
Application of CMSA to the Minimum
Positive Influence Dominating Set

Problem

Mehmet Anıl AKBAY a,1 and Christian BLUM a

a Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain

Abstract. Construct, Merge, Solve & Adapt (CMSA) is a recently developed algo-
rithm for solving combinatorial optimization problems. It combines heuristic ele-
ments, such as the probabilistic generation of solutions, with an exact solver that is
iteratively applied to sub-instances of the tackled problem instance. In this paper,
we present the application of CMSA to an NP-hard problem from the family of
dominating set problems in undirected graphs. More specifically, the application in
this paper concerns the minimum positive influence dominating set problem, which
has applications in social networks. The obtained results show that CMSA out-
performs the current state-of-the-art metaheuristics from the literature. Moreover,
when instances of small and medium size are concerned CMSA finds many of the
optimal solutions provided by CPLEX, while it clearly outperforms CPLEX in the
context of the four largest, respectively more complicated, problem instances.

Keywords. Construct, merge, solve & adapt, minimum positive influence dominating
set, hybrid metaheuristics

1. Introduction

When faced with a hard combinatorial optimization problem, the related literature gen-
erally offers both exact and approximate techniques for solving the problem. Exact tech-
niques guarantee to find an optimal solution to a given problem instance in bounded
computation time. Therefore, instances up to a problem-specific size and/or difficulty are
usually solved by using an exact technique. Hereby, the term exact technique might refer
to a specialized algorithm or to a general-purpose tool such as, for example, an integer
linear programming (ILP) solver. Examples for ILP solvers include CPLEX and Gurobi,
just to name the currently most powerful ones. The computation time required by an
exact technique generally starts to explode when reaching a problem-specific instance
size and/or difficulty. When this happens researchers and practitioners usually resort to
using approximate techniques for obtaining solutions to their problem. Examples range
from simple greedy heuristics to more sophisticated metaheuristics [2]. In order to take
profit from the valuable optimization expertise that has gone into the development of
exact optimization tools such as CPLEX and Gurobi, in the last two decades some re-
searchers have focused on the development of algorithms that allow to take profit from

1Corresponding Author; E-mail: makbay@iiia.csic.es

Artificial Intelligence Research and Development
M. Villaret et al. (Eds.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210112

17

these tools even in the context of problem instances that are too large to be solved di-
rectly by them. Algorithms from this line of research are called hybrid metaheuristics or
matheuristics [5]. Prominent examples include algorithms such as large neighborhood
search (LNS) [13] and construct, merge, solve & adapt (CMSA) [1].

In this paper we demonstrate the application of CMSA to the so-called minimum
positive influence dominating set (MPIDS) problem [16,17]. The MPIDS problem is an
NP-hard combinatorial optimization problem with applications in social networks. Each
vertex in such a network represents an individual—that is, a person—and edges indicate
relationships, respectively interactions, between those individuals. The background of
the MPIDS problem is that information propagated in social networks can have a sig-
nificant, either positive or negative, impact on the respective parts of the society. From
social norms theory it is known that the behavior of individuals can be affected by the
perception of others’ thoughts and behaviors [6]. This makes it possible to exploit the
relationships among people in social networks in order to obtain great benefits for both
the economy and society. The aim of the MPIDS problem is to identify a small subset
of influential individuals (or key individuals) in order to accelerate the spread of positive
influence in a social network [10,7]. Alternative applications of the MPIDS problem can
be found in e-learning software [18], online business [14], drinking, smoking, and other
drug-related problems [16].

The remaining part of this paper is organized as follows. A technical description of
the MPIDS problem, together with a standard ILP model, is provided in Section 2. The
application of CMSA to the MPIDS problem is described in Section 3. Finally, an exper-
imental evaluation, including a comparison to the state-of-the-art from the literature, can
be found in Section 4, and conclusions as well as an outlook to future lines of research
are provided in Section 5.

2. MPIDS problem

In technical terms, the MPIDS problem can be described as follows. Given a simple
that does not contain any loops and parallel edges, connected, undirected graph G =
(V,E), the problem requires to find a subset S∗ of V of minimum cardinality such that
the following two conditions are fulfilled:

1. S∗ is a dominating set of G. Remember that a subset S ⊆ V of the vertices of an
undirected graph G is called a dominating set, if and only if each vertex v ∈ V
forms either part of S or has at least one neighbor that forms part of S.

2. At least half of the neighbors of each vertex v ∈V form part of S∗.

Most of the research efforts concerning the MPIDS problem have been focused on greedy
heuristics [17,15,4,12,3]. Moreover, a swarm intelligence based algorithm [9] and an
ILP-based memetic algorithm [8] were presented in the literature. The latter one is cur-
rently state-of-the-art for the MPIDS problem.

Note that the MPIDS problem can easily be stated in terms of an ILP. The model is
based on a binary variable xi for each vertex vi ∈V .

M.A. Akbay and C. Blum / Application of CMSA18

Minimize
n

∑
i=1

xi (1)

Subject to ∑
v j∈N(vi)

x j ≥
⌈

deg(vi)

2

⌉
∀vi ∈V (2)

xi ∈ {0,1} (3)

Hereby, N(vi) is the neighborhood of vi in input graph G, and deg(vi) is the degree of
vertex vi, where deg(vi) := |N(vi)|. Equation (2) ensures that a feasible solution contains
at least half of the neighbors of each vertex vi ∈V . In the context of the CMSA algorithm
outlined in the next section, the objective function value f (S) of a feasible solution S ⊆V
is f (S) := |S|. Note that S :=V is a trivial solution to the problem.

3. The CMSA Algorithm

The general structure of the CMSA developed for the MPIDS problem is presented in
Algorithm 1. The algorithm starts by taking an instance represented by a simple, con-
nected, undirected graph G = (V,E) as input. S ⊆ V denotes a feasible MPIDS solution
of G. At first, the best-so-far solution Sbs f is initialized to the trivial solution V . Then, two
vector data structures, called age0[] and age1[], are initialized to value -1 for all v ∈ V ;
see line 4. Note that values age0[v] and age1[v] may range between -1 and a fixed posi-
tive integer value called agemax. Hereby, agemax is one of CMSA’s important parameters.
These data structures are modified in two parts of the algorithm, namely (1) on the ba-
sis of the generated solutions and (2) on the basis of solving the so-called sub-instance.
This is explained in detail below. After the initialization of data structures age0[] and
age1[], a pre-processing procedure from [3] is applied to determine the set Spar of vertices
that must form part of an optimal solution; see line 5. At each iteration, the algorithm
probabilistically generates na solutions by applying function ProbablisticSolutionGener-
ation(Spar) in line 8. In order to probabilistically generate a solution S, a recent greedy
algorithm from [3] is applied in a probabilistic way. This is also explained in Section 3.1.
Afterwards, a sub-instance is generated on the basis of the current values in data struc-
tures age0[] and age1[].For a detailed explanation of the data structures used for defining
a sub-instance, see Section 3.2. This sub-instance is then solved by CPLEX with a CPU
time limit of tILP seconds by applying function SolveSubinstance(age0[],age1[], tILP) ;
see line 14. The result is a solution Sopt , which is a solution to both the sub-instance and
the original problem instance. Note that tILP seconds may, or may not, be enough time
for CPLEX to solve the sub-instance to optimality. In case tILP is not enough time, Sopt is
a sub-optimal solution to the sub-instance. Next, the best-of-far solution Sbs f is updated
with Sopt in case f (Sopt) < f (Sbs f); see line 15. Finally, the values of data structures
age0[] and age1[] are modified on the basis of solution Sopt as shown in Section 3.3 in
detail. The algorithm stops once the CPU time limit is reached. In the following, the
remaining parts of the algorithm are outlined in more detail.

3.1. Probabilistic construction of solutions

Function ProbablisticSolutionGeneration(Spar) generates a valid solution S as follows.
First, S is initialized to Spar. Note that, by initializing all solutions to be constructed by

M.A. Akbay and C. Blum / Application of CMSA 19

Algorithm 1 CMSA for the MPIDS problem

1: input: a problem instance G = (V,E)
2: parameters: na, drate, lsize, agemax, and tILP
3: Sbs f :=V
4: age0[v] :=−1 and age1[v] :=−1 for all v ∈V
5: Spar :=PreProcessing(G)
6: while CPU time limit not reached do

7: for k := 1, . . . ,na do

8: S := ProbablisticSolutionGeneration(Spar)
9: for all v ∈V do

10: if v ∈ S and age1[v] =−1 then age1[v] := 0
11: if v �∈ S and age0[v] =−1 then age0[v] := 0
12: end for

13: end for

14: Sopt := SolveSubinstance(age0[],age1[], tILP)
15: if f (Sopt)< f (Sbs f) then Sbs f := Sopt
16: Adapt(age0[],age1[],Sbs f ,agemax)
17: end while

18: return: Sbs f , the best solution found by the algorithm

Spar, the algorithm’s performance is enhanced because the construction of solutions is
accelerated. After this initialization, the set U of uncovered vertices with respect to S
is determined. In this context, note that a vertex v ∈ V is called covered with respect to
a (partial) solution S if and only if at least half of its neighbors form part of S. In the
opposite case, v is defined as uncovered. The following steps are then repeated until no
uncovered vertices are left:

1. A vertex v ∈U with the smallest neighborhood size (deg(v)) is chosen. In other
words, a vertex v ∈U is chosen such that deg(v)≤ deg(v′) for all v′ ∈U .

2. Afterward, vertices are iteratively chosen from N(v) \ S and added to S until
v is covered. The minimum number of adjacent vertices (hS(v)) that need to
be chosen and added to S is calculated using the following equation: hS(v) :=

 deg(v)

2 �− |NS(v)|. Here, NS(v) refers to the set of neighbors of v that form al-
ready part of solution S. In contrast to the original greedy algorithm from [3], a
vertex vi ∈ N(v)\S may either be selected in a deterministic or in a probabilistic
way. For this, we utilize two important parameters, namely the determinism rate
drate and the candidate list size lsize. At first, a candidate list L is created. This list
includes all the vertices v′ ∈ N(v) \ S. Each vertex v′ in L is characterized by its
cover degree, which is the number of uncovered adjacent vertices of v′. Note that
vertices in L are sorted according to a non-increasing cover degree value. Then,
a uniform random number r is generated from the interval [0,1]. If r ≤ drate, the
vertex with the highest cover degree is selected and added to S. Otherwise, a
vertex is selected randomly from the restricted candidate list which contains the
first lsize vertices of L. All vertices in the restricted candidate list have an equal
probability 1

lsize
of being selected.

3. The set U of uncovered vertices is re-computed.

M.A. Akbay and C. Blum / Application of CMSA20

3.2. Definition and solution of the sub-instance

Before describing the modification of data structures age0[] and age1[], we first explain
how the values in these data structures are used for defining the sub-instance, which is
obtained as an ILP model with additional restrictions. In other words, the sub-instance
is obtained by adding additional constraints to the ILP model from Section 2. This ILP
model is obtained as follows. First, the values age0[] and age1[] are used for splitting the
set of vertices into three disjoint subsets: Vin ⊆ V is the set of vertices that are forced
to form part of any solution of the sub-instance. Vout ⊆ V is the set of vertices that are
excluded from any solution to the sub-instance. Finally, Vopen ⊆ V is the set of vertices
that may, or may not, form part of a solution to the sub-instance.

• Vin contains all vertices v ∈V with age0[vi] =−1 and age1[vi]≥ 0.
• Vout contains all vertices v ∈V with age0[vi]≥ 0 and age1[vi] =−1.
• Vopen contains all remaining vertices.

The corresponding ILP model is obtained by adding a constraint xi = 1 for all vi ∈Vin, and
a constraint xi = 0 for all vi ∈Vout . After generating the restricted ILP which corresponds
to the sub-instance, CPLEX is applied to the restricted ILP with a computation time limit
of tILP seconds, resulting in a solution Sopt . Note that the more restricted a sub-instance
is, the easier it is for CPLEX to derive an optimal solution to the sub-instance.

3.3. Modification of the data structures

As mentioned above, data structures age0[] and age1[] are modified (1) after the construc-
tion of a solution S (see lines 9-12 of Algorithm 1) and (2) after solving the sub-instance
(line 16). Both cases are explained below.

After the construction of a solution S in line 8 of Algorithm 1, the following modi-
fications are performed for each v ∈V :

• If v ∈ S and age1[v] = −1, then age1[v] := 0. This means that if (1) v forms part
of S and if (2) v is currently excluded from forming part of solutions to the sub-
instance (due to age1[v] = −1), then age1[v] is set to zero. This means that v can
now be considered for the inclusion in solutions to the sub-instance.

• If, otherwise, v /∈ S and age0[v] = −1, then age0[v] := 0 This means that if (1)
v does not form part of S and if (2) v is currently not excluded to form part of
solutions to the sub-instance, it may now be considered for exclusion.

Next we describe the modification of the data structures after solving the current sub-
instance, that is, after generating a solution Sopt in the current iteration. This modification
is done in function Adapt(age0[],age1[],Sbs f ,agemax) (see line 16 of Algorithm 1). The
working of this function is pseudo-coded in Algorithm 2. If a vertex v ∈ Vopen is not
chosen by CPLEX for solution Sopt , two actions are performed: first, age0[v] is set to
zero, and second, age1[v] is increased by one. In case age1[v] reaches agemax, age1[v] is
set to its default value -1, which means that vertex v is excluded from the sub-instance in
the next iteration. In other words, the vertex is transferred from set Vopen to set Vout since
it has not been selected by CPLEX to form part of Sopt during the last agemax iterations.
Similarly, if a vertex v ∈ Vopen is frequently chosen by CPLEX for solution Sopt , it is
transferred from set Vopen to set Vin as described in line 9 of Algorithm 2.

M.A. Akbay and C. Blum / Application of CMSA 21

Algorithm 2 Function Adapt(age0[],age1[],Sbs f ,agemax)

1: input: sub-instance (C
′
)

2: for all v ∈V do

3: if v ∈Vopen then

4: if v /∈ Sbs f then

5: age0[v] := 0 and increase age1[v] by 1
6: if age1[v] = agemax then age1[v] :=−1
7: else

8: age1[v] := 0 and increase age0[v] by 1
9: if age0[v] = agemax then age0[v] :=−1

10: end if

11: else

12: if age0[v]≥ 0 then age0[v] := 0
13: if age1[v]≥ 0 then age1[v] := 0
14: end if

15: end for

16: output: C
′
, updated sub-instance

4. Experimental Evaluation

In the following we compare CMSA with the following approaches: (1) application of
CPLEX 12.10 in one-threaded mode (with a computation time limit of 2 hours per prob-
lem instance); (2) IGA-PIDS, which is the currently best greedy approach from [3];
(3) HSIA, a hybrid swarm intelligence based algorithm from [9]; and (4) ILPMA, an
ILP-based memetic algorithm from [8]. The experiments concerning CMSA, CPLEX
and IGA-PIDS were performed on a cluster of machines with Intel R© Xeon R© CPU 5670
CPUs with 12 cores of 2.933 GHz and a minimum of 32 GB RAM. As in the stand-
alone application of CPLEX, sub-instances in CMSA were solved using CPLEX 12.10
in one-threaded mode. The results for HSIA and ILPMA were taken from the respective
publications. Unfortunately, they were not available for all problem instances studied in
this work. CMSA, CPLEX and IGA-PIDS were applied to 17 social networks that are
usually used in the literature on the MIPDS problem. These networks are of small and
medium size that contain between 34 and 36692 nodes and between 788 and 198050
edges. In addition, the three algorithms were applied to 10 larger social networks from
the SNAP library that contain between 37700 and 1134890 nodes and between 2289003
and 3387388 edges (https://snap.stanford.edu/data/).

CMSA requires well-working values for na (number of solution constructions per
iteration), drate (determinism rate), lsize (candidate list size), agemax (upper limit for
the age-values), and tILP (time limit for CPLEX per iteration). The scientific tuning
software irace [11] was used for tuning these parameters. More specifically, irace was
used for generating two parameter settings for CMSA: one of the 17 small/medium
sized instances, and another one for the 10 large networks. Networks CA-AstroPh,
Email-Enron and socfb-Brandeis99 were used for the first tuning experiment, and
networks Amazon0312 and Amazon0601 were used for the second one. Finally, for
each of the two applications of irace the budget was fixed to 2000 algorithm runs, each

M.A. Akbay and C. Blum / Application of CMSA22

Table 1. Parameter values obtained for CMSA by tuning with irace.

Networks na drate lsize agemax tILP

Small/medium size 1 0.1 8 4 16
Large size 1 0.9 8 1 13

one with a time limit of 600 CPU seconds. The considered parameter value domains
were as follows: na ∈ {1, . . . ,20}, drate ∈ {0.0,0.1,0.2, . . . ,0.8,0.9}, lsize ∈ {3, . . . ,10},
agemax ∈ {1, . . . ,10} and tILP ∈ {1, . . . ,30} (in seconds). The obtained parameter value
settings are shown in Table 1. It is worth noting that the value of parameter agemax de-
creases and the value of parameter drate increases as instance size grows to keep the sub-
instance small enough to be solved by CPLEX.

While CPLEX and IGA-PIDS were applied exactly once to each of the 27 problem
instances, CMSA was applied 10 times to each instance. A computation time limit of 2
hours was given to each CPLEX run, while a limit of 600 seconds was applied to each
run of CMSA.

The results, in comparison to those of CPLEX (with a time limit of 2 hours per in-
stance), IGA-PIDS [3], HSIA [9], ILPMA [8], and are shown in Table 2 (small/medium
instances) and Table 3 (large instances). Both tables have the following structure. The
first column contains the instance name. Columns with heading ’q’ report on the quality
of the best solutions found be the five approaches, and columns with heading ’avg’ pro-
vide the average solution quality obtained. Furthermore, columns with heading ’t(s)’ in-
dicate the average computation times of ILPMA and CMSA to find the best solutions in
each run. In addition, the column with heading ’t(s)’ shows the computation time of the
greedy approach IGA-PIDS. Finally, the gap (in percent) between the solution obtained
by CPLEX and the best lower bound is indicated in the column with heading ’gap(%)’.
Note that when the gap is zero, CPLEX was able to prove optimality. The best result for
each instance is shown in bold font.

The following observations can be made. First, CPLEX performs very strongly for
all small/medium size instances, and for five of the large instances. However, for the
remaining five large instances it fails to find any other than the trivial solution within 2
hours of computation time. CMSA performs very comparably to CPLEX for the smal-
l/medium size instances. In one case (CA-AstroPh) CMSA finds a better solution than
CPLEX. In five other instances it provides results that are marginally worse than those of
CPLEX. Moreover, CMSA obtains the best average solution quality in the case of the 10
large problem instances. In particular, CMSA finds solutions much better than the trivial
ones in the case of the five instances for which CPLEX fails. Moreover, CMSA signifi-
cantly outperforms the current state-of-the-art approaches from the literature (HSIA and
ILPMA).

Finally, the results also show that there is surely the need to find a way to improve
CMSA for very large instances such as the last three instances of Table 3. The greedy
approach IGA-PIDS outperforms CMSA in the case of these three instances.

5. Conclusions and Outlook

In this study, one of the recent hybrid metaheuristics (construct, solve, merge & adapt)
was proposed to solve the minimum positive influence dominating set problem. Costruct,

M.A. Akbay and C. Blum / Application of CMSA 23

Table 2.: Numerical results for small to medium size instances.

Network CPLEX IGA-PIDS HSIA ILPMA CMSA
q gap (%) q t(s) q avg q avg t(s) q avg t(s)

Karate 15 0.00 15 0.0 n.a. n.a. 15 15.0 0.03 15 15.00 0.0
Dolphins 30 0.00 31 0.0 n.a. n.a. 30 30.0 0.13 30 30.00 0.011
Football 63 0.00 68 0.0 n.a. n.a. 65 65.65 0.54 63 63.00 14.96
Jazz 79 0.00 81 0.0 n.a. n.a. n.a. n.a. n.a. 79 79.00 0.21
CA-AstroPh 6740 0.30 6953 0.031 6905 6906.6 6857 6865.45 300.41 6736 6739.90 539.18
CA-GrQc 2587 0.00 2607 0.0 2597 2598.4 2594 2596.05 45.07 2587 2587.00 3.17
CA-HepPh 4718 0.01 4817 0.015 4791 4792.4 4770 4773.85 157.43 4718 4718.10 183.01
CA-HepTh 4471 0.00 4544 0.0 4515 4516.2 4502 4506.25 107.93 4471 4471.00 10.89
CA-CondMat 9584 0.06 9748 0.015 9729 9734.0 9683 9689.6 506.37 9585 9585.60 460.42
Email-Enron 11682 0.00 11843 0.031 11865 11873.4 11814 11818.95 760.08 11683 11683.80 183.16
ncstrlwg2 2994 0.00 3010 0.015 3004 3005.4 3001 3002.85 65.69 2994 2994.00 14.57
actors-data 3092 0.24 3147 0.016 3143 3144.5 3130 3134.5 137.74 3092 3093.50 467.65
ego-facebook 1973 0.00 1975 0.078 1726a 1726.6a 1737a 1741.55a 56.91 1973 1973.00 59.16
socfb-Brandeis99 1400 1.41 1502 0.032 n.a. n.a. n.a. n.a. n.a. 1405 1408.20 377.66
socfb-nips-ego 1398 0.00 1398 0.016 n.a. n.a. n.a. n.a. n.a. 1398 1398.00 0.024
socfb-Mich67 1329 1.56 1427 0.015 n.a. n.a. n.a. n.a. n.a. 1336 1338.70 384.60
soc-gplus 8244 0.00 8289 0.031 n.a. n.a. n.a. n.a. n.a. 8253 8254.20 486.03
average 3552.88 3615.00 3554.00
a: apparently, papers on HSIA and ILPMA have used a different ego-facebook instance

M
.A

.A
kbay

and
C

.B
lum

/A
pplication

ofC
M

SA
24

Table 3. Numerical results for large instances.

Network CPLEX IGA-PIDS CMSA
q gap (%) q t(s) q avg t(s)

musae git 9752 0.00 10386 1.98 10017 10027.20 586.25
loc-gowalla edges 67617 0.07 69086 0.21 67931 67946.60 595.07
gemsec facebook artist 15194 1.20 16217 0.21 15405 15418.40 595.73
deezer HR 54573 95.68 23738 0.14 22713 22747.80 592.43
com-youtube 351281 0.00 353387 2.98 352566 352587.00 593.50
com-dblp 120492 0.08 121940 0.31 120970 120993.60 599.43
Amazon0302 262111 97.50 134569 0.23 130303 130360.70 592.74
Amazon0312 400727 95.41 180853 0.67 183093 183103.90 282.99
Amazon0505 410236 95.19 183114 0.64 185230 185279.40 411.53
Amazon0601 403394 96.94 179964 0.66 182202 182231.30 252.42

average 209537.70 127325.40 127043.00

Merge, Solve & Adapt is based on the probabilistic construction of solutions, which are
used to extend the restricted sub-instance. This sub-instance is then solved by CPLEX
at each iteration. Based on the results provided by CPLEX, the restricted sub-instance
is modified and passed to the next iteration. Note that this procedure allows to make a
beneficial use of high-performance ILP solvers such as CPLEX even in the context of
problem instances that are too large for CPLEX to be applied directly.

Computational experiments were performed on 17 small/medium sized social net-
works and on ten larger benchmark instances from the SNAP database. The proposed
approach was evaluated and compared to the state-of-the-art methods from the literature
(including two metaheuristics and one greedy approach) and to the results obtained by
the ILP solver CPLEX 12.10. The analysis of the results showed that construct, solve,
merge & adapt outperforms the metaheuristics from the literature. Moreover, apart from
the largest three problem instances, our approach outperforms the greedy approach. In
comparison to CPLEX our approach obtains comparable results for small/medium sized
instances, and starts to outperform CPLEX as the instance size grows.

On the negative side, we realized that the performance of our approach starts to
degrade for the largest three problem instances. This means that, in these cases, even
sub-instances are too large for CPLEX to be solved in the reduced amount of time given
at each iteration. Therefore, one line of future research will deal with finding ways to
overcome this problem, possibly by designing a self-adaptive version of the proposed
algorithm. Note that parameter tuning might not be necessary anymore for such an al-
gorithm version. In addition, introducing a learning mechanism that enables the CPLEX
solutions to influence the probabilistic solution generation procedure is also considered
as an important future research direction.

Acknowledgements

This work was funded by project CI-SUSTAIN, Spanish Ministry of Science and Inno-
vation (PID2019-104156GB-I00). The corresponding author was funded by the Ministry
of National Education, Turkey (Scholarship program: YLYS-2019).

M.A. Akbay and C. Blum / Application of CMSA 25

References

[1] Christian Blum, Pedro Pinacho, Manuel López-Ibáñez, and José A Lozano. Construct, merge, solve
& adapt: a new general algorithm for combinatorial optimization. Computers & Operations Research,
68:75–88, 2016.

[2] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and concep-
tual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[3] Salim Bouamama and Christian Blum. An improved greedy heuristic for the minimum positive influence
dominating set problem in social networks. Algorithms, 14(3):79, 2021.

[4] MAI Fei and CHEN Weidong. An improved algorithm for finding minimum positive influence domi-
nating sets in social networks. Journal of South China Normal University, 48(3):59–63, 2016.

[5] Martina Fischetti and Matteo Fischetti. Matheuristics, pages 121–153. Springer International Publish-
ing, 2018.

[6] Angela K. Fournier, Erin Hall, Patricia Ricke, and Brittany Storey. Alcohol and the social network:
Online social networking sites and college students’ perceived drinking norms. Psychology of Popular
Media Culture, 2(2):86, 2013.

[7] Dilek Günneç, Subramanian Raghavan, and Rui Zhang. Least-cost influence maximization on social
networks. INFORMS Journal on Computing, 32(2):289–302, 2020.

[8] Geng Lin, Jian Guan, and Huibin Feng. An ilp based memetic algorithm for finding minimum positive
influence dominating sets in social networks. Physica A: Statistical Mechanics and its Applications,
500:199–209, 2018.

[9] Geng Lin, Jinyan Luo, Haiping Xu, and Meiqin Xu. A hybrid swarm intelligence-based algorithm
for finding minimum positive influence dominating sets. In Yong Liu, Lipo Wang, Liang Zhao, and
Zhengtao Yu, editors, Proceedings of ICNC-FSKD 2019 – Advances in Natural Computation, Fuzzy
Systems and Knowledge Discovery, pages 506–511. Springer International Publishing, 2020.

[10] Cheng Long and Raymond Chi-Wing Wong. Minimizing seed set for viral marketing. In 2011 IEEE
11th International Conference on Data Mining, pages 427–436. IEEE press, 2011.

[11] Manuel López-Ibánez et al. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43 – 58, 2016.

[12] Jiehui Pan and Tian-Ming Bu. A fast greedy algorithm for finding minimum positive influence dominat-
ing sets in social networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 360–364. IEEE, 2019.

[13] David Pisinger and Stefan Ropke. Large Neighborhood Search, pages 99–127. Springer International
Publishing, 2019.

[14] Amir Afrasiabi Rad and Morad Benyoucef. Towards detecting influential users in social networks. In
International Conference on E-Technologies, pages 227–240. Springer, 2011.

[15] Hassan Raei, Nasser Yazdani, and Masoud Asadpour. A new algorithm for positive influence dominating
set in social networks. In 2012 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pages 253–257. IEEE, 2012.

[16] Feng Wang, Erika Camacho, and Kuai Xu. Positive influence dominating set in online social networks.
In International Conference on Combinatorial Optimization and Applications, pages 313–321. Springer,
2009.

[17] Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan Shi, and Shan Shan. On positive
influence dominating sets in social networks. Theoretical Computer Science, 412(3):265–269, 2011.

[18] Guangyuan Wang. Domination problems in social networks. PhD thesis, University of Southern Queens-
land, 2014.

M.A. Akbay and C. Blum / Application of CMSA26

