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Abstract The automated analysis of different trends in online debating forums is
an interesting tool for sampling the agreement between citizens in different topics.
In these online debating forums, users post different comments and answers to pre-
vious comments of other users. In previous work, we have defined computational
models to measure different values in these online debating forums. A main ingre-
dient in these models has been the identification of the set of winning posts trough
an argumentation problem that characterizes this winning set trough a particular ar-
gumentation acceptance semantics. In the argumentation problem we first associate
the online debate to analyze as a debate tree. Then, comments are divided in two
groups, the ones that agree with the root comment of the debate, and the ones that
disagree with it, and we extract a bipartite graph where the unique edges are the
disagree edges between comments of the two different groups. Once we compute
the set of winning posts, we compute the different measures we are interested to get
from the debate, as functions defined over the bipartite graph and the set of winning
posts. In this work, we propose to explore the use of graph neural networks to solve
the problem of computing these measures, using as input the debate tree, instead of
our previous argumentation reasoning system that works with the bipartite graph.
We focus on the particular online debate forum Reddit, and on the computation of
a measure of the polarization in the debate. Our results over a set of Reddit debates,
show that graph neural networks can be used with them to compute the polarization
measure with an acceptable error, even if the number of layers of the network is
bounded by a constant.
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1. Introduction

Recently, there has been a growing interest in the use of Graph Neural Network (GNN)
approaches to model and solve reasoning problems defined via graph inputs [10,12,17].
The most common approach used by a GNN is to map the feature vector of each node
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to an embedding representation that also uses (by aggregation) the feature vector of its
neighbor nodes. By iterating this scheme k times, the final representation of each node
tends to capture structural information within the node’s k−hop neighborhood. This
scheme can be used to learn any kind of function over graphs that outputs a labeling of
its nodes, or that outputs a single value (for graph classification tasks).

In previous work, we have considered the use of argumentation based models to
analyze different characteristics of social network debates. In the argumentation based
approach, we first identify a valued argumentation problem with the debate to be solved,
where debate posts are associated with arguments, under a particular acceptance seman-
tics: a set of rules that define what arguments are accepted and what are rejected. The
usual acceptance semantics tend to be NP-hard, like the ideal semantics [8] we have used
in our previous works about measuring discussion polarization with argumentation based
models [2,3].

In this work we initiate a line of investigation to study whether a GNN approach
can be a good candidate to solve argumentation-based problems with less effort. Our
focus is not on exactly replicating the set of accepted arguments of the discussion, as
it has been already explored on recent work about solving some abstract argumentation
problems with GNNs [6,13], but on being able to compute the final measure of interest
defined from the set of accepted arguments. Our hypothesis is that even if the worst-case
complexity of computing accepted arguments is in general NP-hard, it may be possible
to compute, or approximate, the final measure with much less computational effort. In
particular, in this work we focus on the computation of a measure of discussion polar-
ization that is defined in function of the set of accepted arguments of a discussion, and
whether these arguments agree or disagree with the root topic of the discussion. Our dis-
cussions come from the social network Reddit. A Reddit debate is first represented as
a debate tree, where edges represent agreement or disagreement relationships between
Reddit posts. Then, this debate tree is processed to get a bipartite debate graph where
posts are divided in two groups: the ones that agree with the root comment of the debate,
and the ones that disagree with it. The edges of the bipartite graph represent disagreement
between comments of the two groups.

Our results show that we can devise a reasoning system to compute that polariza-
tion measure, defined initially from the set of accepted arguments and the bipartite de-
bate graph, based only on the original debate tree (the graph previous to the bipartite
graph) and that computes the polarization measure with acceptable error, without explic-
itly computing the set of accepted arguments of the associated argumentation problem.

The structure of the paper is as follows. In Section 2 we present the relevant defini-
tions for our argumentation-based Reddit analysis system. In Section 3 we briefly survey
previous results about GNNs. In Section 4 we present the GNN architecture we have
used to model our reasoning system. Finally, in Section 5 we present the experimental
results we have obtained with a dataset of Reddit debates.

2. Reddit Debate Analysis

In this section we give the definitions of the different components of the Reddit analysis
system introduced in [3]. It is based on two main components: a Reddit debate retrieval
system and an argumentation-based reasoning system. The retrieval system takes a root
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comment and obtains the complete set of comments generated in the debate on that root
comment.

Definition 1 A comment c is a tuple c = (m,u, sc), where m is the text of the comment,
u is the user’s identifier of the comment, and sc ∈ Z is the score of the comment.

Let c1 = (m1, u1, sc1) and c2 = (m2, u2, sc2) be two comments. We say that c1
answers c2 if c1 is a reply to comment c2.

Let r = (mr, ur, scr) be a comment such that mr contains a link to some news. A
Reddit debate on the (root) comment r is a non-empty set Γ of Reddit comments such
that r ∈ Γ and every comment c ∈ Γ, c �= r, c answers some comment in Γ1.

Next, we obtain the tree representation of a Reddit debate where we incorporate edge
labels that express the sentiment of the comments.

Definition 2 Let Γ be a Reddit debate on a (root) comment r. The Debate Tree (DebT)
for Γ is a tuple T = 〈C, r,E, L〉 such that:

• for every comment in Γ there is a node in C,
• node r ∈ C is the root node of T ,
• if c1 answers c2 then there is a directed edge (c1, c2) in E, and
• L is a labeling function L : E → [−2, 2], where the value assigned to an edge

denotes the sentiment of the answer, from highly negative (-2) to highly positive
(2).

Only the nodes and edges obtained by applying this process belong to C and E, respec-
tively.

As argued in [3], we consider in our model that subtrees with a neutral root do not
contribute anything relevant with respect defending or rejecting the root comment of the
debate. So, the next step is to prune out those subtrees with respect to a pruning threshold.

Definition 3 Let α be a pruning threshold in the real interval [0, 2] and let T =
〈C, r,E, L〉 be a DebT. The Pruned Debate Tree (PDebT) for T with respect to α is a
tuple Tα = 〈Cα, r, Eα, L〉, where both sets of pruned comments Cα ⊆ C and pruned
edges Eα ⊆ E are defined as follows:

• the root node (comment) r ∈ Cα,
• r is the root node of Tα and
• if (c1, c2) ∈ E with c2 ∈ Cα, then c1 ∈ Cα and (c1, c2) ∈ Eα, whenever
|L(c1, c2)| ≥ α.

Only the nodes and edges obtained by applying this process belong to Cα and Eα, re-
spectively.

Note that for α = 0 the pruning threshold has no effect, in the sense that the PDebT
obtained corresponds to the original DebT and that for α = 2 the PDebT obtained only
contains strictly polarized both positive and negative answers. In any case, the PDebT
Tα is a subtree of T with r being the root node.

1Given the structure of a Reddit debate, except for the root comment, each comment answers exactly one
previous comment, usually by another user or author.
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Finally, we divide the set of comments into two sets: comments supporting the root
comment and comments that disagree with it. Then, the attacks between the comments
of both sets are defined as a subset of edges in Eα such that they are negative answers
from a comment in one of the sets to a comment in the other set, obtaining a bipartite
graph that represents both sides of the debate, and the disagreement between them. This
bipartition can be computed with the algorithm that we presented in [2]. Moreover, we
also label each node of the graph obtained with a weight that denotes the comments’
social acceptance during the debate. Next we formalize the Weighted Bipartite Debate
Graph structure.

Definition 4 Let Tα = 〈Cα, r, Eα, L〉 be a PDebT for a Reddit debate Γ. A Weighted
Bipartite Debate Graph (WBDebG) for Tα is a tuple G = 〈C+ ∪ C−, E−,W 〉 where

• C+ and C− is a bipartition of Cα. Thus, C+ ∪ C− = Cα and C+ ∩ C− = ∅,
where C+ denotes the set of comments that agree with the root comment cr, and
C− denotes the set of comments that disagree with it.

• E− = {(c1, c2) ∈ Eα | L(c1, c2) < 0} and corresponds with the set of disagree-
ment edges between the comments in C+ and C−. Thus, if (c1, c2) ∈ E−, then
either c1 ∈ C+ and c2 ∈ C− or, c1 ∈ C− and c2 ∈ C+.

• W is a weighting scheme W : Cα → N of the weight of nodes (comments). The
weighting scheme W evaluates the social acceptance of comments by mapping
the score sc of a comment (m,u, sc) ∈ Cα to a value in N.

At this point we are ready to introduce the argumentation-based reasoning system
used to obtain the set of comments, from the two opposite groups of a WBDebG, that
are accepted in the sense that this set should represent a kind of consensus among all
the comments of the debate. To this end, we use value-based abstract argumentation [5]
to model the weighted argumentation problem associated with a WBDebG and ideal
semantics [7] to compute its solution (the set of comments that can be accepted).

The value-based abstract argumentation framework (VAF) we define for a WBDebG
G = 〈C+ ∪ C−, E−,W 〉, interprets each comment in C+ ∪ C− as an argument and
defines a defeat relation (or effective attack relation) between arguments as follows:

defeats = {(c1, c2) ∈ E− |W (c2)) �≥W (c1)};

i.e. argument c1 defeats argument c2 if and only if c1 attacks or disagrees with c2 and
the social acceptance value of c2 is not preferred over the social acceptance value of c1,
based on the weighting scheme W .

Then, a set of comments S ⊆ C+ ∪ C− is called conflict-free if for all c1, c2 ∈
S, (c1, c2) �∈ defeats, and a conflict-free set of comments S ⊆ C+ ∪ C− is defined as
maximally admissible if for all c1 �∈ S, S ∪ {c1} is not conflict-free and, for all c2 ∈ S,
if (c1, c2) ∈ defeats then there exists c3 ∈ S such that (c3, c1) ∈ defeats. Finally, the
solution or set of accepted comments for a debate is the largest admissible conflict-free
set of comments S ⊆ C+ ∪ C− in the intersection of all maximally admissible conflict-
free sets.

We select this semantics to define the solution for a debate, because it represents a
maximally admissible set of conflict-free comments, such that they defend against at-
tacks outside the set with comments inside the set, and they are included in any admis-
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sible set of comments. This set therefore represents a kind of maximum consensus be-
tween all the possible admissible sets of comments. For our particular case of an acyclic
VAF, the picture is even simpler, as there is a unique maximally admissible set, and thus
the solution for ideal semantics coincides with this set. Moreover, for the case of a VAF
that is acyclic or bipartite (as in the case of a WBDebG), we can compute its solution
in linear time, with respect to the number of comments, for instances of big size with
the distributed algorithm we developed in [1]. However, in the worst case the status of
each comment in the solution may depend on the status of the rest of the comments,
so that is why we explore in this work a possible GNN-based architecture where nodes
(comments) only consider information from nodes at distance bounded by a constant.

Given that the solution for the debate provides us with a consensus point of view, an
interesting characteristic to analyze is its degree of polarization.

Definition 5 Let G = 〈C+ ∪ C−, E−,W 〉 be a WBDebG and let S ⊆ C+ ∪ C− be
the solution for G. The polarization degree of solution S is a measure in the real interval
[−1, 1] defined as follows:

polarization(S) =
#(S ∩ C+)−#(S ∩ C−)

#S
.

We use the polarization degree value as a measure of the bias of the solution S towards
comments in C+ and comments in C−. The value that indicates total bipartisanship (0)
is obtained when the number of comments of S in C+ equals the number in C−. The
highest positive value is obtained when all the comments of the solution are found in C+,
and analogously for the lowest negative value. In order to classify debates in terms of the
polarization degree, instead of this measure, we can also work with a more qualitative
measure mapping from it, to a discrete set of values. For example, in this work we stratify
Reddit debates in five levels, based on the polarization degree of the solution:

bias-level : polarization(S)→ {−2,−1, 0, 1, 2}.

3. Graph Neural Networks

In the last years, there has been an increasing interest in analyzing graphs with machine
learning (ML) [9,16] because of the immense expressive power of graphs, i.e. graphs can
be used to model the interaction between complex structures such as proteins, mRNA,
particles in physics models, etcetera. Thus, a key factor to be considered when dealing
with graphs using ML is the ability of the methods to deal with graphs of different sizes
and shapes.

There have been various attempts in the literature using graph neural networks
(GNNs), mainly by: (i) focusing on learning node embeddings by aggregating the nodes,
and (ii) by mapping from the node neighbourhood domain (adjancency matrix) to spec-
tral domain. From the first type, we highlight the Generalizing Aggregation Graph-
Sage [10] used for node classification. This method focuses on learning node embed-
dings, and then a model aggregates the resulting embeddings to handle size-varying
neighbourhoods. From the second type, we feature the Spectral Graph Convolution
Model [12] used for the classification of nodes using their adjacency matrix. In addi-
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tion, it uses Chebyshev filters (passband filters) and Lapacian regularization in the loss
function.

A recent improvement over the first method are Graph Isomorphism Networks
(GIN), presented in a study [17] of GNN expressivity w.r.t. Wesfeiler-Lehman (WL)
test [15] of graph isomorphism, where they proposed a WL equivalent aggregator, i.e. it
generalizes the WL test and thus, it achieves the maximum discriminative power among
the GNNs in the literature.

4. GNN Modelling

We propose the use of Graph Isomorphism Networks (GIN) [17] in our GNN model
to approximately compute the polarization degree of a Reddit debate. In particular, our
GIN model receives as input a Pruned Debate Tree (PDebT) Tα = 〈Cα, r, Eα, L〉 with
|Cα| = N nodes, obtained from a Reddit debate as explained in [2], and outputs a bias-
level of the polarization degree.
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Figure 1. GNN architecture for computing the polarity degree of a Pruned Debate Tree.

The overall architecture is presented in Figure 1. It comprises the following layers:

Node embedding The input layer contains a two dimensional vector for each non-root
comment ci = (mi, ui, sci) that contains the score of the comment sci and the
sentiment from the label L(ci, cj), where cj is the unique comment such that
(ci, cj) ∈ Eα.

GIN Convolutional (k layers). Every layer combines the node embedding of the previ-
ous layer considering the node close neighbours. The aggregator in the layer l is
the following:

xi
(l) =MLP

⎛
⎝(1 + ε) · xi

(l−1) +
∑

j∈N (i)

xj
(l−1)

⎞
⎠

where xi
(l) is the embedding of node i in layer l, ε is a learnable parameter, and

MLP is a multi-layer perceptron with nonlinearity, and N (i) is the set of neigh-
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bours of node i. The first GIN layer has an input dimension of 2 and an output
dimension of 64. The following layers have input and output dimensions of 64.
Globally, this GIN block maps the two-dimensional vector of each node to a vector
of 64 values that tries to capture the information from nodes k hops away from it.
Also, we insert a Rectified Linear Unit (ReLU) layer after each GIN layer, to help
encode non-linear outputs in the network.

Normalization We give also the option to include a normalization layer between consec-
utive GIN layers, because previous work suggests that it may speed up the learning
process [4].

Aggregation The aggregation layer creates the final graph representation using the mean
operator, aggregating all the node embeddings into one graph embedding, as a
vector with the same dimension (64).

Fully connected MLP This block maps the final aggregated embedding representation
of the graph into the polarization bias-level of the debate.

After every ReLU layer and at the end of the fully connected MLP, a dropout of 0.25
is applied to prevent overfitting [11]. We use the pytorch and pytorch geometric python
libraries to implement this GNN model.

5. Experimental results

In this section we present the results obtained when learning a GNN model with the GIN
architecture introduced in Section 4 to compute the polarization bias-level for a set of
Reddit debates.

To train and test our models, we use a dataset with 40 Reddit debates, where 34
have been used for training and 6 have been used for testing. To download the set of
comments for each Reddit debate we use the Python Reddit API Wrapper (PRAW) 2.
Then, in the PDebT Tα obtained from each Reddit debate, the label for each edge (c1, c2)
is computed with the sentiment analysis software of [14]. It uses the text of the comment
c1, where the value assigned denotes the sentiment of the answer, from highly negative
(-2) to highly positive (2). The pruning parameter α is set to the value 0.15. We have
tried three different values for the number of GIN layers (2, 4, 6) and also experimented
with either using a normalization layer after each GIN layer or not. The number of GIN
layers is kept low, compared with the number of nodes of the graphs that ranges from
5 to 4472 nodes, to explore whether bounding the neighborhood size used by the GNN
still allows a reasonable approximation of the right output value. As we prefer a GNN
model where the output value is as closer as possible to the right polarization bias-level,
we train our GNN models using as the loss function the mean square error.

The experimental results for the average loss for the training set and the average
loss for the test set are shown in Table 1, where each experiment was repeated with two
different number of epochs (250, 500) and executed 10 times (generating each time a
different training/test set). The results shown in the table for each experimental setting
are the best ones (with respect to the test set loss) from the set of 10 executions. The
results show that the training loss is slightly higher than in the test set, suggesting that
our models seem to not overfit with the training set. The results obtained with different

2https://github.com/praw-dev/praw
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number of GIN layers do not set seem to have a significant impact on the test set loss
when considering 500 epochs for learning. Analogously, the use of normalization layers
between GIN layers do not seem to have a significant impact, as with no normalization
the results are slightly better.

Training Loss Test Loss

Num GIN layers Normalization Epochs 250 Epochs 500 Epochs 250 Epochs 500
2 True 0.32 0.35 0.37 0.18
4 True 0.42 0.33 0.15 0.28
6 True 0.47 0.33 0.24 0.23

2 False 0.45 0.47 0.27 0.04
4 False 0.50 0.27 0.30 0.11
6 False 0.34 0.44 0.18 0.12
Table 1. Experimental results for polarization computation with our GNN model.

To check whether our GNN model generalizes well when the number of nodes of
the input increases, we have repeated the previous experiment, but only with no normal-
ization and number of epochs 500, fixing as the training set the graphs with the smallest
size (from 5 to 414 nodes in our case) and as the test set the biggest ones (from 1029
to 4472 nodes). The results obtained show that we have a slight increase in the test set
average loss: 0.26 for 2 GIN layers, 0.27 for 4 and 0.23 for 6. So, at least with this test
set, training with the smallest ones does not seem to increase significantly the test set
loss, although these results should be further confirmed with larger training and test sets.

6. Conclusions

In this paper, we have presented a GNN-based system to solve the problem of comput-
ing a polarization measure from a Reddit debate. Our GNN-based system is based on
our previous work, where we used an argumentation approach to solve this problem.
Although we do not use the GNN architecture to explicitly compute the solution of the
argumentation problem, it is able to approximate the final polarization measure, that it is
originally defined from that solution. This happens even if our GNN model aggregates
information in each node considering always a neighborhood with bounded distance,
given that the number of GIN layers is kept constant.

An interesting direction for future work is to consider the computation of other
argumentation-based measures that consider as input author graphs, instead of debate
trees. Author graphs come from the aggregation of comments from the same author in a
single node, such that the resulting graph may contain cycles, and in that case the com-
plexity of the argumentation-based reasoning algorithm is higher than the one for the
acyclic graphs we have considered in this work. Also, we plan to work with a bigger
Reddit dataset to get more significant results.
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