As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In recent years, template-based methods such as Siamese network trackers and Correlation Filter (CF) based trackers have achieved state-of-the-art performance in several benchmarks. Recent Siamese network trackers use deep features extracted from convolutional neural networks to locate the target. However, the tracking performance of these trackers decreases when there are similar distractors to the object and the target object is deformed. On the other hand, correlation filter (CF)-based trackers that use handcrafted features (e.g., HOG features) to spatially locate the target. These two approaches have complementary characteristics due to differences in learning methods, features used, and the size of search regions. Also, we found that these trackers are complementary in terms of performance in benchmarking. Therefore, we propose the “Complementary Tracking framework using Average peak-to-correlation energy” (CTA). CTA is the generic object tracking framework that connects CF-trackers and Siamese-trackers in parallel and exploits the complementary features of these. In CTA, when a tracking failure of the Siamese tracker is detected using Average peak-to-correlation energy (APCE), which is an evaluation index of the response map matrix, the CF-trackers correct the output. In experimental on OTB100, CTA significantly improves the performance over the original tracker for several combinations of Siamese-trackers and CF-rackers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.