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Abstract. Developing algorithms using control structures and understanding their
building blocks are essential skills in mastering programming. Ontologies and soft-
ware reasoning is a promising method for developing intelligent tutoring systems in
well-defined domains (like programming languages and algorithms); it can be used
for many kinds of teaching tasks. In this work, we used a formal model consisting
of production rules for Apache Jena reasoner as a basis for developing a constraint-
based tutor for introductory programming domain. The tutor can determine fault
reasons for any incorrect answer that a student can enter. The problem the student
should solve is building an execution trace for the given algorithm. The problem is a
closed-ended question that requires arranging given actions in the (unique) correct
order; some actions can be used several times, while others can be omitted. Using
formal reasoning to check domain constraints allowed us to provide explanatory
feedback for all kinds of errors students can make.
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1. Introduction

Ontology models and formal logic reasoning are used for knowledge representation and
processing in different domains for a wide range of tasks. E.g., the Ontology Driven
Software Engineering (ODSE) approach [1] implies using ontology models for various
aspects of software engineering: modeling different parts of software systems, products,
modules, and algorithms. In [2] the ontology model is used for declarative program anal-
ysis in software development. Most of these aspects are important in introductory pro-
gramming courses as well, where ontologies are widely used for domain modeling [3,4].

One of the efficient approaches to introducing new learners to algorithms analysis
and synthesis is the trace-based teaching approach that allows to decrease the dropout
and grade failures by 25.49% and 8.51% respectively [5,6,7]. According to the structured
programming approach, any algorithm can be represented as a tree of control structures.
In the introductory programming teaching on the Problem Formulation step [6] the algo-
rithmic reasoning skills (’a pool of abilities that are connected to constructing and under-
standing algorithms: to analyze given problems; to specify a problem precisely; to find
basic actions that are adequate to the given problem; to construct a correct algorithm to
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a given problem using the basic actions” [8]) improvement is important. On the Solution
Expression step, when the problem is formulated, and students should express a solution
through programming structures, selecting the appropriate structures for solving the task
is the main difficulty [9]. Finally, on the Solution Execution and Evaluation step, students
should test and analyse the code to identify and correct problems, and code tracing activ-
ities are appropriate tasks on this step [5,10]. Explanatory feedback (e.g., error-flagging
feedback [11] as well as other forms of explanations of student errors) has a significant
effect on learning efficiency and results.

So, automated algorithm trace generation and analysis with explanatory feedback
is an important task in introductory programming learning that can be solved using on-
tology domain models and formal logic reasoning. The reasoning rules allow to set the
domain constraints and use these rules not only for the execution trace check for correct-
ness but for the particular errors detection and corresponding explanation providing as
well at the same time.

2. Intelligent Application to Teach Algorithms

We developed an online tutoring tool How It Works: Algorithms' using ontology
reasoning to grade students’ answers and generate explanatory feedback about their er-
rors. Its input consists of an algorithm, represented as a tree of basic control structures
— sequences, alternatives, and loops (see Fig. 1) — and the values of control conditions.
The reasoner also receives the student-built trace as a sequence of control-statement exe-
cution acts. For complex control structures, the beginning and the end of their execution
constitute separate execution acts to represent the nesting of control statements in the
trace.

(a sequence) (while loop) (an expression)

.bod;.'——/ .condition:

"if_ready"”
"choose”
(alternative) ||

(if_branch, sequence) A
) ﬂ_ “choose-else” "wait" (a statament)
(else_branch, sequence)

-
Algorith ‘ global code body: “work” .condition: "not_enough”
[ | —

\

"ready"” (an expression)

"some_stuff" (a statement)

- print("the stuff performed!")

Figure 1. Fragment of algorithm represented as an abstract syntax tree

To generate explanatory feedback, we classified all the possible errors in execution-
trace building creating 33 concepts to represent them (Fig. 2). The reasoning engine
determines the error class and the additional information about the individuals related to
the error for feedback generation.

Thttps://howitworks.app/algorithms
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To select a language for the reasoning rules description and appropriate reasoning
engine, we performed a study of software reasoners to find the best one for our domain,
comparing Pellet, Apache Jena, Apache Jena SPARQL query processor, SWI-Prolog
with semweb package, and ASP (Answer Set Programming) solvers Clingo and DLV.
The results show that Apache Jena performs inference quicker than other reasoners on
most of the domain-specific tasks.

In particular, Apache Jena infers the correct trace and student’s errors 2.4-2.9 times
quicker than SWRL Pellet reasoner. Jena rules are also more expressive than SWRL, hav-
ing full CRUD operations support (e.g., creation of concepts and individuals), negation
support, and relation retraction.

Trace
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Figure 3. Execution trace processing example
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So, the developed ontology contains about 30 concepts for algorithm elements, 7
trace acts, 29 kinds of errors, and 27 explanations for correct acts; 30 roles, and about
100 positive, negative, and helper rules. Using these rules, the execution trace can be
generated based on the given algorithm, determine the domain constraints violated by the
student, and provide all the necessary information about errors to generate explanatory
feedback (Fig. 3).

The implemented software tool allows students to input the user execution trace for
the teacher-defined algorithm (stored and available by URL for easy access) by clicking
buttons inside the algorithm and show detailed explanatory feedback for errors made
using the ontology reasoning described above (Fig. 4).

program began
loop work began 1st time

condition not enough evaluated 1st time - true

iteration 1 of loop work began

alternative choose began 1st time

condition ready evaluated 1st time - true

branch of condition (ready) began 1st time

stmt some stuff{) executed 1st time

stmt print("the stuff performed!") executed 1st time
branch of condition (ready) ended 1st time

u iteration 1 of loop work ended

You should pay attention

» SequenceFinishedTookarly: A sequence performs all its actions from the first through the last, so it's too early to finish the
sequence of the body of the loop 'work, because not all the actions of the sequence have completed (ex. alternative 'choose').

» NoAlternativeEndAfterBranch: Each alternative performs no more than one alternative action and terminates. The
alternative ‘choose’ has executed the 'if-ready’ branch and should finish.

* EndedDeeper: Every act ends exactly when all its nested acts have ended, so the act of the body of the loop 'work' cannot
end until the end of the act of the alternative 'choose’ (the alternative 'choose’ is included in the body of the loop "work’).

Figure 4. Explanatory feedback provided by the tutoring tool for an error in the trace

3. Conclusion and Future Work

In this study, we present an ontology with a set of reasoning rules that is able to build
execution traces for a given algorithm, find errors in students’ traces, and provide the
necessary information to generate explanatory feedback about the violated constraints
representing subject domain laws. The approach was implemented in a software tool, us-
ing Apache Jena inference engine for ontology reasoning. The usage of forward chaining
RETE algorithm and Jena rules and reasoning allowed us to implement domain-specific
rules with adequate performance to grade students’ traces in real time step-by-step, show-
ing feedback messages right after adding an erroneous line.

The software tool can be used as a basis for developing intelligent tutoring systems
for improvement of algorithmic reasoning skills and developing understanding of pro-
gram execution during introductory programming courses. The future work includes ex-
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panding the set of supported programming languages (C++, Python and Java are im-
plemented at this moment), supporting recursive functions in the algorithms, and de-
veloping a constraint-based intelligent tutoring system based on the proposed approach
for complex exercises implementation by adding learner’s model and intelligent exercise
selection.
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