
Generalizing Culprit Resolution in Legal
Debugging with Background Knowledge

Wachara FUNGWACHARAKORN a and Ken SATOH a

aNational Institute of Informatics, Sokendai University, Tokyo, Japan

Abstract. Since the legal rules cannot be perfect, we have proposed a
work called Legal Debugging for handling counterintuitive consequences
caused by imperfection of the law. Legal debugging consists of two steps.
Firstly, legal debugging interacts with a judge as an oracle that gives
the intended interpretation of the law and collaboratively figures out a
legal rule called a culprit, which determines as a root cause of counterin-
tuitive consequences. Secondly, the legal debugging determines possible
resolutions for a culprit . The way we have proposed to resolve a culprit
is to use extra facts that have not been considered in the legal rules to
describe the exceptional situation of the case. Nevertheless, the result of
the resolution is usually considered as too specific and no generalizations
of the resolution are provided. Therefore, in this paper, we introduce
a rule generalization step into Legal Debugging. Specifically, we have
reorganized Legal Debugging into four steps, namely a culprit detec-
tion, an exception invention, a fact-based induction, and a rule-based
induction. During these four steps, a new introduced rule is specific at
first then becomes more generalized. This new step allows a user to use
existing legal concepts from the background knowledge for revising and
generalizing legal rules.

Keywords. legal reasoning, legal representation and algorithmic
debugging

1. Introduction

Since we cannot codify every essential condition in the law, the law may still lack
essential conditions which may later be revealed in a real-life case. This problem
is also known in artificial intelligence as a qualification problem [1]. When we
apply literal interpretation of such law to an exceptional case, it would lead to
counterintuitive consequences, which cause absurdity or harm the public interest.

This paper focuses on Legal Debugging [2], which proposes on the detection
of a cause of counterintuitive consequence called a culprit by asking users sys-
tematically, then it attempts to resolve a culprit. However, the previous work of
Legal Debugging has encountered a problem that the result of resolution is too
specific since it does not cooperate with background knowledge. Therefore, in this
paper, we present the cooperation of Legal Debugging and external knowledge.
We reorganized Legal Debugging into four steps. The first step is a culprit de-
tection as described in [2]. The second step is an exception invention based on

Legal Knowledge and Information Systems
S. Villata et al. (Eds.)

© 2020 The Authors, Faculty of Law, Masaryk University and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200849

52



Closed World Specification [3]. The third step is a fact-based induction based on

V-operator described in [4]. The fourth step is a rule-based induction, in which

the system cooperates with background knowledge and generalizes the culprit

resolution using the same V-operator as in the previous step.

This paper is structured as follows. Sections 2 illustrates an example case

used throughout this paper. Section 3 describes the legal formalization used in

this paper. Section 4 explains four steps of Legal Debugging, including a step of

rule-based induction that is the main proposal of this paper. Section 5 provides

the discussion and future works. Finally, section 6 provides the conclusion.

2. Example

We adapted an example case from [5] as follows.

1. The plaintiff made a lease contract for his room between him and the de-

fendant.

2. When the defendant returned home for a while, he let his son use the room.

3. Then, the plaintiff claimed that the contract was ended by his cancellation

for the reason that the defendant subleases without permission.

The related piece of law in this case is Japanese Civil Code Article 612, which

is stated as follows.

Phrase 1: A Lessee may not assign the lessee’s rights or sublease a leased

thing without obtaining the approval of the lessor.

Phrase 2: If the lessee allows any third party to make use of or take profits

from a leased thing in violation of the provisions of the preceding paragraph,

the lessor may cancel the contract.

From the literal interpretation of this article, the cancellation is valid. The

third party in this case is the defendant’s son and the defendant allowed his son

to use the room without obtaining the approval of the lessor (the plaintiff in

this case). However, it seems too harsh in this exceptional situation as the court

decided as follows.

Phrase 2 is not applicable in exceptional situations where the sublease does

not harm the confidence between a lessee and a lessor, and therefore the

lessor cannot cancel the contract unless they prove the lessee’s destructing of

confidence [6].

In this court decision, the court introduced the idea of destruction of con-

fidence as an exception of Phrase 2 to prevent the counterintuitive consequence

from the literal interpretation of Article 612.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging 53



3. Legal Formalization

3.1. Formalizing the law

One primary representation used for formalizing the law is to represent it into a
logic program with negation as failure (later referred as a logic program) as in
[7]. The logic program is defined as follows.

Definition 1 (Logic Program). A logic program is a set of rules of the form:

h : ´b1, . . . , bm, not bm`1, . . . , not bn. (1)

where h, b1, . . . , bn p1 ď i ď nq are first-order atoms and not presents negation
as failure.

Sometimes, the rule is expressed in the form h : ´B where B “ tb1, . . . , bm,
not bm`1, . . . , not bnu. For a rule R in the form (1), we denote the head h of
the rule by headpRq; the positive body of the rule tb1, . . . , bmu by pospRq; the
negative body of the rule tbm`1, . . . , bnu by negpRq; and the whole body of the
rule B by bodypRq. We express h. if the body of the rule is empty.

A first-order atom consists of a predicate and a set of arguments. a predi-
cate begins with a lowercase and an argument is a variable (beginning with an
uppercase) or a constant (beginning with a lowercase). A ground atom refers to
an atom without any variable. A ground rule refers to a rule which contains only
ground atoms.

We follow the previous work [2] to divide a predicate into two types: a rule
predicate and a fact predicate. A rule predicate means a predicate that occurs at
least once in a head of a rule while a fact predicate means a predicate that never
occurs in a head of a rule. An atom with a rule predicate, called a rule atom, shall
represent a legal consequence while an atom with a fact predicate, called a fact
atom, shall represent a legal fact.

Table 1: An example of a logic program representing Article 612

cancellation_due_to_sublease(Lessor ,Lessee) :-

effective_lease_contract(Lessor ,Lessee ,Property),

effective_sublease_contract(Lessee ,Thirdparty ,Property),

using_leased_thing(Thirdparty ,Property),

manifestation_cancellation(Lessor ,Lessee),

not approval_of_sublease(Lessor ,Lessee).

effective_lease_contract(Leaser ,Lessee ,Property):-

agreement_of_lease_contract(Leaser ,Lessee ,Property),

handover_lease_contract(Leaser ,Lessee ,Property).

effective_sublease_contract(Leaser ,Lessee ,Property):-

agreement_of_sublease_contract(Leaser ,Lessee ,Property),

handover_sublease_contract(Leaser ,Lessee ,Property).

approval_of_sublease(Lessor ,Lessee):-

approval_before_the_day(Lessor ,Lessee).

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging54



Table 1 illustrates an example of logic program representing Article 612. It
is adapted from the example described in [5]. From the example, we shall count
cancellation_due_to_sublease, effective_lease_contract, and effective

_sublease_contract as rule predicates where others are fact predicates.

3.2. Formalizing a case

Computational law researchers have been long interested in representing a legal
case or a court decision. One popular way is to represent a legal case with a set of
facts and a note that the plaintiff or the defendant won in such case [8,9]. However,
we represent a legal case as a set of facts and a set of intentions since we focus
on the consideration of legal consequence immediately before the judgement. Our
case is formally defined as follows.

Definition 2 (Case). A case is a tuple pX,V, Iq where X is a set of ground fact
atoms refer to a fact situation of the case, V is a set of ground rule atoms that
shall be valid and I is a set of ground rule atoms that shall be invalid (V and I
are disjoint).

Table 2: A set of legal fact representing the example case

agreement_of_lease_contract(plaintiff ,defendant ,room).

handover_lease_contract(plaintiff ,defendant ,room).

agreement_of_sublease_contract(defendant ,son ,room).

handover_sublease_contract(defendant ,son ,room).

using_leased_thing(son ,room).

manifestation_cancellation(plaintiff ,defendant).

father(defendant ,son).

shall_be_invalid(cancellation_due_to_sublease(plaintiff ,defendant)).

Table 2 illustrates a representation of example case in Section 2. The case
around a ground fact atom in which a fact predicate never occurs in the pro-
gram before. This ground fact atoms as extra facts e.g. father(defendant,son)
in the example. Since the judge intended that cancellation due to sublease
shall be invalid in this case, we note cancellation_due_to_sublease(plain-

tiff,defendant) in the set of ground rule atoms that shall be invalid.

4. Four Steps in Legal Debugging

4.1. Culprit Detection

The first step of the legal debugging is to detect a culprit. As discussed in [2]
a culprit may be determined as a root cause of counterintuitive consequences.
Counterintuitive consequences are defined as differences between literal interpre-
tation of the law and the intended interpretation from the user. Since the inten-
tion may not be known in the first place, the system will ask the intention from
the user until it finds a legal consequence that falls into two criteria of a culprit.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging 55



A false-positive culprit means a culprit that shall be valid but literally invalid.
On the other hand, a false-negative culprit means a culprit that shall be invalid
but literally valid.

Definition 3 (Intended Interpretation). An intended interpretation IM is an
oracle and possibly infinite set of ground atoms representing an intended inter-
pretation in the user’s mind. We denote it by an oracle set since we cannot know
the whole intended interpretation but for a case pX,V, Iq, we know that X Ă IM ,
V Ă IM and I and IM are disjoint.

Definition 4 (Support). Let IM be an intended interpretation. We say IM
supports a ground rule atom p with respect to a program T if there is a rule in T
that can be substituted into a rule in the form (1) such that tb1, . . . , bmu Ă IM ,
tbm`1, . . . , bnu and IM are disjoint, and p “ h. The substituted rule is called a
supporting rule of p w.r.t. IM .

Definition 5 (Culprit). Let IM be an intended interpretation. A ground rule
atom p is a culprit with respect to IM and a program T if

(i) p R IM but IM supports p w.r.t. T (false-positive) or
(ii) p P IM but IM does not support p w.r.t. T (false-negative).

We follow the previous work [2] to trace down a sequence of counterintuitive
consequences and a culprit will be one in the last of the sequence.

Table 3: An example of a culprit detection dialogue

Considering

cancellation_due_to_sublease(Lessor ,Lessee) :-

effective_lease_contract(Lessor ,Lessee ,Property),

effective_sublease_contract(Lessee ,Thirdparty ,Property),

using_leased_thing(Thirdparty ,Property),

manifestation_cancellation(Lessor ,Lessee),

not approval_of_sublease(Lessor ,Lessee).

Shall effective_lease_contract(plaintiff ,defendant ,Property) be valid

? yes

Which Property? room.

Shall effective_sublease_contract(defendant ,Thirdparty ,room) be valid

? yes

Which Thirdparty? son.

Shall approval_of_sublease(plaintiff ,defendant) be valid? no

Detect a culprit

cancellation_due_to_sublease(plaintiff ,defendant).

With a supporting rule(s)

cancellation_due_to_sublease(plaintiff ,defendant):-

effective_lease_contract(plaintiff ,defendant ,room),

effective_sublease_contract(defendant ,son ,room),using_lease_thing

(son ,room),manifestation_cancellation(plaintiff ,defendant),not(

approval_of_sublease(plaintiff ,defendant)).

Table 3 illustrates an example of a culprit detection dialogue. The system
asks a user whether there are some instantiation of rule atoms that shall be valid.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging56



From this dialogue, we realize more members in the intended interpretation. As a

result, we know that cancellation_due_to_sublease(plaintiff, defendant)

is a culprit since it shall be invalid but the intended interpretation supports it.

4.2. Exception Invention

For a false-negative culprit, we may simply resolve by introducing a culprit. On

the other hand, for a false-positive culprit, we require to invent a new predicate

for an exception to rebut the supporting rule. This section describes how to invent

a new predicate when the identified culprit shall be invalid. To this end, we apply

Closed World Specification algorithm [3] as in Algorithm 1. It describes how to

revise a logic program with negation as failure when we intend a ground atom A

to be invalid. The algorithm states that if there is an exception in the supporting

rule of A, we should use an instantiation of the exception; otherwise, we should

invent a new atom with a new predicate for an exception.

Algorithm 1 An original Closed World Specification (CWS) algorithm

Input a logic program with negation as failure T with the unique stable model
M and a ground atom A such that A is valid w.r.t. T but A is intended to be
invalid.

for all supporting rule R of A w.r.t. M and a substitution θ do
if bodypRq contains not b then

Let T 1 “ T Y tbθu
else

Let tV1, . . . , Vnu be the domain of θ
Let q be a predicate symbol not found in T
Let b be qpV1, . . . , Vnq
Let T 1 “ T ztRu Y theadpRq : ´pbodypRq Y tnot buqu Y tbθu

return T 1

However, if we apply this algorithm to the example case, approval_of_sub-

lease(plaintiff,defendant) is introduced. Such introduction is contradicted

to the user intention that the approval_of_sublease(plaintiff,defendant)

shall be invalid. From this reason, we may solve by forcing the algorithm to merely

introduce an exception with a new predicate, as shown in Algorithm 2. Table 4

illustrates the exception invention in the example case. Now the system knows

that the example case is an exceptional situation but what is a sufficient condition

in the example case that makes the case exceptional would be determined in the

next step.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging 57



Table 4: Exception invention in the example case

Inventing an exception using a closed world specification ...

please specify a new exception name: new_exception.

The culprit is revised into

cancellation_due_to_sublease(Lessor ,Lessee) :-

effective_lease_contract(Lessor ,Lessee ,Property),

effective_sublease_contract(Lessee ,Thirdparty ,Property),

using_leased_thing(Thirdparty ,Property),

manifestation_cancellation(Lessor ,Lessee),

not approval_of_sublease(Lessor ,Lessee),

not new_exception(Lessor ,Lessee ,Property ,Thirdparty).

Algorithm 2 An adapted Closed World Specification (CWS) algorithm

Input a logic program with negation as failure T with the unique stable model
M and a ground atom A such that A is valid w.r.t. T but A is intended to be
invalid.

for all supporting rule R of A w.r.t. M and a substitution θ do
Let tV1, . . . , Vnu be the domain of θ
Let q be a predicate symbol not found in T
Let b be qpV1, . . . , Vnq
Let T 1 “ T ztRu Y theadpRq : ´pbodypRq Y tnot buqu Y tbθu

return T 1

4.3. Fact-based Induction

In this step, we obtain the sufficient condition of why the present case is excep-
tional by asking from a user. Since we require to form a rule for describing the
exceptional situation, the system would apply Inverse Resolution [4], to induce a
new rule from known rules. Inverse Resolution is widespread applied for inductive
programming, including for refining legal concepts in legal ontology [10]. How-
ever, there are some concerns about Inverse Resolution in Logic Program with
Negation as Failure [11]. The first concern is that the result of Inverse Resolu-
tion is not generally consistent with the input program under the stable model
semantics. We can only guarantee for some types of input programs e.g. input
programs that are locally stratified and the dependencies of the input program
are preserved in the result program. Since logic programs in legal representation
are usually locally stratified, we have no problem with the first issue. For the
second issue, one practical way is to take some extra facts into a body of a new
rule to guarantee that we do not destroy dependencies of the input program. This
corresponds to the practice in the law that the extra facts should be identified to
distinguish the present exceptional case with the precedent. Another concern is
that all variables in a body of a new rule should occur in a head of a new rule. It
limits a new rule so that it is not too generalized.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging58



Table 5: An example of fact-based induction dialogue

Generating a primary exception rule using Inverse Resolution

Listing possibly relevant facts ...

1: agreement_of_lease_contract(plaintiff ,defendant ,room)

2: handover_lease_contract(plaintiff ,defendant ,room)

3: agreement_of_sublease_contract(defendant ,son ,room)

4: handover_sublease_contract(defendant ,son ,room)

5: using_leased_thing(son ,room)

6: manifestation_cancellation(plaintiff ,defendant).

7: father(defendant ,son)

please specify relevant facts by a list of incremental indices (e.g.

[1,3,5])

|: [7].

A new exception rule

new_exception(Lessor ,Lessee ,Property ,Thirdparty):-father(Lessee ,

Thirdparty).

Figure 1. Illustration of applying V-operator to induce a new rule

A user would give the sufficient condition of the exceptional situation as the
relevant facts and the system may check whether the set of relevant facts meets
above criteria as a body of a new rule (e.g. the set must contain at least one
extra fact). If the set passes the criteria, the system would apply the V-operator
in Inverse Resolution to induce a new rule from a pair of ground atoms.

Definition 6 (Resolution). Let C1 and C2 be two rules with no common variables.
Let p be an atom within pospC2q such that p is unifiable with headpC1q by the most
general unifier (mgu) of θ. We denote the resolvent of C1 and C2 by C “ C1 ¨C2

where C “ headpC2qθ : ´pbodypC2qztpuqθ Y bodypC1qθ.
Definition 7 (V-operator). Given two rules C1 and C, We call C2 an induced
rule by the V-operator from C1 and C if C1 ¨ C2 is substitutable to C .

Table 5 illustrates an example of fact-based induction dialogue. The sys-
tems ask the user to select a set of relevant facts. In the example, a user
selects that fact that the defendant is a father of the third party, repre-
sented by father(defendant,son), is the reason why this case is excep-
tional. Since the fact is an extra fact, it passes the criteria. Let C be
new_exception(plaintiff,defendant,room,son), a ground exception from the

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging 59



Table 6: An example of fact-based induction dialogue

Would you like to generalize the rule more by using the background

theory (y./n.) |: y.

Found more general rule

new_exception(Lessor ,Lessee ,Property ,Thirdparty):-

relatives(Lessee ,Thirdparty).

Would you like to generalize the rule more by using the background

theory (y./n.)

|: y.

Found no more general rule

Figure 2. Illustration of applying V-operator to induce a new rule

exception invention step by the adaption of Closed World Specification Algo-
rithm; and let C1 be father(defendant,son), the reason given by the user,
the system induce a new rule by the V-operator as in Fig. 1. An induced rule
is more generalized than the ground exception from the previous step since an
induced rule by the V-operator does not specifically apply to the example case.
From the example, the system knows that the sufficient condition to make a case
exceptional is when the lessee is the father of the sublessee.

4.4. Rule-based Induction

Beyond the primary induced rule, in this newly introduced step, the system may
apply Inverse Resolution further with background knowledge. For ease of exposi-
tion, we assume that the background knowledge is convertible to a logic program
called a background theory. This background theory is assumed to contain general
knowledge rules as well as legal knowledge rules. For example, the background
theory may contain a rule “A father is a kind of relative”, which is represented
as relative(X,Y) :- father(X,Y).

Table 6 illustrates an example of rule-based induction dialogue. If a user would
like to generalize a rule induced in the previous step, the system would find a rule
in a theory such that it can induce more general rule using the V-operator. From
the dialogue, the system found a rule C3 relative(X,Y) :- father(X,Y). The

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging60



V-operator induces a new rule C4 from C2 (from the previous step) and C3 as in

Figure 2. The result rule C4 implies that a new exception may be executed if the

lessee is a relative of the sublessee.

Since a revision is only an advisory, the user can reject the generalization,

accept the generalization, or request the system to generalize a rule further. The

system may use other cases with intention to determine whether the generalized

rule is acceptable.

Another operation that has not been mentioned in the example is W-operator

[4]. W-operator is simply a combination of two V-operators back-to-back. It may

be used for grouping similar concepts into the new concept. For example, suppose

we know that a new exception should be valid not only for a case such that the

lessee is a relative of the sublessee but also for a case such that the lessee is a

working colleague of the sublessee. With W-operator, these two concepts may

be grouped into a new concept, that covers a case such that the lessee is an

acquaintance of the sublessee.

5. Discussion and Future Works

This paper is in line with a previous study [12] suggesting the benefit of back-

ground knowledge in computational law. Since we assume the legal rules and

cases are formalized using first-order predicates, Legal Debugging has not yet

supported open-texture concepts, which shows that a qualification problem still

exists in our formalization. Another limitation of the proposed method is that a

case which causes counterintuitive consequences is presumed to contain an extra

fact describing the exceptional situation of the case. Since the V-operator used in

the proposed method supports only one extra fact to induce each rule, we think

that potential future works are extending the V-operator to support multiple ex-

tra facts, obtaining practical extra facts, or combining the facts already existed

in legal rules with extra facts.

6. Conclusion

This paper describes the reorganization of Legal Debugging into four steps,

namely a culprit detection, an exception invention, a fact-based induction, and

a rule-based induction. These steps generalizes the resolution of a culprit by us-

ing Closed World Specification and Inverse Resolution. The rule-based induction,

which is firstly introduced in this paper, can obtain more general rules for resolv-

ing a culprit by cooperating with background knowledge in a form of background

theory. With such cooperation, the resolution can obtain more general normative

facts to resolve a culprit in a more practical way. In future, we would like to

investigate the acquisition of extra facts, the compliance of multiple extra facts,

and the combination of extra facts and facts that already existed in legal rules.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging 61



Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers, JP17H06103 and
JP19H05470. We would like to thank Tiago Oliveira and anonymous reviewers
for their extensive comments.

References

[1] M. Thielscher, The qualification problem: A solution to the problem of anomalous models,
Artificial Intelligence 131(1–2) (2001), 1–37.

[2] W. Fungwacharakorn and K. Satoh, Legal debugging in propositional legal representation,
in: JSAI International Symposium on Artificial Intelligence, Springer, 2018, pp. 146–159.

[3] M. Bain and S. Muggleton, Non-monotonic learning, Inductive logic programming 38
(1992), 145153.

[4] S. Muggleton and W. Buntine, Machine invention of first-order predicates by inverting
resolution, in: Machine Learning Proceedings 1988, Elsevier, 1988, pp. 339–352.

[5] K. Satoh, M. Kubota, Y. Nishigai and C. Takano, Translating the Japanese Presupposed
Ultimate Fact Theory into Logic Programming, in: Proceedings of the 2009 Conference
on Legal Knowledge and Information Systems: JURIX 2009: The Twenty-Second Annual
Conference, IOS Press, Amsterdam, The Netherlands, The Netherlands, 2009, pp. 162–
171. ISBN ISBN 978-1-60750-082-7.

[6] 1994 (O) 693, Tokyo High Court No. 9 at 2431, Minshu Vol. 50, 1996.
[7] M.J. Sergot, F. Sadri, R.A. Kowalski, F. Kriwaczek, P. Hammond and H.T. Cory, The

British Nationality Act as a logic program, Communications of the ACM 29(5) (1986),
370–386.

[8] V. Aleven, Teaching case-based argumentation through a model and examples, PhD thesis,
University of Pittsburgh, 1997.

[9] E.L. Rissland and K.D. Ashley, A case-based system for trade secrets law, in: Proceedings
of the 1st international conference on Artificial intelligence and law, 1987, pp. 60–66.

[10] M. Kurematsu, M. Tada and T. Yamaguchi, A legal ontology refinement environment using
a general ontology, in: Proceedings of Workshop on Basic Ontology Issues in Knowledge
Sharing, International Joint Conference on Artificial Intelligence, Vol. 95, 1995.

[11] C. Sakama, Some properties of inverse resolution in normal logic programs, in: Interna-
tional Conference on Inductive Logic Programming, Springer, 1999, pp. 279–290.

[12] V. Aleven, Using background knowledge in case-based legal reasoning: a computational
model and an intelligent learning environment, Artificial Intelligence 150(1–2) (2003),
183–237.

W. Fungwacharakorn and K. Satoh / Generalizing Culprit Resolution in Legal Debugging62


