that,
y-scale is logarithmic. (e)(f) Distribution of the system liquidity at time T = 1000.

Finally, we represent a capitalist economy using a Power Law network. For such
network without the market node, we observe a decrease to a steady state for any value of
p. Figure. 5 (a) and (d)) show the evolution of the median of the total liquidity in time for
the different values of the Bernoulli probability p and for different volatility values. We
observe a faster decrease in the liquidity median over time as the higher is the volatility.
Thus, for σ = 0.05, the system reaches the steady state around t = 4,000, whereas for
σ = 0.3 this happens around t = 200. The distribution of liquidity at the steady state for
different p is still symmetric, as depicted in Figure. 5.(b) and (e). Moreover, we observe
a similar behavior of the distribution of the liquidity as in the one node setting: for higher
volatility, the peak of the distribution increases (around 1.5 in this case), whereas the tails
have a bigger spread.

These new liquidity distributions are different because of the combination of the
number of nodes and volatility. With 1,000 nodes, the aggregated Bernoulli probability
of all nodes acts as a Binomial distribution, which occurs for both the earnings and
payments. The spread of a Binomial distribution increases with p, as it can be observed
in Figure. 5(c) and (f), which display the boxplots of the liquidity distribution across that
variable. We can confirm this for σ = 0.05 when the effect of volatility is very small.
The spread of the liquidity is maximal for p = 1, whereas for p = 0 is minimal. For
higher volatility, the multiplicative effect of σ shapes the distribution of the liquidity,
with a maximum in p = 0.5. Therefore, we can conclude that the number of active edges
matters concerning the range of the possible liquidity values.

In a Power Law network with 1,000 nodes, we have fewer edges than in an Erdos-
Renyi network with the same amount of nodes. The effect of this can be observed in
Figure. 5(c) and (f), where the absolute amounts of liquidity are much lower than those
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observed for the Erdos-Renyi. Thus, the effect of the multiplicative noise (σ ) is also less
significant, being the spread of the liquidity driven by the Binomial distribution. For this
system, we have a liquidity ratio greater than 1, but no liquidity from the market. This
network acts at the end as an isolated system. The symmetry of the liquidity distribution
is still present for any volatility.

(a) σ = 0.05 (b) σ = 0.05 (c) σ = 0.05

(d) σ = 0.3 (e) σ = 0.3 (f) σ = 0.3

Figure 6. (a)(d) Median of the total liquidity at time t for different combinations of Bernoulli probability p
for a Power Law network with market. (b)(e) Distribution of the system liquidity at time T = 1000. Note that,
y-scale is logarithmic. (e)(f) Distribution of the system liquidity at time T = 1000.

When analyzing the results for the case where we include the market node, we again
observe a growth for the liquidity median of all nodes. The evolution of the median of
the liquidity of all nodes is shown in Figure. 6.(a) and (d), where we observe a faster
increase in the liquidity median over time as higher is the volatility. As for a Power
Law without a market node, for σ = 0.05, the system reaches the steady state around
t = 4,000, whereas for σ = 0.3 this happens around t = 200. Figure. 6.(b) and (e) depicts
an asymmetry of the distribution of liquidity at the steady state for different values of
p caused by the presence of the market node. The spreads are smaller due to the fewer
number of edges between nodes in the Power Law network. Both right and left tails
flatten as higher is the σ , whereas the peak increases, as it was seen before. Despite the
effect of the market node, the spread of the liquidity for a Power Law is still driven by the
Binomial distribution, and volatility has a smaller consequence compared to the Erdos-
Renyi network. In Figure. 6.(c) and (f), the alternative representation of the distribution
of liquidity at the steady state with boxplots confirms the asymmetry for any volatility.

4. Conclusions

In this article, we have studied how the risk of default propagates in different synthetic fi-
nancial networks by using a liquidity model. Networks are a valid representation of eco-
nomic transactions such as wires to pay for services or goods. Based on previous works
on wealth distribution, the used model combines two stochastic terms: an additive noise
accounting for the capability of trading and paying obligations, regulated by a parameter
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p, and a multiplicative noise representing the variations of the market, controlled by a
parameter σ .

Our results show that, even in the presence of large noise values, network dynamics
reach a steady-state, with the only exception of the Erdos-Renyi network without market
node. In this sense, the presence of a market node seems crucial for the stability of the
system. The fact that a market node injects money to nodes constantly causes an increase
in the median liquidity. In contrast, when there isn’t such a market node, the total system
liquidity remains constant for any p. For this reason, we do not observe significant dif-
ferences between the behavior for low and high Bernoulli probability (p) where there is
a network without the market. Therefore, in that case, the liquidity ratio and the volatil-
ity (σ ) control the amount of money the nodes can accumulate. In spite of the median
liquidity distribution being comparable for all the networks whenever a market node is
included, differences arise in the absence of this node. This is, we detect a network effect
when there is no market node. When this happens, the different connections between
nodes due to the different network topologies have a bigger impact. We conclude that
inter-connectivity is crucial for the time evolution of liquidity.

From an economic perspective, the network structure of economic interactions and
its combination with the system volatility (σ ) is crucial to determine the maximum de-
fault probability. We conclude that this model can be a valuable tool to study systemic
risks of different economic systems. In this sense, Artificial Intelligence may help us
to understand the behavior of Financial Networks. Future research following this work
should focus on studying strategies to prevent risk of default and cascade effects in the
different settings.

In addition, further research should also study the effect of an optimal rewiring of
nodes from an agent-based perspective, to design protocols that ensure resilience against
disruption propagation.
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