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Abstract. Reinforcement Learning methods such as Q Learning, make use of action 
selection methods, in order to train an agent to perform a task. As the complexity of 

the task grows, so does the time required to train the agent. In this paper Q Learning 

is applied onto the board game Dominion, and Forced �-greedy, an expansion to the 
�-greedy action selection method is introduced. As shown in this paper the Forced 

�-greedy method achieves to accelerate the training process and optimize its results, 

especially as the complexity of the task grows.
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1. Introduction

Reinforcement Learning (RL) methods such as Q Learning, Monte Carlo Trees and deep 

Q Learning have become popular over the past few years. The goal of RL is to train an 

agent to make the best decisions in order to complete a specific task, which could be as 

simple as getting out of a maze in the fastest way possible, or as complex as finding the 

best strategy in order to win a board game. Many researchers use board games to test 

new methods of RL. Backgammon [1], the game of go [2], [3], Othello [4], [5], the 

settlers of Catan [6], [7] and other classic board games, were used to create AI agents 

that evolved strategies through playing the actual game, instead of their choices being 

controlled by a handwritten deterministic code. Strategies developed by RL agents can 

be so successful, that they are being adopted worldwide by human players, as 

demonstrated by G. Tesauro [1].

Not only must the agent be successful in completing the desired task, but the training 

process must also be as fast as possible. The choice of the action selection method during 

the training can be crucial in achieving the best possible results, as well as how fast those 

results are being achieved. The most popular action selection ��	
����
����-greedy and 

softmax [8]. Quite a few attempts have been made in order to improve those methods. 

��������	
���
���
�
�	�����-greedy [9], [10], temporally-��	�������-�������������
����-

BCM [12], wh��
����
��
����
����������������
�
�	���-greedy.

Some different approaches of RL have been tested on the board game Dominion. 

Researchers used Monte Carlo trees [13], [14], [15], others combinations of artificial 
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neural networks [16], and even balancing cards sets [17] was researched. In this paper Q

Learning is applied on the card game Dominion. Our goal is to train an agent able to 

oppose and dominate over AI opponents, who use popular strategies developed by 

human players. We also test a new expansion to �-greedy method, defined as the Forced 

�-greedy, in order to accelerate the training. The agent trained with this new method not 

only achieves better wining rate, than the one trained with the classic �-greedy method, 

but the training process is much faster.

2. Reinforcement Learning

The purpose of reinforcement learning (RL), is to train an agent to perform a task, 

through interaction with the environment and by using the trial and error method. Firstly

we create a virtual episode of the problem, and define the environment as everything else, 

except for the agent in training. The environment’s current state (�) is described by 

several variables, which are provided to the agent. Then the agent has to make a choice 

between all possible actions �(�) given the current state of the environment. The choice 

is made based on a policy �(�, �). After the action is performed, the agent receives a 

numerical reward (�), as well as the environment’s new state (��). The task of the agent 

is to find an optimal policy ��(�, �), in order to maximize the cumulative rewards. To do 

so the agent, at the beginning of the training, assigns a random value �(�, �) to every 

state-action pair, which equals to the expected reward if he takes action �, when the state 

is �. Every time the agent finds itself to the same state �, taking the same action �, he 

updates the value of �(�, �), for that state-action pair. After many iterations, and after 

passing all possible states, the agent will have an optimal approximation of the true 

values of the �(�, �) function. The best policy ��(�, �) then is proven [8] to be the greedy 

policy, in which the agent always selects the action with the highest  �(�, �) value, 

among all possible actions, in order to maximize the cumulative reward.

2.1. Exploration versus Exploitation

When an agent follows the greedy policy, it is considered an exploitation of current 

knowledge, in order to maximize the reward. This policy works well when the values 

of �(�, �) function are the correct ones. But at the start of the training we assign random 

values to the �(�, �) function. If the agent follows the greedy policy during the training, 

he will never explore some actions, which have lower � values than others, therefore he 

may not find the optimal solution to the problem.

During the training process it is better to use a policy that allows the agent to explore 

alternative actions, even if they have low � values. It is not wise though to let the agent 

make random choices, because then the training time would be huge. It would be better 

for the agent to focus on the actions with higher � values, in order to get a better 

approximation of them, but occasionally to explore, in order to find better actions that 

have been assigned low � values by chance.

Such action selection methods, which match those criteria, are �-greedy and 

softmax. The �-greedy method states that the agent chooses the greedy action with 

probability 1 � 	, and a random action with probability 	, where 	 is a number between 

zero and one. When 	 equals zero the agent becomes greedy, and when 	 equals one the 

agent always chooses random actions. According to the softmax method, the agent 
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chooses an action  
 with probability  �(�) shown in Eq. (1), where  � is a positive 

parameter called temperature and 
 the number of possible actions in the current state of 

the environment. In the limit where  � � 0 the agent becomes greedy, while higher 

temperatures make all the actions equiprobable.

�(
) =
��(�)/�

� ��(�)/��
���

 (1)

2.2. Temporal Difference Learning

Temporal Difference learning (TD) is a method of updating the values of  �(�, �)
function. Temporal difference learning methods are divided into on policy (S.A.R.S.A.) 

and off policy (Q Learning). The difference between them is that in S.A.R.S.A. we 

estimate the � values for the policy the agent uses to make choices, while in Q Learning 

we estimate the � values for the greedy policy, regardless which policy the agent uses. 

In both methods, a virtual episode of the process is created, and random values �(�, �)

are set, for every state-action pair. The agent finds themselves at the initial state ��, and 

�����	��	
��
�	����	��	
!����	"����
������������
�	��������	
������	
���-greedy or by the 

softmax method. 

In S.A.R.S.A., at every time step of the episode the agent finds the environment in a 

state � and selects an action �, based on the �(�, �) value. Then the agent receives a 

reward  � as well as the environment’s new state  ��. The agents then selects another 

action �� with �(��, ��) value and updates �(�, �) as shown in Eq. (2), where � is the 

learning rate and � is the discount factor. This process is repeated until the episodes 

terminate. After the simulation of a large number of episodes the estimates of the �
values will converge to the true values.

�(�, �) = �(�, �) + � � [� + � � �(��, ��) � �(�, �)] (2)

During Q Learning the update of �(�, �) is quite different. Instead of waiting until the 

next action ��, the agent updates �(�, �) immediately after taking an action, using the 

maximum � value of all the possible actions �� at the new state ��, as shown in Eq. (3). 

�(�, �) = �(�, �) + � � [� + � � max
��

�(��, ��) � �(�, �)] (3)

3. Dominion Board Game

Dominion is a card game, consisting of three types of cards, treasure cards, victory cards 

and kingdom cards. Treasure cards are the currency of the game providing coins when 

played. There are three kinds of treasure cards, copper that provide one coin, silver that 

provide two coins and gold that provide three coins. Victory cards cannot be played, but 

they are worth points, and acquiring as many as possible of them, is the way to win. 

Estates worth one point, duchies worth two points, provinces worth three points, while 

curses worth minus one point. There are many different kingdom cards, with each one 

having a different effect when played.

Each player starts the game with a deck of ten cards, seven coppers and three estates. 

The remaining treasure and victory cards are placed in piles, and ten piles of kingdom 
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cards are created, each consisting of ten cards. The players draw five cards from their 

decks, and take turns, starting with the first player. Each turn has three phases, action 

phase, buy phase and clean-up. At the action phase the active player can play one 

kingdom card from his hand. Kingdom cards have various effects, as card drawing, 

providing additional actions or buys, etc. At the buy phase, the active player can buy one 

card, or more if he has gained additional buys at the action phase, paying the cost of the 

bought cards by playing treasure cards from his hand. Finally at the clean-up phase, the 

active player discards his hand, as well as all the cards he played and bought, and draws 

five new cards from his deck. If the deck runs out of cards, he shuffles the discarded 

cards to create a new deck. The players keep taking turns until the provinces pile is 

empty, or three or more other piles are empty, whichever comes first, and the game ends. 

The player with the most points is the winner.

3.1. JDominion

A training and testing environment was created, written entirely in Java, called 

JDominion. The application allows the creation of two, three or four player games, and 

the option to train using the Q Learning method or test the agent. The ten kingdom cards, 

which were integrated in the application, as well as a small description and their prices 

are shown in Table 1. An AI opponent was created in order to train and test the agent, 

Money. The Money policy buys only silver and gold treasure cards, until two gold cards

are present in the deck, from that point on it is also possible to buy victory cards. The 

money policy was also used by Winder [16], to train and test his agent.

Table 1. Kingdom Cards

Kingdom Card Description Price 

Festival +2 actions, +1 buy, +2 coins 5 

Chapel Thrash up to four cards from your hand 2 

Bazaar +2 actions, +1 card, +1 coin 5 

Adventurer Reveal cards from your deck, until you draw two treasure 

cards 

6 

Conspirator +2 coins, if you played three or more actions +1 card, +1 

action 

4 

Smithy +3 cards 4 

Moneylender Thrash a copper from your hand, if you do +3 coins 4 

Village +1 card, +2 actions 3 

Woodcutter +1 buy, +2 coins 3 

Workers village +1 card, +2 actions, +1 buy 4 

The JDominion application, not only trains the agent, but also tests the efficiency of 

the trained agent, alongside with the training. After every 10.000 games, the training 

process stops temporarily, and 10.000 testing games are conducted, using the same 

number of players as the training games. During the testing games the agent uses the 

greedy policy, according to how the values of the Q function have shaped so far. The 

results of the training and the testing games are stored, as well as various other statistics, 
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like the average number of each card bought during the game, the maximum and the 

minimum number of each card bought etc. The application also stores the current values 

of the Q function, the values of the Q function for which the testing games had the best 

results, and the number of times the agent has found himself to every specific state-action 

pair during the training. The JDominion application can be found online at 

https://sourceforge.net/projects/jdominion/files/.

4. Results

To define the state of the environment several variables were used as shown in Table 2. 

For every variable we used an upper bound, in order to diminish the total number of 

different state-actions pairs. Two sets of training games were conducted, the first with 

the agent against one AI opponent (two players game) and the second with the agent 

against three AI opponents (four players games).That is because in four player games the 

provinces pile, tend to exhaust faster, causing the game to end in a lower number of turns 

than the two players games. So the strategy the agent evolved in the slow two player

games, isn't proved to be successful in the fast four player games, and vice versa. Also 

we chose different upper bound for four players games and for two players games .The 

upper bound in each case, was chosen as the rounded up average of every variable, which 

we found during preliminary training games [18].

Table 2 Variables used to describe the environment

Four players games Two players games

Variables Upper bound Number of states Upper bound Number of states

Number of turns 12 13 19 20 

Copper cards in deck 8 2 8 2 

Silver cards in deck 4 5 6 7 

Gold cards in deck 2 3 4 5 

Festivals in deck 1 2 1 2 

Chapels in deck 1 2 1 2 

Bazaars in deck 1 2 1 2 

Adventurers in deck 1 2 1 2 

Conspirators in deck 1 2 1 2 

Smithies in deck 1 2 2 3 

Moneylenders in deck 1 2 1 2 

Villages in deck 1 2 1 2 

Woodcutters in deck 1 2 1 2 

Workers villages in 

deck
1 2 1 2 

Possible buys  18  18 

Total number of states  7.188.480  38.707.200 

G. Angelopoulos and D. Metafas / Forced ε-Greedy16



The purpose of the training was for the agent to learn the best card to buy in every 

round, in order to win the game. So with 18 different choices in every round, the total 

number of state-action pairs was 7,188,480 for four player games, and 38,707,200 for 

two player games.

4.1. Forced Exploration

The action selection method used during ��	
���	����� 	�
������"
���-greedy, with 	 =

0.2 , the learning rate  � = 0.2 and the discount factor  � = 0.95 , which are the 

recommended values by R. Sutton [3]. Training games with different values for these 

parameters were conducted, but the results were worst, so we fixed their values as above. 

Although the total number of different state-action pairs was quite large in both cases, 

we found that the agent only explored only a small portion of them. In the case of four 

player games, after 10,000,000 training games, the agent explored 27.2% of the state-

action pairs (1,958,822 of 7,188,480) and only in 11.1% (800,087 of 7,188,480) he chose 

the action, given the state, more than 10 times. In the case of two player games, after 

15,000,000 training games, the corresponding numbers are 24.1% (9,358,686 of 

38,707,200) and 8.4% (3,265,873 of 38,707,200).

#��������	��������	
��
���	�	����������������"�����
	���
�����
������	��	
���-greedy 

��	
���� 	

	�"���
�����$�������-greedy. To apply this method, we kept track of how

many times during the training the agent visited every state-action pair, and we named 

every visit a “pass”. Before the agent select the actions, he checks the passes of every 

possible action he can take. If there is an action with less than 10 passes, he selects that 

action. If there are more than one actions with 10 or less passes, he selects the one with 

the least passes, and if two or more have the least passes he selects one at random. Finally 

if all the actions have 10 passes or more he selects his ���	�
�	����"�	
� 	
���-greedy 

action selection method. The training for both two and four player games was repeated,

&�����	
����������-���������	
��*�+������
	������������	
��$�������-greedy method to 

prefer actions with less than 5 passes instead of 10 in the case of four player games, due 

to the smaller total number of states. As we can see in Table 3, we forced the agent to 

explore significantly more in both cases.

Table 3. State-actions pairs explored for classic and forced �-greedy

 Two players games Four players games 

 ��������	-
greedy 


���
��	-
greedy 

��������	-
greedy 


���
��	-
greedy 

Total Number of states 7,188,480 7,188,480 38,707,200 38,707,200 

Number of states 

explored 

1,958,822 2,830,574 9,358,686 15,009,555 

Number of states 

explored (%) 

27.2 39.3 24.1 38.7 

Number of states with 

more than 10 passes 

800,087 1,213,700 3,265,873 5,702,073 

Number of states with 

more than 10 passes (%) 

11.1 16.8 8.4 14.7 
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In order to verify our results the training for both methods was repeated, for both 

two and four player games, ten times. In Figure 1 we can see the average winning rate of 

the agent (5 point moving average) for the four player games, for both classic and forced 

�-greedy. ;
����������-greedy method has slightly better results, as the agent reaches the 


���
���"��������
	����
������	

��	
��
���	�	�
�����"�	
�	
����
������-greedy method.

Figure 1. Average winning of Classic and Forced �-greedy (4 player games)

In Figure 2 we can see the average winning rate of the agent (5 point moving 

average) for the two player games this time, for both classic and forced �-greedy. The 

agent trained with the forced �-greedy method, not only is faster, but his average winning 

rate is better, which suggest that he found a better strategy, than the agent trained with 

the classic �-greedy method. The large number of total states, clearly favors the forced 

�-greedy method.

Figure 2. Average winning of Classic and Forced �-greedy (2 player games)
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In the case of the two player games, the success of the trained agent is slightly better 

than the one trained by Winder [16], who also tested his agent against the money policy, 

and found that the agent wining rate was 74.7%. The agent trained with the Forced �-

greedy method had average wining rate of 76.9% (the best result found during training).

5. Discussion and Future Work

In Q Learning, it is crucial to give the agent the option to explore new states, in order to 

find the optimal solution for the task at hand. Given the update algorithm of the Q values 

for every state-action pair, it is clear that with every update we get a better approximation 

of the true Q value. With the classic �-greedy method, the agent only by chance selects 

low Q value actions. If the number of the total state-action pair is small, ant the number 

of training games large, we can be quite sure, that most of the possible actions, will get 

selected, and the agent will find the optimal solution. But in more complex environments, 

where the number of states is huge, the �-greedy method can overlook some actions, 

causing the training process to be slower and possibly miss the optimal solution. In such 

environments, forcing the agent to explore actions with initial low Q values, which were 

assigned at random, will lead to better approximations for those values, causing the 

higher of them to be chosen again and the training process to present faster and better 

results.

The Forced exploration is not a new action selection method, but merely an 

expansion to the �-greedy method. Other actions selection methods, as softmax, can also 

be expanded the in same way. It is also our opinion that the forced exploration could find 

an application in Deep Q Learning methods, involving neural networks.
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