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Abstract. Scientific gait analysis methods aim to offer objective measurements, 

to assist physicians towards an accurate diagnosis or pre-diagnosis of ailments 
before they actually manifest through noticeable symptoms. This paper reviews 

selected gait analysis system technologies, trends, applications and discusses errors 

and precision in spatial and angular readings. Furthermore, we propose a novel test 
and calibration method using a biomimetic rig. To illustrate this, we conduct three 

tests on an optical single-camera gait analysis system based on a mobile android 

smart-phone with specially developed software.  
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1. Introduction 

The multiple applications of human gait analysis can be categorized in eight main 

fields: health, sports, entertainment, education, ergonomics, exoskeletons, robotics and 

security, with health being the most important. The global ageing tendency and the 

associated ailments (e.g., Parkinson's and osteoarthritis) amplify motorial problems 

dramatically. In addition, increased traffic accidents, obesity, mass sporting activities, 

orthopaedic surgeries, urge for solutions in compensating incorrect gait cycle. 

Exoskeleton mechanisms for the human limbs can help alleviate such problems. The 

design procedure of safe exoskeleton mechanisms (including prototyping, 

programming, debugging, calibrating, testing, foolproofing) necessitates the study of a 

significant number of gait cycles derived from numerous individuals both patients and 

healthy volunteers. 

Each human being has its own distinctive gait, or, rather, set of gaits, adapting to 

speed, terrain, carried load, fatigue, etc. Individual gait patterns change due to age, 

occupation, working conditions, sport activities, hobbies, life style, health issues. 

Various abnormalities, asymmetries of the gait cycle, or significant deviations from the 

standards, are indicative of possible underlying pathological conditions that can help 

doctors focus on specific ailments or conduct prediagnosis [1]. Benchmarking, i.e., 

comparison with deviation analysis, against a previously executed gait analysis at a 
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younger age, or against standard (typical) healthy population values, may reveal heart 

diseases [2], imminent cardioarrest, Parkinson's, and other syndromes including 

myopathies [3]. Gait analysis is the systematic study of human locomotion objectively 

(using instruments to record physical measurements), subjectively (based on the 

observation of experienced physicians), or semi-subjectively. Numerous protocols 

cover both objective and semi-subjective gait measuring techniques, by recording and 

analyzing measurable gait parameters such as: step length, walking speed, swing and 

stance durations, joint angles, muscles force, left and right asymmetries. For example, 

Extra Laboratory Gait Assessment Method evaluates gait parameters such as step 

length, speed and head turning ability while walking, in order to identify risk factors 

for falls among the elderly at home [4]. Miniaturized sensors and mechatronic devices 

for gait study can be categorized in three main groups: 

� Contact Wearables, including in-shoe and in-sole systems, body sensors such 

as accelerometers, gyroscopes, magnetometers, extensometers, goniometers, 

EMG electromyography, EEG encephalography, etc., allow the subject to 

walk freely in an uncontrolled environment [5]. Combined study of multiple 

sensor data is a common method [6]. 

� Contact Non-Wearables, e.g., pressure measuring platforms such as 

forceplates and walkways with capacitive sensors, piezoelectric, piezoresistive 

and ultrasonic sensors, can be significantly more precise and accurate than 

wearables, but also more expensive, typically designed for lab and clinical 

experiments, constraining motion to a few square meters or less. 

� Non Contact, image recording and processing systems with analog or digital 

cameras, laser range scanners, infrared sensors, active or passive markers, 

time-of-flight cameras and usual or structured lighting. 

In order to identify subtle gait differences, the measurement system should be of 

known accuracy. Preferably, the error components should be an order of magnitude 

smaller than the characteristics to be detected. In general, gait measurement errors are 

induced by instruments, software, physical phenomena, protocols, practitioners, 

subjects. Numerous papers deal with the precision of gait analysis systems and the 

validity of the data obtained, aiming at improving overall accuracy in diagnosis. 

In the following section (No2), we discuss about error components, accepted limits, 

and comment on objectives and research questions of the current paper. Additionally an 

alternative methodology for evaluating gait analysis systems, employing a biomimetic 

rig, without resulting to Golden standard systems, is proposed in section 3. The use of 

the rig (subsection 3.2) offers two major benefits, firstly, the exclusion of  human 

volunteers from the experiments, and secondly, the exclusion of human error factors in 

gait repetition. Illustrated test examples of the methodology are presented in section 4. 

They can check hypotheses such as "the particular gait analysis system has the required 

knee angle measurement precision for the diagnosis of that specific ailment". The 

hypothesis is discussed in last paragraph of section 4. Discussion section (No 5), 

reviews presented methodology and the contributions of the current paper. 

2. Related Work 

Modern multi-camera systems can offer 3D markers' coordinate accuracies better than 

0.03mm. Consequently, other error factors become prevalent in lab setups. The most 
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crucial factor affecting inferred joint coordinates and infusing errors - often beyond the 

acceptability of the gait analysis community - is the misplacement of markers on the 

body of the subject. Misplacement (e.g., due to different protocols / practices among 

physicians, obesity, subject's morphology / wounds / cooperation spirit) may account 

for an angle error exceeding the 5o acceptance limit which is what a trained eye is 

likely to differentiate [1]. The study of 10 children with cerebral palsy against 10 aged-

matched typical developing children, showed that anterior-posterior misplacement of 

the lateral epicondyle marker, led to hip internal-external rotation angle offsets of 5.3o 

per 10mm of displacement [7]. Determination of the ankle's internal-external rotation 

angle, demonstrated a sensitivity of 4.4o per 10mm offset. Naturally, measurements 

tend to worsen according to the ratio of the misplacement to leg length: the smaller the 

length, the bigger the angle error. It was concluded that in order to achieve an error 

below the limit of 5o on all joints, a physician needs a repeatability precision below 

1.2% of the leg length when placing the markers [7]. 

In some cases, the disparity of angle measurements between labs reached 34o [8]. It 

can be attributed mainly to different testers and the plurality of marker placement 

protocols. 

Based on the reported experiments conducted in swimming pool, with calm water  

[9], a two action cameras setup, with extensive calibration and non-linear optical 

distortion model, yielded reconstruction accuracy of 1.5mm at highres mode 

1920x1080p and 2.5mm at lowres 1280x720p. The work volume was 1x4x1.5m and 

cameras were placed 1m away. Linear camera model increased the error up to 10mm. 

A single RGB-D camera (Microsoft Kinect V2, 2.5D color +infrared camera) was 

used for the gait analysis of 20 subjects [10]. Machine learning algorithms processed 

the data and achieved a step-length mean absolute error of 42mm (with standard 

deviation of 42mm) when walking towards the camera, compared against the gold 

standard Qualisys system with 12 cameras laboratory setup. 

Two versions of Kinect (V1 & V2) were compared, against a laboratory motion 

capture system [11]. Joints coordinate errors ranged from 50 to 100mm and varied 

according to distance from center of camera. 

The MO2CA single iPhone camera system was compared to the golden standard 

Qualisys with 8 cameras setup [12]. Although spatial MO2CA measurements had an 

error up to 10mm, a non-inferiority statistical test showed that regarding stride length, 

stride time, stride length variability, stride time variability, MO2CA was not inferior to 

multi-camera Qualisys. 

According to the DMS method [13], a single camera setup with multiple markers 

on joints and head could reconstruct 3D coordinates with maximum linear 

displacement error of 77mm, with averages from 4 to 33 mm. Inferred joint angles 

maximum error is 38o, with averages from 2.4 to 11.6o. 

In more complex environments, physical phenomena such as water turbulence and 

air bubbles during swimming [11], or snow spraying in skiing activities [14], can blind 

optical equipment leaving large gaps of unmeasured track. 

Other factors such as subject's speed do induce errors well above standard stance, 

that in addition to soft tissue/suit artifacts, could result in a total measurement of up to 

8.3 +/- 7.1mm, with absolute maximum values being several times higher [14]. 

Synopsizing, although Golden standard systems, for clinical and lab use, achieve 

sub-millimeter accuracy, yet, reports from labs with such systems still contain 

significant measurement errors, mainly due to personnel, protocols and less-than-ideal 

conditions.  
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Furthermore, there is increased interest in new low-cost and portable gait analysis 

systems [15] which are now forming a new market trend. These systems are typically 

benchmarked with the aid of the golden standard systems [16]. There is also increased 

interest in new methods that could assess the accuracy of such portable gait systems, at 

a lower cost, or in a portable manner, especially for systems located in distant areas, 

away from the ease of reach of Golden systems. Also, another missing ingredient 

towards the evaluation, is a way to benchmark and calibrate such systems by excluding 

the human factor noise from the human gait repetition. Such a method is to be 

presented in the following section. 

3. Proposed Methodology 

In order to assess any gait analysis system, we have it record and analyze the gait of a 

biomimetic rig. Afterwards, we compare the results against the known properties of the 

emulated gait and determine the intra-equipment variability. The rig manages to 

exclude the inherent human intra-subject variability. This section presents examples of 

open (A,B) and closed-loop testing (C). The scope of the paper is not to assess the 

particular optical gait analysis system under test, but to demonstrate that induced errors 

are easily visualized and identified and secondly present the utility of the proposed 

methodology. Such tests, summarized in figure 1, could be conducted after a gait 

system's calibration at the initial setup, and periodically later on. They form a 

procedure that could assess/enhance the manufacturers' calibration and the users' 

efficiency. 

 

Figure 1. Work flowchart for Tests A, B and C 

It is apparent that not all tests include the same phases. For example, in test A and 

B there is no need for a human volunteer, so human related phases are omitted. 
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Test A, defines the absolute minimum joint angle error. Note that, for optical 

systems, this error varies volumetrically, i.e. it is not the same in all points of the 

observed volume. The rig can assist in precise volumetric error mapping, thus help 

calibrate the measurements inside the working envelope. Furthermore, the same 

procedure can reveal length estimation errors. Both tests B & C are dynamic. If the 

errors observed are significantly higher than test A, then further investigation could 

reveal a problematic algorithm in the gait capture system, e.g., look-ahead sampling. 

Besides positional and angular errors, dynamic tests can reveal timing errors, e.g., in 

stride time and the efficiency of critical software algorithms e.g., gait cycle detection. 

Given the assessed system's precision, one can decide if specific clinical gait 

measurements can be reliably performed. The following subsections present basic 

information for two of the main components utilized in the tests. 

3.1. Gait Analysis System Under Test 

For illustration purposes, the Device Under Test is an optical, single-camera gait 

analysis system based on a smart-phone with specially developed software. The 

software identifies colored markers placed on hip, knee, ankle, captures their 

coordinates, and records them in a tabular file. Note that the camera is not calibrated, to 

demonstrate error factors. Our gait-capture application runs on android platform using 

OpenCV4.0, and records plane coordinates and video to file. New marker colors and 

max-min marker sizes can be taught-in at any time. Each frame is time-stamped using 

the system clock. Through scaling, the captured marker coordinates are transformed 

from pixel units to millimeters. Offset detection algorithms transform human gait cycle 

to rig data. For example, a human subject walking on a steady-speed treadmill is bound 

to infuse periodic horizontal axis displacement at his joints coordinates, as he can't 

achieve an absolute steady pace. Similarly, a treadmill with cushioning, induces 

vertical axis periodic displacements. Such "noise" is detected and excluded from the 

data downloaded to the rig. 

3.2. Biomimetic Rig 

The rig bears one or two independent limbs, with four motorized orthogonal linear axes, 

two for each limb, controlled by a microprocessor, within a volume of 160x120x75cm. 

It is part of an ongoing study for the design and evaluation of various knee 

exoskeletical mechanisms. The limbs are interchangeable and length adjustable in order 

to match different physiologies. Each has three rotating joints: hip, knee, angle, and can 

be mounted on the rig at various orientations. The limbs are pathetic without motors or 

actuators, as they are designed to accept exoskeleton mechanisms for study. At this set 

of experiments, the specific limbs' knee joints are rotational, although, other sets of 

limbs could be used depending on the experiments' specifications, e.g. typical four ~ 

six bar mechanisms. The current rig setup focuses on knee flexion/extension angle 

(between femur and tibia) measurements. The rig emulates walking cycles or other 

sequences e.g., stand & walk, jog & run, squats, sitting & standing repetitive cycles, 

offering major advantages versus human subjects: memory, repeatability, stamina, 

adaptability, controlled variability. It can perform the same squat thousands of times, so 

that a gait analysis system can record it from various angles, distances, lighting 

conditions.  
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4. Evaluation 

4.1. Test A 

It is designed to reveal static divergence, suitable for optical but not for inertial 

measurements. The setup uses: 

1. A test limb that is adjusted to specific, known measurements (ankle-knee 

distance, hip-knee distance). 

2. The biomimetic rig to drive the test limb to a specific, known angle (90o 

ankle-knee-hip angle). 

3. The optical gait measurement system to capture the rig's stance for a few 

seconds. Three points are recorded, yielding one triangle per frame. 

The scope is to determine the measured error against a trusted 90o angle. The same 

experiment could be conducted at various degrees, and various positions within the 

observed volume. In our case, we used a calibrated laser cross system to confirm the 

rig's correct placement at 90o (Figure 2 left). Note that the tablet camera is not fixed on 

a tripod, to demonstrate hand jitter which is vividly presented on Figure 2, centre-right, 

as offset multiple triangles. The test algorithm is: Capture an object of known spatial 

properties (width, height, angle) with the camera. Compare the measurement results to 

object's already known properties. Finally, extract differences and categorize possible 

errors, such as axes discrepancies, errors of perspective, angle errors, etc. Figure 2 

offers an example of the above. The mean measured angle from the captured data (76 

frames) is 88.5o, instead of 90o, revealing an error of ~1.5o, well below the 5o 

acceptable limit. For a thorough system characterization, the same experiment should 

be repeated for various angles, at different positions within the observation volume, 

which is beyond the scope of this paper. 

Figure 2. Test A. Left: partial photo of the rig posing. Centre-left: pose captured with our marker tracking 

software. Centre-right: visualization of 76 frames coordinates. Right: angle measurement on a single frame. 

4.2. Test B 

It is dynamic, suitable for optical and / or inertial measurements. It is designed to reveal 

measurement divergence due to motion, and the accuracy of the gaps-filling estimation 

procedures. Setup: 

1. Recorded, open source, human gait joint coordinates data (e.g. [17]) of known 

quality. 

2. The biomimetic rig to emulate the recorded human gait. 

3. The gait measurement system to capture the rig's gait. The camera's tripod is 

placed at a distance of 130cm away from the rig. 
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If the quality of the data which will drive the rig is not known, simple tests can 

illustrate the precision/variability of the data. In this example, the hip-knee distance 

variation is approximately 30.6mm, as shown in Figure 3 (left) which displays three 

pairs of coordinates per frame (of the hip, knee and ankle). The limb(s) of the 

biomimetic rig are continuously driven with the gait data. The gait is then captured 

with the optical system and the results are compared to initial data, in order to assess 

differences. By plotting the initial and captured frames per gait cycle, in different 

colors (e.g., grey versus red), with the aid of a design platform, the errors "pop-up", i.e. 

become apparent even to the untrained eye (Figure 3, right). Note the increasing 

distortion / noise towards the far ends of the gait cycle, as represented by the 

"misplacement" of captured ankles (red dots) against the original data. Plotting also 

facilitates fast, indicative measurements, with the ability to isolate frames of particular 

interest. In this example, measurements at selected frames reveal spatial errors around 

24mm and angular deviations around 2o which are typical for non-calibrated cameras. 

Normally, to assess the optical-instrument-induced-variability, statistical analysis and 

point-by-point comparisons can be used as illustrated in [18].   

Figure 3. Test B. Left: initial data visualized. Centre: biomimetic rig emulating walk. Right: captured data 

(red) superimposed on initial data (grey). Measurements on selected frames. 

4.3. Test C 

It is a dynamic test, suitable for optical and inertial measurements, performed with a 

human subject, designed to reveal divergence by magnifying error components. Setup: 

1. A human volunteer with attached markers. 

2. A treadmill for the volunteer, so as to keep the capture camera steady. 

3. The optical gait measurement system to capture the human's gait. 

4. The biomimetic rig to emulate the recorded human gait. 

5. The same gait measurement system to capture the rig's gait. 

 

 

Figure 4. Left: Subject on treadmill, tablet on tripod. Right: Close-up of tablet monitor with markers and 

connecting lines. Background has been obscured afterwards. 
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An example is exhibited in Figures 4~6. The camera of the measuring system 

captures the sagittal plane at a distance of approximately 130cm from the treadmill. It 

is noted that the setup includes controlled light sources to help reduce shadows on 

markers. The male volunteer with height 182cm, 75kg weight, 45cm angle-knee 

distance, and 53cm knee-hip distance, walks for a few minutes on the treadmill, enough 

for the gait system to capture several complete gait cycles. Tabular joint data are 

analyzed, transformed and downloaded to the biomimetic rig to drive the limbs.  

 

Figure 5. Test C. Data from human subject. Left: walking data sample as captured using 4 targets on left foot. 

Right: selected frames from the swing stage, visualized after processing. 

Figure 6. Test C. Left: selected angle measurements from human captured swing stage. Centre: Rig walks. 

Right: visualization and measurements on selected frames. 

 
Figure 7. Error components 

In Figure 6 left, note that the hip-knee distance from the captured human gait 

varies approximately 20.4mm. The rig's gait is then captured with the same optical 

system. The rig's gait data are plotted as in test B. Compared against the human gait, 

they reveal satisfactory fit: knee flexion/extension angular error reaches, but does not 

exceed, the 5o limit. In this case the initial hypothesis would be confirmed, if 5o errors 

were satisfactory for diagnosing that specific ailment, or rejected otherwise. In our 

particular example, the difference in angular errors (2o versus 5o), between test B & C, 

reveals the effect of inherent noise in the "camera plus markers plus software" system. 

In test C, this "noise" is added twice (Figure 7), given that the data used in test B are 

from significantly smaller variability.  
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5. Discussion 

In this paper, we discussed the error components in gait analysis systems and presented 

a methodology for assessing the intra-equipment variability. The main contribution is 

that we managed to exclude the human Intra-Subject variability, which up to now has 

been largely uncontrolled, unknown, and unmeasured, thus affecting the overall 

accuracy of the gait analysis [18]. The remaining variability is due to the rest factors 

(equipment + therapist), that can now be revealed, thus easier to control.  

Furthermore, with the aid of a biomimetic rig, it is now feasible to duplicate 

human gait patterns from past analysis or from distant labs data, and study them 

repeatedly, using various software / hardware configurations.  

Similar methodologies can find interesting uses. Experiments like Test B, based on 

biomimetic rigs, could assist in training A.I. neural networks for gait capture. For 

example, by repeating a known pathological gait on the rig multiple times, the A.I. 

system can receive new training data (coordinate streams or video files) [19], from 

various camera positions, along the sagittal, frontal and transversal planes, at different 

lighting conditions. The above training data are automatically tagged, since they derive 

from the same pathological gait and thus, supervised machine learning training can be 

highly facilitated. The efficiency and maturity of a trained A.I. system can be assessed 

by presenting data from new perspectives. Again, using the biomimetic rig, this process 

can be automated and run extensively. An experienced A.I. could later, identify  

specific pathological gaits, in public human environments.  

The same methodology can be adapted to other needs. E.g., gait labs/clinics, that 

will focus on the application of exoskeletical mechanisms, could be assisted by the 

biomimetic rigs, in the customization and tuning phases of such mechanisms, as much 

as possible, prior to the patients' visit (thus minimizing initial discomfort and fatigue). 

I.e., the first series of customization can be performed on the test rig, with the aim of 

reducing the differences (error components) between the pathological and the standard 

gait.  

6. Conclusion 

For assessing gait capture systems and labs, the human gait cycle variability (intra-

subject) can be minimized by substituting the human subject with a robotic device. 

With the presented methodology, even low-cost, single camera systems can easily be 

benchmarked, without resulting to Golden standard systems, and thus may be used for 

certain gait analysis tasks within their specifications.  

Identification of errors and variability in posture measurements can be accomplished 

with static tests, such as test A. Errors and variability in gait cycle characteristics 

estimation can be studied with dynamic tests, such as test B and C. Intra-Equipment 

variability can be amplified by closing the loop, i.e., by repeating the motion capture 

analysis twice within the same set of experiments, as in test C. The presented tests and 

measurements are just indicative and not limiting the possible tests and measurements 

that could be produced by the same or other setups. 
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