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Abstract. Man overboard incidents in a maritime vessel are serious accidents where 
the rapid detection of the even is crucial for the safe retrieval of the person. To this 
end, the use of deep learning models as automatic detectors of these scenarios has 
been tested and proven efficient, however, the use of correct capturing methods is 
imperative in order for the learning framework to operate well. Thermal data can be 
a suitable method of monitoring, as they are not affected by illumination changes 
and are able to operate in rough conditions, such as open sea travel. We investigate 
the use of a convolutional autoencoder trained over thermal data, as a mechanism 
for the automatic detection of man overboard scenarios. Morever, we present a 
dataset that was created to emulate such events and was used for training and testing 
the algorithm. 
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1. Introduction 

Man overboard refers to an emergency scenario where a ship passenger or crew member 
has fallen off the vessel and into the sea. With a mortality rate of 79%, an estimate of 22 
people annually lose their lives due to such incidents[1], with the majority of them being 
untrained passengers. The high mortality is caused by the low speed of detection and 
retrieval, combined by the usual low temperature and rough conditions of the waters that 
can quickly result in drowning or hypothermia. Thus, the use of intelligent systems is 
imperative, in order to continuously monitor for such incidents and raise timely alerts. 
To this end, models based on deep learning paradigms used for the analysis of video 
streams have displayed great performance. 

However, even these approaches have some drawbacks, as they rely on the use of 
RGB video streams, i.e. data streams monitoring over the visible spectrum. While the 
use of such data is popular, due to the cost efficiency of installing normal video 
surveillance systems, and the high performance of algorithms for object detection and 
classification over such data, these streams are greatly affected by illumination changes, 
and poor visual conditions. This indicates that the use of additional or alternative data 
modalities is needed. A valid alternative is video streams using thermal capturing devices. 
These devices monitor the infrared spectrum and are not affected by the change of 
lighting.  
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1.1. Previous Work 

In a universal maritime surveillance system, human detection is a key issue and must be 
completely independent of the environment as well as light and weather conditions. 
Several human detection methods have been presented in the literate and have 
emphasized the importance of real-time home surveillance systems ([2], [3]) that focus 
on fall detection through visual sensors, deep learning and computer vision applications 
(e.g [[4][5][6]), however, little work has been presented in the literature on the man 
overboard situation.  

In essence though the incident can be modelled as an abnormal behavior detection 
problem, where the normal situation consists of a normal capturing a seafaring vessel, 
while the abnormality would be the capturing of a fall. To this end, the main approaches 
for abnormal event recognition involve either the use of supervised deep learning 
techniques to learn a dictionary of abnormal sub-events or unsupervised outlier detection 
techniques. in many applications [7]-[9]. Examples include surveillance in industrial 
environments [7] or critical infrastructures [9] for safety/security and quality assurance, 
traffic flow management [10]  and intelligent monitoring of public places [11] 

Regarding outlier detection, the works of [12], [[13], [14] learn dictionary of sub-
events, through a training process, and then those events that do not lie in the partitioned 
sub-space are marked as abnormal ones.  

Regarding deep learning, the work of [15] employs convolutional auto-encoders 
(ConvAE) to learn temporal regularity in videos, while auto-encoders are exploited in 
[16] to learn feature and reconstruct the input images. Then, one-class Support Vector 
Machines (SVMs) are used for detecting the abnormal events. The work of [17] 
introduces a hybrid scheme which aggregates ConvAE with Long Short-Term Memory 
(LSTM) encoder-decoder. Recently, deep generative models have been applied [15]-[17].  
These models are trained to produce normal events while the abnormal ones are given as 
the difference between the original frames and the generated ones. 

Computer-vision tools that operate outside of the visible spectrum (i.e., thermal 
sensors) are also gaining traction in this context, because they are not significantly 
affected by illumination changes [18]. However, such approaches do not capture texture 
or color information. Vision techniques focus on background and target modeling [8], 
object tracking [19], activity recognition [20], crowd dynamics, and identification of 
unusual and suspicious behavior [21]. These approaches seek to detect abnormalities in 
crowded environments by analyzing actions on both the spatial and temporal scales. 
Detailed surveys about video-based abnormal activity recognition have been published 
[23], [24].  

Recently, unsupervised learning models are utilized for abnormal event detection. 
In [25], the anomalies in videos are scored independently of temporal ordering and 
without any training by simply discriminating between abnormal frames and the normal 
ones. Other approaches exploit on-line incremental coding [26], deep cascading neural 
networks, and unmasking (a technique previously used for authorship verification in text 
documents) [27]. Recently, the works of [28] and [29] incorporate autoencoders and  
supervised learning for abnormal event detection. Other approaches employ tracking 
algorithms to extract salient motion information which is then classified either as normal 
or abnormal [30], [31]. However, tracking fails in complex visual scenes where multiple 
humans are present. 

In this paper we present the use of an unsupervised fall detection method for man 
overboard scenarios. Our approach is based on the use of convolutional spatiotemporal 
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autoencoders trained using a thermal imagery dataset that simulates man overboard 
incidents.  

2. Proposed System Architecture 

The presented system using only thermal. video streams to identify overboard falls. Each 
image property was fed into the spatiotemporal autoencoder. Autoencoders are a type of 
Neural Network that manage to learn efficient data encodings by training the network to 
ignore signal noise. Their usefulness comes from the fact that they are trained in an 
unsupervised manner. They are essentially composed from two main components that 
are trained in parallel. The dimensionality reduction component aims at extracting an 
efficient encoding of the input signal, while the reconstruction side tries to generate from 
the reduced encoding a representation as close as possible to the original input. To 
identify the abnormalities, the reconstruction error of each autoencoder was monitored, 
and when the error was bigger than a predefined threshold, an alert was raised. The 
selection of the threshold took place during the training, to identify the exact value that 
maximized detection performance.  

The autoencoders used for each image property had the structure presented in Figure 
1. Each thermal frame was reduced to a grayscale image with a resolution of 227x227x1. 
A 10 frame batch was used for the analysis.  
 

 
Figure 1. Proposed Model Structure 
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3. Dataset Description 

In order to train and evaluate the proposed methodology, a mock man-overboard 
event was conducted that concerned the fall of a human-sized dummy from the balcony 
of a high-rise building. In particular, the human dummy, weighting 30 Kg, was thrown 
from an approximate height of 20 meters, which is roughly equivalent to two seconds of 
free-falling. For the needs of the experiment, we made 320 test throws of the dummy, to 
simulate a man-overboard event (see Figure 2(a)-(d)). Additionally, we recorded several 
videos without dropping the dummy as well as numerous throws of various objects, such 
as plastic bags and bottles (see Figure 2(e)). This way we can implement deep learning 
models that are not prone to false-positive alarms, triggered by non-human-related events. 

 

(a) (b) (c) (d) (e) 

Figure 2. Test throws during the data collection experiments. The free fall (a)-(d) of the human dummy from 
different shooting angles (positive event), and (e) of a plastic bag (negative event). 

The experiments took place in the surrounding area of Nikaia Olympic Weightlifting 
Hall, and lasted five days. Due to the fact that the test throws were carried out throughout 
the whole day, from 9:00 AM to 5:00 PM, the acquired videos vary in terms of 
illumination conditions (e.g. underexposure, overexposure). Additionally, we shot under 
various weather conditions (e.g. sunny, cloudy, rainy, windy, hot, cold), thus providing 
further variations in the background of the event. 

In this paper, we are using a dataset consisted of RGB videos featuring the free falls 
of the dummy (see Figure 2(a)-(d)). For the dataset collection, which contains video 
sequences with a resolution of  pixels, we used a GoPro Hero 7 Silver. The 
camera was set to shoot at a high frame rate, at 50 frames per second, to ensure sufficient 
acquisition of data that concerns the critical event.  

It is underlined that to avoid training bias and guarantee replicability of the results 
to other datasets, we placed the sensor in four different locations of the building, in order 
to obtain data that vary in terms of background, illumination, shooting angle, and 
distance (see Figure 2(a)-(d)). In particular, as depicted in Figure 3, we placed the RGB 
camera (i) on the left of the fall at a close distance of 7m (see Figure 2( (a)), (ii) on the 
right of the fall at a close distance of 5m (see Figure 2( (b)), (iii) on the top left of the fall 
at an angle of roughly 45° (see Figure 2( (c)), and (iv) to the left of the fall at a long 
distance of 13m (see Figure 2( (d)). It is emphasized that to further generalize the learning 
procedure, we augmented the training data by horizontally flipping the corresponding 
videos. 
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Figure 3. The four locations of the building that the optical sensor was placed, during the data acquisition 

experiments. 

4. Experimental Evaluation 

The proposed method was implemented in Python, using the Tensorflow and Keras 
libraries. The implementation used Python 3.6 and the Keras (1.08) and Tensorflow 
(2.1.0) machine learning libraries, in combination with a number of other scientific and 
data management libraries.  The model was trained using the Google Collab Platform. 
The Area Under Curve (AUC) metric was employed in assessing the performance of the 
proposed method and the compared ones. The AUC is computed with regard to ground-
truth annotations at the frame-level and it is a common metric for many abnormal event 
detection methods. It measures the ability of the learning algorithm to correctly 
distinguish normal from abnormal events and summarises the ROC curve of the system, 
i.e. the probability curve that plots the raising a true alert (true positive rate) and a false 
alarm (false positive rate) at various thresholds. Our algorithm achieves an AUC score 
of 88.. Due to the fact that there are no similar publications for fall detection in man 
overboard scenarios, at least to the authors knowledge, a comparative analysis of the 
performance is hard to achieve. The performance of our system using these metrics can 
be viewed in Figure 4. 
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Figure 4: ROC Curve of spatiotemporal autoencoder 

5. Conclusions 

In this paper, we presented and evaluated a learning algorithm for man overboard 
detection over thermal data frames. The employed techniques use a deep machine 
learning framework, modelling a man overboard incident as an abnormal action 
recognition one. We then proceed in identifying falls by the autoencoders’ success or 
failure to reconstruct a scene due to the presence of abnormal events. 

Future work should include the fusion with additional imaging modules, such as 
normal RGB frames, and the studying of additional ways for inter and intra property 
encoding of all the available modalities to maximize the detection capabilities.  
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