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Abstract. Processing case-law contents for electronic publishing purposes is a
time-consuming activity that encompasses several sub-tasks and usually involves
adding annotations to the original text. On the other hand, recent trends in Artifi-
cial Intelligence and Natural Language Processing enable the automatic and effi-
cient analysis of big textual data. In this paper we present our Machine Learning
solution to three specific business problems, regularly met by a real world Italian
publisher in their day-to-day work: recognition of legal references in text spans,
new content ranking by relevance, and text classification according to a given tree
of topics. Different approaches based on BERT language model were experimented
with, together with alternatives, typically based on Bag-of-Words. The optimal so-
lution, deployed in a controlled production environment, was in two out of three
cases based on fine-tuned BERT (for the extraction of legal references and text clas-
sification), while, in the case of relevance ranking, a Random Forest model, with
hand-crafted features, was preferred. We will conclude by discussing the concrete
impact, as perceived by the publisher, of the developed prototypes.
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1. Introduction

Processing case-law contents, such as court judgements, for electronic publishing pur-
poses is a time-consuming activity that encompasses several sub-tasks and usually in-
volves adding annotations to the original text. Some operations, such as ranking new
documents by their relevance, are required to determine which ones are worthy of publi-
cation. Other annotations are incorporated in products or services for the final customers,
for example to facilitate search and exploration of related contents. Annotating legal texts
requires specific knowledge, usually provided by domain experts or coded in a software
component. On the other hand, recent trends in Artificial Intelligence and Natural Lan-
guage Processing enable the automatic and efficient analysis of big textual data. These
methods usually must be adapted for a specific domain. We will present our solution
to three different business problems in the context of an Italian publisher of legal texts
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and related products, in particular concerning the automatic annotation of Italian court
judgements (mostly common or criminal law), originally provided in XML format :

1. recognizing legal references, distinguishing between references to legislation or to other
judgements (Section 4);

2. ranking by potential relevance for the editors, to help assessing whether the content
should be published or not (Section 5);

3. labeling according to given topics, described by a hierarchy of three classification levels,
containing nodes such as ”personal freedom” or ”extortion” (Section 6).

For each problem, we developed a Machine Learning prototype that was deemed viable
by the Business (i.e. the publisher’s managers and decision-makers), and successfully
deployed in a controlled production environment for inference on new data and further
fine-tuning. The availability of high-quality training data, collected by the Business over
the course of the years, enabled the successful experimentation of supervised methods.
Before describing in detail the developed prototypes, we will summarize some previ-
ous work to better contextualize our research (Section 2); we will also provide essential
details about the pre-existing annotation process of the publisher (Section 3). We con-
clude by discussing the business impact of the developed prototypes, together with their
limitations and further work (Section 7).

2. Related work

A problem we will investigate in Section 4 is the automatic extraction of legal refer-
ences, which can been solved without the help of Machine Learning through top-down
approaches, as shown in [1] and [2]. However, our goal is also to classify different types
of references according to their roles in the examined judgement (see [3] for a similar
business case); we will frame the problem as a Named Entity Recognition one and solve
it with Machine Learning methods, in order to better use context information and gen-
eralize. Named Entity Recognition for Italian language using Deep Learning is tackled
with interesting results in [4]. Similar applications in role classification, that involve a
Machine Learning approach, can be found in [5]. Text classification methods are within
the scope of our research in Section 5 (binary classification problem) and Section 6
(multi-class); they have been successfully applied to a number of use cases ranging from
plagiarism [6] to estimating the period in which a text was published [7]. Overall, Ma-
chine Learning overcomes the limits of manually compiling classification rules, when
enough training data are available. Successful experiments in predicting law areas from
text, using the Support Vector Machine model class, are described in [8]. Deep Learning
approaches for the legal domain, using Convolutional Neural Networks, are described in
[9]. More context to the problem of Extreme multi-label text classification (XMTC) and
relative applications of Deep Learning techniques is provided in [10]. A larger amount of
training examples was traditionally required in order to reach satisfying results through
Deep Learning. Human-labeled data, domain-specific, are still necessary to conduct suc-
cessful experiments, but in smaller amounts, thanks to transfer learning and pre-trained
language models. One the most effective architectures developed over the last few years
is Google BERT [11], a transformer model that leverages upon the self-attention mecha-
nism. BERT can be fine-tuned for specific tasks such as Named Entity Recognition and
text classification. Chalkidis and Kampas [12] noted that self-attention does not only lead
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to performance improvements in legal text classification, but might also provide useful
evidence for the predictions. However, Deep Learning models can be computationally
expensive and sometimes the apparent performance gain over other Machine Learning
methods is negligible or spurious, as discussed for example in [13]. NLP–based metadata
extraction for Italian legal texts is described in [14] and [15], but they are focused on the
legislative act life-cycle and consolidation.

3. Business Context: A Real-World Publishing Process of Legal Texts

We will briefly describe in this section the business context where our research took
place, in particular the electronic publishing workflow where NLP was applied. We won’t
provide information on other operations that are outside the scope of these applications.
The original contents are judgements released by Italian courts and, after a pre-publishing
phase, provided in XML format (documents). Each document is assigned a unique ID
and stored in a database with its metadata, such as an identifier of the corresponding
source, called Authority, and the Date of the judgement. XML documents are divided in
three different sections: an introductory Preamble providing contextual information to
the judgement; a main part containing factual and legal information (called FactsLaw);
a final part containing the verdict (called PQM, acronym for the Italian expression ”per
questi motivi”, meaning ”for these reasons”). Each section is further divided into Para-
graphs, of variable length (from hundreds to thousands of characters).
The following Steps are performed on each document, enriching the original XML:

1. extraction of legal references: contiguous spans within the same Paragraph, that contain a
reference, are tagged. Prior to this work, it was accomplished through top-down rules and
regular expressions. See Section 4 for more details;

2. linking of legal references: hyperlinks to external documents are added, containing the
judgement or legislation mentioned in the text. This is accomplished through a custom
search engine that is outside the scope of this paper;

3. relevance classification: documents are labeled as relevant or irrelevant. Relevant ones are
considered for further editing and publication. This operation is historically performed by
domain experts and content curators. See Section 5 for more details;

4. topic classification: each relevant document is labeled by domain experts, according to
what the examined judgement is about and a pre-existing topic tree. See Section 6;

5. holding formulation: one or more holdings are compiled by domain experts, summarizing
the law principles expressed in the judgement. Through adoption of attention-based models,
this task is related to the topic classification one step and briefly discussed in Section 6.

6. reference classification: references to other judgements that were previously extracted are
classified by domain experts as ”according to” / ”different from” / ”related to”, based on the
relation between the two verdicts; errors in reference extraction are also manually corrected.

Topics, holdings and legal references form the backbone of several of the publisher’s
electronic products, for attorneys and other Law professionals. Given the current state-of-
the-art, outlined in Section 2, A.I. potential and limitations, the following best practices
were agreed upon with the Business:

(i) to carefully frame the use cases/business problems;
(ii) to identify meaningful datasets for Machine Learning model development, together with

the appropriate error metrics;
(iii) to evaluate different models according to chosen metrics, and also in terms of computational

cost and explainability, so that an informed decision can be taken by the Business;
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(iv) to perform error analysis of each prototype, educating the Business on the limits of A.I. and
understanding where the human must intervene.

4. Application: Recognition of Legal References

Our goal is to identify in a judgement all the spans of text that refer to a specific law
or to another judgement. References to other judgements must also be classified as ”ac-
cording to” / ”different from” / ”related to” the examined judgement. Developing a sin-
gle Machine Learning system that performs both operations allows to automate Steps
1 and 6 described in Section 3. This simple distinction between reference roles is used
downstream in several publishing products.

4.1. Methodology

The proposed solution is based on a fine-tuned version of multi-language BERT2 for
Named Entity Recognition [11]. Our setup is similar to the one for Portuguese language
described in [16], but we do not use the CRF layer that is described in the paper. The final
layer performs token-level classification with one predicted class among the following
target list, defined in manner consistent with common IOB practices in NER [4]:

1. O: the token is outside / not part of a reference;
2. B-L: the token is the beginning of a legislative reference e.g. to a specific law article;
3. B-J-ACC: the token is the beginning of a reference to a judgement, that is in accordance

with the examined judgement;
4. B-J-DIF: as B-J-ACC, but the referred verdict was different from the examined one;
5. B-J-REL: as B-J-ACC, but the two judgements are simply related; from a legal standpoint,

it’s a weaker relation compared to B-J-ACC and B-J-DIF;
6. I-R: the token is the continuation of a reference (any kind).

The chosen metrics to evaluate the system, agreed upon with the Business, are the F1-
Scores of ”proper” reference classes, excluding the O class from the list above.
Original input comes in the form of XML Paragraphs where free text references (i.e.
spans of text) are tagged accordingly. Through a custom version of the standard BERT
wordpiece tokenizer, a preprocessing phase prepares each Paragraph for analysis, asso-
ciating target classes to BERT tokens, and removing all XML markup. Data are split in
a Training Set (70%), Development Set (15%) and Test Set (15%). BERT fine-tuning
is conducted by adding a final feedforward layer with softmax, and minimizing cross-
entropy loss function over training data. Development data are used to perform model
evaluation and selection by maximizing the weighted average of F1-Scores, calculated
over all target classes, barring the O class. A postprocessing function, used for integra-
tion with the publisher’s pipeline, is made available for re-aligning BERT output to the
original text. At the moment of inference on new documents, all Paragraphs are classified
separately, in conformity with model training.

Implementation Details. The described methodology was implemented using Tensor-
Flow 1.12, in particular the estimator API for training, evaluation, prediction and export
for serving [17].

2BERT original code from: https://tfhub.dev/google/bert_multi_cased_L-12_H-768_A-12/1

F. Tarasconi et al. / Natural Language Processing Applications in Case-Law Text Publishing 157

https://tfhub.dev/google/bert_multi_cased_L-12_H-768_A-12/1


4.2. Prototype Data

When our research started, the publisher’s information concerning the type of reference
to other judgements (necessary to discriminate between B-J-ACC, B-J-DIF, B-J-REL
classes) was not available at the level of text spans, but stored only at document level.
Therefore, domain experts were involved to further annotate, add the precise classes to
text spans, and provide the required input. For this reason, only a small subset of the
publisher’s documents could be used, for the development of this application. We worked
on criminal and common law judgements of the Italian Highest Courts of Appeal. The
resulting dataset is composed of 6,133 Paragraphs from 150 documents, with 13,657
total references.

4.3. Results

Table 1. Breakdown of Test error metrics for fine-tuned BERT model in legal reference recognition.

Type Test Cases Precision Recall F1-Score

B-L 692 0.940 0.957 0.948

B-J-ACC 77 0.535 0.494 0.514

B-J-DIF 15 0.200 1.000 0.333

B-J-REL 776 0.883 0.930 0.906

I-R 16,118 0.969 0.985 0.977

Breakdown of performance on Test Set is reported in Table 1. The system achieved
a weighted F1-Score on classes of interest of 0.970 (including continuations I-R), 0.900
(counting only beginnings of references B).

Error Analysis. Several errors were in delimiting text spans containing references, ex-
actly as the original data, but the model proposals were found to be often acceptable as
well. Only in 6 cases serious errors were committed: confusing laws with judgements, or
B-J-ACC references with B-J-DIF. Despite lower performances on less frequent classes,
the prototype was considered viable by the Business, given also the partially subjective
nature of the task; more experiments will be conducted with additional data.

Other Experiments. Different setups, for solving the problem with BERT, were experi-
mented with, such as breaking down the problem into related subtasks (e.g. distinguish-
ing B-L and B-J, plus distinguishing between B-J-ACC, B-J-DIF and B-J-REL). These
approaches yielded slightly lower performances (between 0.01 and 0.02 drop in weighted
F1-Score) and found more difficult to correctly assign the less frequent labels. Other ex-
periments, without pre-training for the Italian language (e.g. analyzing windows of texts
as shown in [4]), saw a larger performance drop, especially in discriminating between
B-J-ACC, B-J-DIF and B-J-REL.

5. Application: Ranking by Relevance

The goal of this application is to identify the potential relevance of documents, in order
to select the ones that will be annotated further and eventually published (see Step 3
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in Section 3). A model that formulates such predictions should implement, explicitly
or implicitly, the criteria employed by humans; a supervised approach, based upon pre-
classifed relevant documents, seems therefore promising . Because the output of Machine
Learning models can usually be expressed as a probability or a score, our idea, agreed
upon with the Business, was to provide the end-user with a ranking of documents, to
review model suggestions in order of relevance.

5.1. Methodology

Our solution is based on a Random Forest model [18] that uses hand-crafted features,
defined together with the editors, and is trained on a binary classification problem, to
distinguish between relevant and irrelevant documents. The probability of belonging to
the relevant class is provided as output and it’s used as relevance ranking. The features
are:

a) number of references to legislation (see Section 4) in the document;
b) number of references to other judgements (see Section 4) in the document;
c) length (number of characters) of FactsLaw XML section (see Section 3), after removing

XML markup;
d) number of legal quotes, delimited by quotation marks and containing more than one word;
e) binary features corresponding to presence or absence or specific expressions in the PQM

XML section.

Coding these features involves an NLP preprocessing step, not only to remove XML
markup, but also to perform lemmatization and be able to match variants of the original
expression, e.g. ”declares the appeals inadmissible” should match the given expression
”declare the appeal inadmissible”.
Data are split in a Training Set (60%), Development Set (20%) and Test Set (20%). A
grid search is performed in order to maximize the weighted F1-Score on the development
set and identify the optimal number of estimators, minimum samples in each leaf and
maximum depth of each tree. According to the importance of listed variables in the
resulting model, calculated through permutations [18], they are all useful to the task.

Implementation Details. The procedure was coded in Python and implemented using
Scikit Learn 0.22.1 [19].

5.2. Prototype Data

The dataset, that was determined in accordance with the Business, represents a sam-
ple of stored data from all the Authorities which are currently managed. The dataset is
composed of 4,958 documents: 64% relevant and 36% irrelevant. It is largely composed
(70%) of judgements from the Highest Courts of Appeal (criminal and common law), but
also contains documents from the T.A.R. Administrative Regional Tribunal (5%), Italian
Constitutional Court (4%) and E.U. courts (4%). Remaining documents come from other
Italian courts. Irrelevant documents are likely to be more frequent in the real-world exe-
cution of this task, as not all the historical ones were stored and available. At the same
time, it was not possible to determine an average distribution of ”relevant vs irrelevant”
documents. This fact will be considered in analyzing the performance of the optimal so-
lution; strong bias towards the relevant class should be avoided.
Finally, working on this dataset, through Machine Learning methods, allowed us to find
human mistakes in the original classification.
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5.3. Results

Table 2. Breakdown of Test error metrics for Random Forest model in relevance classification.

Class Precision Recall F1-Score

Relevant 0.84 0.90 0.87

Irrelevant 0.81 0.70 0.75

Weighted average 0.83 0.83 0.83

The model achieves a weighted F1-Score of 0.83 in Test. Breakdown between rele-
vant and irrelevant classes is reported in Table 2.
As we have seen in the Prototype Data Subsection, irrelevant data are likely under-
represented in our dataset, so it’s important that the performance on the irrelevant class
is checked carefully, as its weight in the real-world application is higher. We will evalu-
ate further fine-tuning of the model and re-balancing of the training data, as information
from the production environment is collected.

Error Analysis. Human analysis of 50 errors showed that, in 64% of cases (32 docu-
ments), the model picked the wrong class, but in a borderline situation; several irrelevant
documents were considered ”acceptable” (i.e. relevant) by some of the domain experts.
The remaining 18 documents, actual mistakes, had a lower ranking associated with them,
indicating lower model confidence. There were cases, difficult to treat with this approach,
where a judgement was labeled as ”irrelevant”, because the annotator knew pertained a
topic, well covered by the publisher, and with very similar judgements already analyzed.

Other Experiments. A single Classification Tree, based upon the same features,
achieved a weighted F1-Score of 0.78 on the same task. Adding features, based on fre-
quent words or specific references, found in the document, didn’t improve the perfor-
mance of Random Forest or Classification Tree models.
An implementation of BERT for binary classification of judgements, similar to the one
described in Section 6, was used to test an approach entirely based on free text analysis,
and achieved a weighted F1-Score of 0.75.

6. Application: Classification by Topic

Our goal is to label each document as related to none, one or more topics. Topics belong
to a proprietary resource of the publisher’s: a classification tree of three levels, with
12,066 nodes. The majority of documents (75%) are associated to a single topic; more
than 99% documents possess between 1 and 5 labels.
After conducting an exploratory analysis, the original problem was transformed in a more
tractable one; for what concerns the prototype, object of this research, target topics must
possess a minimum number F = 200 of training examples. In case a node is discarded
because of its frequency, lower than F , documents belonging to that node are assigned
to the parent node (corresponding to a more generic topic), if possible.
This restriction allowed us to build a working prototype and show its usefulness to the
Business. Adding data, reducing F and managing more topics will be treated as further
evolution of the developed system.
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6.1. Methodology

The proposed solution is based on a fine-tuned version of multi-language BERT [11]
for multi-label text classification. Our setup is similar to the one proposed in [20] for
multi-label text classification on EU Legislation and we exploit the multi-label attention
mechanism through an architecture similar to the one described in [21]. The main ob-
stacle in adapting BERT to this application is the limitation of the length of documents
that the model can analyze (512 tokens). We fix a constant N, and, for each document,
N different Paragraphs are randomly sampled from the FactsLaw XML section and pro-
cessed individually through the attention layers. The N different outputs from these lay-
ers are combined to produce a unified document representation, passed to the final fully
connected (and output) layer. Random sampling is more effective, on this dataset, than
considering the first N Paragraphs. Data are split in a Training Set (80%) and a Test Set
(20%). Fine-tuning is conducted on Training data, by minimizing sigmoid cross-entropy
loss function.
Output is provided in two formats: all labels with score > 0.5 or the top K labels, re-
gardless of their minimum probability. While the first format is used to evaluate and
compare different models through F1-Scores and their weighted average, the second for-
mat is used in production environment for end-users (domain experts and editors), when
performing inference on new data.

Implementation Details. The described approach was implemented in the same frame-
work employed in Section 4, using TensorFlow 1.12. N was fixed at 40 for computational
reasons. K was fixed at 5 after evaluating the prototype’s performance.

6.2. Prototype Data

The dataset is composed of 44,413 documents from the Highest Courts of Appeal (Crim-
inal and Common Law), collected by the publisher over the last five years.
After a preliminary analysis, having fixed F at 200, 81 topics were considered during
development. In spite of considering a small subset of the full classification tree, 64%
of documents have at least one valid (i.e. frequent) topic associated. The most frequent
topic is contracts and obligations, with 1,248 examples.

6.3. Results

The described solution achieves a weighted F1-Score of 0.505 over the 81 examined Top-
ics. It was verified that the correct (i.e. originally assigned by human) labels are found
90% of the times in the first 5 predictions.
The output of attention layers, as suggested in [12], is currently being examined by do-
main experts to assess its usefulness in highlighting the most important Paragraphs and
in the holding definition phase (Step 5 of Section 3).

Error Analysis. Examining the top K predictions for some documents, domain experts
verified that they are usually related and that there was in fact a certain degree of freedom
in choosing the original classification itself.

Other Experiments. The best performing Bag-of-Words, no pre-training, experiment,
was an XGBoost ensemble model [22], using a combination of frequent words and fre-
quent legislation references as features. It achieved a weighted F1-Score of 0.370.
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7. Conclusions and Future Work

We have first introduced the annotation process of court judgements by a real-world Ital-
ian publisher, highlighting areas where amount of human effort and availability of train-
ing data motivated the experimentation of Machine Learning automatic approaches. We
then described the developed solutions to three specific problems, showing how Natu-
ral Language Processing could in fact reach satisfying performances where training data
was sufficient. Employing a model architecture based on BERT, fine-tuned for the spe-
cific tasks of Named Entity Recognition and Extreme Multi-label Text Classification,
provided the best results in the most complex problems, where free text understanding
was crucial. In the case of ranking by relevance, the importance of hand-crafted fea-
tures (in capturing the differences between relevant and irrelevant documents) explains
why a simpler, faster Random Forest model obtained better results and was chosen for
deployment.

7.1. Business Impact

Working on the described prototypes required several skills, ranging from Natural Lan-
guage Processing development to in-depth knowledge of the legal domain for problem
framing, data selection and error analysis. The resulting team-mix was deemed success-
ful and can be adopted in new projects. Communication between the Business and the de-
velopers was constant during the research and effective: the added value of Deep Learn-
ing was shared and understood, not taken for granted. The developed prototypes are per-
forming inference on a subset of new real-world data, in a controlled production environ-
ment, before further fine-tuning and integration. The current integration model is asyn-
chronous and employs Apache Kafka (kafka.apache.org) for handling data feeds.
Each Machine Learning module is exposed as a synchronous RESTful Service. A JSON
data exchange format was agreed for integration in the rest of the publishing pipeline.
This system currently helps the editors and reduces the amount of human effort by pre-
annotating documents which can then be reviewed more quickly by the domain expert.
The model for relevance ranking mirrors closely human decision-making and actually
allows to correct some mistakes in the original classification.

7.2. Limits and Further Developments

The models for extracting legal references and topic classification will require new cycles
of annotated data gathering, training and test, in order to increment the coverage of less
frequent classes. Instead, the main limit of ranking by relevance is its being based upon
intrinsic features of the documents. Adding features based on the similarity to previous
judgements could help in dealing with particular or difficult cases.
Once the users have acquired trust in the system and the machine behavior mirrors more
closely the human’s in edge cases, a deeper integration in the publishing process will be
possible. To this end, advances in zero-shot learning should also be followed closely and
tested. Finally, monitoring how these modules work on new data and carefully reviewing
user’s feedback will help in identifying unknown issues and making the solution more
robust over time.
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