Information Modelling and Knowledge Bases XXXII 343
M. Tropmann-Frick et al. (Eds.)

© 2021 The authors and I0S Press.

This article is published online with Open Access by I0S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200839

Q-Learning as Failure

Kei TAKAHATA, and Takao MIURA

Dept.of Advanced Sciences, HOSEI University
Kajinocho 3-7-2, Koganei, Tokyo, Japan
Email:kei.takahata.6a@stu.hosei.ac.jp miurat@k.hosei.ac.jp

Abstract. Reinforcement Learning allows us to acquire knowledge without any
training data. However, for learning it takes time. In this work, we propose a method
to perform Reverse action by using Retrospective Kalman Filter that estimates the
state one step before. We show an experience by a Hunter Prey problem. And dis-
cuss the usefulness of our proposed method.

Keywords. Reinforcement Learning, Q-Learning, Kalman Filter, Retrospective
Kalman Filter, Reverse Action Learning

1. Introduction

Reinforcement Learning (RL) [1] [2] is a learning method in which any agent learns
from interaction with its environment. It allows us to acquire knowledge without any
training data. However, for learning it takes time. In a case of a robot, it takes heavy
time to perform many experiences. Therefore, various methods aiming at reducing the
amount of learning experiences have been proposed [4] [5]. These put focus on how to
acquire quality knowledge efficiently. Unfortunately, there are few methods to improve
knowledge proposed so far by using failure. For example in Fig.1, suppose that the agent
acts twice to the left from the center position in the initial state and gets a reward of
-100 where the circles in Figure 1 represent states, and the numbers represent rewards.
Is it possible to improve knowledge by other choices? By the word “Reverse Action
Learning(RAL)”, we mean a learning method that agents select a reverse action and
receive reverse rewards. In the case of Fig.1, the number of states and actions is small,
therefore it could be possible to examine all the choices.However, in the case of complex
tasks, it is not practical to keep all information. Therefore, the goal of this work is to
propose RAL.

Retrospective behavior could have two interpretation, “compensation behavior” or
“reverse behavior”. “Compensation”[WIKI] refers to a type of defense mechanism in
which people overachieve in one area to compensate for failures in another. So one can
cover up, consciously or unconsciously, weaknesses, frustrations, desires, or feelings of
inadequacy or incompetence in one life area through the gratification or (drive towards)
excellence in another area. On the other hand, “reverse action” means a type of recovery
mechanism whereby people can restore almost all the status back into the previous one
to keep the environment consistently in any means of the situation before these actions.

344 K. Takahata and T. Miura / Q-Learning as Failure

Figure 1. Example of state transition and rewards

Very often they differ from each other since compensation could be made by similar ac-
tions without any consideration of environment. The story looks like theory of transac-
tion in databases [6]. We’d better say “roll back” for “reverse action”. Here we stick to
the situation “reverse” (or “roll back’) behaviors since we might take strategic decisions
every time we have to decide.

In this work, we model a method to perform RAL by using a Retrospective Kalman
filter that estimates the state one step before. We discuss an experience by a Hunter Prey
problem to see we show the usefulness of our proposed method.

The rest of the paper is organized as follows. In section 2 we give a denition of Re-
inforcement Learning. Section 3 discusses a background of Kalman filters for our learn-
ing. In section 4 we propose our approach of and section 5 concerns about experimental
results to see how effective our approach works. In section 6 we conclude this investiga-
tion.

2. Reinforcement Learning and Q-Learning
2.1. Reinforcement Learning

Reinforcement learning (RL) is a learning method in which the agents obtains knowl-
edge from interaction with its environment. Agents perform state perception and make
a dicision. In RL, we don’t give explicit correct answers and agents learn from rewards
under the environment. Here, rewards include positive and negative. Agents goal is to
find a policy that maximizes the total rewards.

An agent perceives its current state (or position at time #), selects an action for its
behavior, to obtains reward, and then changes itself to the next state. When an agent
takes an action «, at time ¢, the next state s, and the reward ;1| at time ¢ + 1 depend
on all the previous states and all the rewards in the agent history. Let s’ and r be one of
the possible next states and the rewards, then s, | and r,1| can be described by means of
conditional probabilities:

/
Pr{StJrl =8, :r|sf7a[7rlvst717'“ ,H,SO,(IQ} (1)

Markov probability model is a stochastic framework to model randomly changing sys-
tems. Here next state depends only on the current state, not on the previous states nor
actions before. This is called Markov property. Generally this assumption enables rea-
soning and computation with the model efficient. In our case we must have:

Pr{si1= S/,Vt+1 = rls;,a;} ()

Assuming current state s; and an action a, under the assumption of Markov property,
we can estimate the next state 5,41 and the reward r;; | in a probabilistic manner as shown

K. Takahata and T. Miura / Q-Learning as Failure 345

in a formula (2). Repeating this process of (2), we may obtain all the future states, the
actions and the whole rewards. In RL, it is possible to say that behaviors and the value
functions (described later) depend only on current state.

Let us define a notion of policy that consists of all the pairs (a, p(a)); of action a and
its probability p(a) to each state s. The main goal of agents in RL is to obtain a policy
7 to solve issues of interests efficiently, or, in our case, to maximize the whole rewards
in its life-time. To do that, we introduce value functions. Since we discuss Q-Learning
(QL) [8], we define action-value functions called the Q-value. Q-value represents the
expected value of whole rewards under the certain policy 7.

2.2. Q-Learning

QL is a represemtative learning method of RL. By Q(s,a), let us define the Q-value (the
expected all the sum of rewards) at a state s with an action a. Formally let r = r(s,a) be
areward at (s,a), s’ = Next(s,a) a next state to s. Also let @’ be a next action at s of the
maximim Q(s',a’), that is, @’ = maxycy(y) Q(s',a") where A(s") a set of possible actions
at '. Then let o be learning rate (0 < o < 1), which means how large one learning step
improves Q-values, and Yy be discount rate which means the effect of valuing rewards
received earlier higher than those received later. This may also be interpreted as the
probability to succeed (or survive).

At every learning step, we keep updating Q-values as follows:

O(s,a) < Q(s,a) + a[r + 7 llgfl(gl)Q(s/,a’) — Q(s,a)]

Note that we update the Q-values so as to make Q(s,a) close to r+ymax,cy () Q(s',).
Watkins [8] has shown the convergence of the Q-values if both learning rate and
discount rate satisfy some constraints.

2.3. Reverse Action Learning

Let us discuss a case in which an agent receives a large negative reward. We assume that
the reverse action allows us to improve the current situation. Under this assumption, we
update efficiently the Q-value by Reverse Action Learning(RAL). If an agent recieves a
large negative reward, an agent reduce the value taken to the negative reward actions by
normal learning process. Moreover, an agent could improve the value of reverse actions
by RAL process, that is, we expect that an agent learn how to avoid these actions.

3. Kalman Filter

Kalman filter (KF) is one of the well-known algorithm that estimates the state of a
system from observation data with some noises. During KF process, whenever a new
(temporal) observation data comes in, we improve estimation of state immediately.
We estimate a priori estimate of a state X at time k, denoted by Y,:, by examining
X1, X, ... Similarly we estimate a posteriori estimate of X, denoted by X, by exam-
ining Yy, Xy _1,Xy_2, ... Given a covariance matrix P of state errors, we can think about a

346 K. Takahata and T. Miura / Q-Learning as Failure

priori estimate P,_; and a posteriori estimate P;. Let us note that by minimizing Py (using
minimum mean-square error), we can improve the precision of the estimation.
Now assume we have Kalman gain matrix Gy at k, there happen filtering processes:

EstimateStep

X, = AXk,l

P = AP,_;AT + BOB”
FilteringStep

Gy =P CT(CP CT+R)"!
Xk =X -‘er(Yk—CX,:)
P = (I-GCO)P,

Let us remark that we have to give initialization values of X;_, initial states, P,_; initial
a priori errors covariance, and Q, R noises covariance.

The KF improves the accuracy of state estimate by reducing the error covariance.
Kalman gain represents the rate at which the state is updated from observations. For
example, when a priori estimate covariance is large (a priori state estimate is not reliable)
and when the observation noise is small (the observed value is reliable), a priori state
estimate is largely updated because the observed value is more reliable. Therefore, the
Kalman gain also increases. Meanwhile, when a priori estimate covariance is small and
the observation noise is large, the Kalman gain is small because the state transition is
more reliable than the observed values.

KTD [13] [12] has been proposed as a method for estimate parameters to RL over
continuous states. KTD has a problem that it depends on initial parameters. Our proposed
method uses Kalman filter for agent action selection, so it is fundamentally different from
KTD.

4. Proposed method
4.1. Retrospective Kalman Filter

Now let us propose a new method to learn efficiently by reverse actions due to the Q-
value update. We put a Failure Condition on our agents. Whenever the learning system
detects Failure Condition due to the amount of Negative rewards, the system initiates
RAL process. Otherwise the agent keeps learning. Let us discuss how to restore (recover)
the original state of the agent. If the agent keeps both all transition histories and action
histories, agent could put all the statues back to the original. However, because of mem-
ory limitation, we introduce Retrospective Kalman Filter(RKF) to recover any state one
step before with few memory. Whenever we use KF, we can estimate a posteriori state
estimate X;_; and a posteriori estimate covariance P,_; from a priori state estimate and
a priori estimate covariance.

KF uses posteriori state estimate one step before X;_; and posteriori estimate co-
variance one step before P,_; in order to estimate a current a posteriori state estimate X
and posteriori estimate covariance P;. In RKF, we use a current a posteriori state estimate
X, and posteriori estimate covariance P in order to estimate posteriori state estimate one
step before X;_; and posteriori estimate covariance one step before P_1.

We can get a posteriori estimate covariance P, from a priori estimate covariance P,_
and Kalman gain Gy using Kalman Filter. Therefore, we can not get a priori estimate co-

K. Takahata and T. Miura / Q-Learning as Failure 347

variance P_ | analytically from a posteriori estimate covariance F;. We note that agents
retain some priori estimate covariance P,_,; when learning and that they take reverse ac-
tion. The number retaining a priori estimate covariance matrix is a hyperparameter. This
is equal to the number of times that RAL can be performed. We define a retrospective
Kalman filter below:

RetrospectiveFilteringStep

Gy =P CT(cP CT+R)™!
X = (I-GC)"' (X — GX)
RetrospectiveE stimateStep

Py = A" (P —BQB")(AT)"!
Xk*l = A71X;

4.2. QLRKF

By the word “QLRKF”, we mean a learning method that agents perform RAL. We use
RKEF to return agent’s states. Agents keep learning by QLKF [9] unless agents do obey
a Failure Condition. In QLKF, agents take an action under KF and provability €, and
greedy action with probability (1 — €). If agents follow a Failure Condition, agents take a
reverse action using the estimate by RKF with probability €, and a reverse greedy action
with probability (1 — ¢€).

5. Experiment
5.1. Hunter Prey Problem

In this work, we deal with the Hunter Prey problem which is a standard task of RL. Tra-
ditionally in the problem we discuss a discrete 2D space but here we assume a contin-
uous 2D space of m x m, 0 < x,y < m instead of the grid space. We assume one hunter
and one prey in the space, the former agent always pursues (chases) the latter agent. The
agents can’t go outside the 2D space. Initially we put the two agents randomly in such
a way that they keep at some distance off. We say the prey is captured when they stand
closely with each other (say, less than p). Whenever the prey is captured, the hunter gets
positive reward and the prey gets negative. Otherwise, the hunter gets negative and the
prey positive.

There have been several kinds of assumption in hunter-prey games, but very often
these preys take actions randomly without any knowledge. Here we assume both the
agents might know positions of all the agents in the space, then we examine both cases
of knowledgeable prey (i.e., the prey learns autonomously) and non-knowledgeable prey
(actions are randomly selected). We assume the hunter learns by QL for the purpose
of own Q-values improvement, considering prey’s relative positions as states: based on
RL, we assume discrete states, although these states are continuous. As for the prey, we
assume the prey may learn by QL, or we assume take actions randomly without any
knowledge.

Let us describe how we construct 2D space in a discrete manner. Assume a hunter
stands at a position considered as a center relatively, and we divide the 2D space into 8
areas where each area is further divided into two areas, a close area and the farther, as
well as a center area. So there are 17 (relative) areas in total. Let us illustrate an example

348 K. Takahata and T. Miura / Q-Learning as Failure

e
l

Figure 2. Position Area Figure 3. Actions of Hunter and prey

in a figure 2 where a hunter look at a prey in its area 4. There are 9 actions in the problem
as shown in a figure 3: 8 directions and stay. For example, when a hunter stands at a
center and a prey stands at the left upper corner, the hunter can select one of 9 actions.
However, the prey can’t move up or left any more because of the field boundary and can
select one of 5 choices'.

Let us summarize the movement of the agent:

(a) put a hunter and a prey in a space initially.

(b) aprey perceives a hunter and selects an action.

(c) ahunter perceives a prey and selects an action.

(d) both get rewards according to their results.

(e) aprey perceives a hunter and learn.

(f) a hunter perceives a prey and learn.

(g) if a hunter captures a prey, go to (a). Go to (b) otherise. We keep utilizing both the
Q-values and the Kalman gain in any case.

In our proposed method, if the hunter has moved a certain number, but has not been
able to catch the prey, hunter perform RAL. Let us note a certain number is hyperprame-
ter and equal the number that hunter can perform reverse action. Let us describe the flow
during RAL:

(a) a hunter perceives a prey and selects an action.
(b) a prey perceives a hunter and selects an action.
(c) ahunter and a prey get rewards.

(d) a hunter perceives a prey and learn.

(e) a prey perceives a hunter and learn.

5.2. Preliminaries

Here we mention our experimental results to see how well our approach works. We
examine a Hunter Prey problem with one hunter and one prey. We discuss two cases in
which the prey dose not learn and prey learns. In each case, hunter learns with e-greedy
(comparison method 1), QLKF (comparison method 2), and QLRKF (proposed method)

IThe prey can select one of right, right down, down and stay.

K. Takahata and T. Miura / Q-Learning as Failure 349

and evaluates. We evaluate the number of capture steps. We consider that the number of
capture steps indicates the quality of knowledge, and that the smaller the number of steps
being better learning method.

When the hunter learns with QLKF (comparison method 2) and QLRKF (proposal
method), the hunter uses a Kalman filter that estimates the position of the prey. The
hunter takes an action aproaching the estimated position by KF with probability €.

The field consists of a continuous 2D space [0, 1] x [0, 1]. In the learning process, we
assume the distance of 0.8 between the two agents initially, and the prey can be captured
within distance p = 0.1. The reward 100 is given to the hunter when the hunter captures
the prey, and -1 otherwise. Hunters receive a reward of 1 during RAL by our proposed
method. Note this reward is the reverse of normal learning. The hunter performes RAL
on condition that the hunter do not captures the prey. Therefore, we do not consider the
reverse reward at capture. On the contrary, the prey gets the reward -80 when the prey is
captured and 1 otherwise. As well as the hunter, the prey receive a -1 reward during the
hunter performes RAL by our proposed method.

Here we assume o = 0.1 (learning rate) and Y = 0.9 (discount rate) of QL for both
agents. And we assume € = 0.1 for both agents. We set the number that holds P,_; of our
proposed method to 50.

For KF processing, we initialize covariance matrices: Py = 10* a covariance matrix
of state estimation error, Vy = 0.05/ a covariance matrix of process noises and 0.9 x
0.999/earningcount 4 covariance matrix of observation noises. We set the covariance matrix
of the observation noise as 0.9 x 0.999earningcount g that the error decreases as the
number of learning increases.

When a hunter likes to estimate the next state x;11,y;+ of the prey at time ¢t by KF,
it observes the state x;,y, of the prey by position sensors. Let us note the hunter estimates
the current state using the previous observation using KF framework with process noise
V; and observation noise W; like a state equation 3 and an observation equation 4:

x+1) (10 X 10 hvy 10
Go) =GN G)-@))G @
X 10\ [x
()= (0) Gr) @

Here hvy, hvy, represent velocity of the hunter at time .

5.3. Evaluation Criteria

Let us discuss evaluation criteria, and capturing process. First in this experiment, we
say one step when both agents take every actions (behaviors), and one interval for 100
steps. This means, during one interval in the learning process, the hunter learns (updates
Q-values) 100 times. We also say one episode for 100 intervals, or equivalently 10,000
steps. We examine a capturing steps in every interval. We initialize Q-values at the be-
ginning of each episode (10,000 steps). We examine 10 episodes for every experiment
and take the average steps for capturing of 10 episodes.

350 K. Takahata and T. Miura / Q-Learning as Failure

g

g
g

g
&

g
g

g

required capturing
8

required capturing

g
g

Average number of movements
Average number of movements

- =AARETLNDY - =AARETLNDY

]
o

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Learning count Learning count

Figure 4. Relationship between learning count Figure 5. Relationship between learning count
and capture step number (When only hunter is and capture step number (When both hunters and
learning) prey are learning)

In this experiment, we examine both learning and capturing processes in an inter-
leaved manner. That is, we do learning in one interval then capturing the prey 10 times
using the Q-values, and we continue learning further. At each interval, we stop learning
and execute the capturing: the hunter chases the prey 10 times. Everytime we take counts
of the steps” until the hunter captures the prey, and take an average count as capturing
step of this interval. The chasing manner in the capturing process is the same as in the
learning process. However, during the capturing process of our proposed method, the
hunter does not take a reverse action, and take an action based on QLKF. That is, when
learning with e-greedy during learning process, the capturing process is also &-greedy.
(Hereafter, in the case of an agent takes an action based on €-greedy, we denote as QL.)

Note that we should have some discussion of how to evaluate results of learning
and capturing. Clearly the smaller steps we need for capturing, the better knowledge
we have. Also, the less steps we need to get convergence (described later), the better
parameters we have for learning. The former concerns about capturing quality while the
latter about learning efficiency. Then we also introduce a notion of harmonic average h
as a combined criteria of both learning and capturing where & =2pq/(p+¢q), 1 p means
a earning step and g a capturing step. The less & goes, the better performance we have.

5.4. Results

In tables 1 and 2, we show the results of capturing steps depending on “who learn by
QL, QLKF and QLRKF”. We also illustrate overviews of the tables in figures 4 and 5
respectively.

2Up to 1,000 steps.

Table 4. Harmonic Average (only Hunter learned)

K. Takahata and T. Miura / Q-Learning as Failure

351

Table 5. Harmonic Averages(Both learned)

Learning QL QLKF | QLRKF
100 169.1 163.3 162.9
500 5222 | 4743 406.5
1000 617.2 | 491.8 476.3
1500 561.3 | 4469 486.4
2000 4295 | 5169 3514
2500 559.2 | 614.2 209.7
3000 508.7 | 454.3 337.7
3500 521.7 | 490.6 268.1
4000 344.1 230.2 298.3
4500 332.1 169.9 286.4
5000 266.8 152.0 232.1
5500 188.7 | 207.4 171.1
6000 141.8 196.4 182.7
6500 177.9 92.1 185.1
7000 113.8 82.1 86.6
7500 126.5 58.6 101.9
8000 106.8 65.6 75.6
8500 107.6 46.5 56.5
9000 147.7 54.3 78.9
9500 80.2 41.5 51.8

10000 135.3 41.6 80.6

(Average) | 310.2 240.6 213.9

(StdDev) 184.5 178.0 127.0

Leaning QL QLKF | QLRKF
500 537.7 | 456.2 371.6
1000 507.9 | 426.8 239.8
1500 737.0 | 311.7 248.2
2000 688.4 | 124.6 228.2
2500 580.1 | 282.6 177.6
3000 503.3 | 2384 148.0
3500 307.3 | 139.5 97.5
4000 24277 135.6 67.3
4500 209.8 71.1 69.8
5000 232.6 | 1343 76.8
5500 190.3 62.6 58.2
6000 174.6 61.3 63.0
6500 140.6 60.8 63.8
7000 165.2 61.2 59.4
7500 118.1 61.4 64.7
8000 263.6 59.2 70.1
8500 305.9 58.6 60.0
9000 292.2 60.8 54.2
9500 180.2 63.5 66.1

10000 83.8 60.6 54.4
(Average) | 311.2 148.5 125.6
(StdDev) | 185.0 | 1264 94.2

Table 1. Capturing Steps (only Hunter learned)

Table 2. Capturing Steps (Both learned)

Learning QL QLKF | QLRKF
500 546.4 | 451.1 342.4
1000 446.3 | 326.1 312.6
1500 3452 | 262.6 290.2
2000 240.6 | 296.8 192.6
2500 314.8 | 350.1 109.4
3000 2779 | 245.8 178.9
3500 2819 | 263.8 139.4
4000 179.8 118.5 154.9
4500 172.4 86.6 147.9
5000 137.1 77.1 118.8
5500 96.0 105.7 86.9
6000 71.8 99.8 92.7
6500 90.2 46.4 93.9
7000 57.4 41.3 43.6
7500 63.8 29.4 51.3
8000 53.7 329 38.0
8500 54.1 233 28.4
9000 74.5 27.2 39.6
9500 40.3 20.8 26.0
10000 68.1 20.8 40.5

Learning QL QLKF | QLRKF
500 581.7 | 4194 295.6
1000 3404 | 2713 136.2
1500 488.5 173.9 1353
2000 415.7 64.3 121.0
2500 328.2 149.8 92.0
3000 274.7 124.2 75.9
3500 160.7 71.2 494
4000 125.2 68.9 34.0
4500 107.4 35.8 35.2
5000 119.1 68.1 38.7
5500 96.8 31.5 29.2
6000 88.6 30.8 31.7
6500 71.1 30.5 32.1
7000 83.6 30.7 29.9
7500 59.5 30.8 325
8000 134.0 29.7 352
8500 155.8 29.4 30.1
9000 148.5 30.5 27.2
9500 91.0 31.9 332
10000 42.1 304 27.3

352 K. Takahata and T. Miura / Q-Learning as Failure

Table 3. Total number of Capturing Steps

Learning QL QLKF QLRKF
(only Hunter learned) | 19467 | 14916(0.77) | 12695(0.65)
(Both learned) 19868 | 9308(0.47) 7806(0.39)

It is clear that our proposed approach (QLRKF) outperforms the comparison meth-
ods (QL, QLKF), ie, we have less steps (the better efciency). A table 3 contains the com-
parison of capturing steps in QL, QLKF, QLRKF cases. In the total number of capturing
steps of only Hunter learned, we see an improvement by using QLRKF during learning
process to 65% than QL, and 85% than QLKF. As for the case of both hunter and prey
learned, we see an improvement to 40%(QL) and 84%(QLKF).

Let us illustrate the detailed comparison using the harmonic averages in tables 4 and
5. In the averages of only Hunter learned, QLRKF becames to 75% of QL and 97% of
QLKEF. As for the case of both hunter and prey learned, QLRKF becames to 40%(QL)
and 85%(QLKF). Let us see the result the standard deviation of the harmonic averages. In
the standard deviation of only Hunter learned, we see an improvemed to 70%. Moreover,
as for the case of both hunter and prey learned, we see an improvement to 50% than QL
and 75% than QLKEF. This result means that learning progresses stably.

5.5. Discussion

We change the number of times that the hunter can perform revers actions with QLRKF
to 20, 50, and 80, and examine the results of capturing steps. In tables 6 and 7, we show
the results of capturing steps. We also illustrate overviews of the tables in figures 6 and
7 respectively. Let us compare the total number of capturing steps to 50 times and the
others(20, 80 times). When the prey does not learn, it deteriorates to 120% in the case
of the hunter perform RAL 20 times, and improves to 75% in the case of the learning is
80 times. As for the case of both hunter and prey learned, it deteriorated to 220% in the
case of 20 times, and improved to 93% in the case of 80 times. We see that our process
goes better everytime.

600
w 500 2
2 £
€ as0
£ —20 g 50
400

S w -
3 £ 350 g 5 400
£ 3 s 2
w B 300 | orfgky e s g
°m = 35300
= U 250 3o
47 EE
£ 8200 E = 200

- 3 3
3 3150 ey
c o o 2
& = 100 o %~ 100
© YNE ey H
§ 50 s T=vnen H 0
g DR ARl B
E 0 =

0 2000 4000 6000 8000 10000

0 2000 4000 6000 8000 10000 i
Learning count

Learning count

Figure 6. Capturing Steps with respect to the Figure 7. Capturing Steps with respect to the
number of RAL (only Hunter learned) number of RAL (Both learned)

K. Takahata and T. Miura / Q-Learning as Failure 353

Table 6. Capturing Steps with respect to the number of ~ Table 7. Capturing Steps with respect to the number of

RAL (only Hunter learned) RAL (Both learned)

Learning 20 50 80 Learning 20 50 80
500 340.87 | 255.06 | 317.13 500 280.8 295.63 | 234.62
1000 222.79 | 33142 | 302.41 1000 324.7 136.22 | 165.73
1500 248.24 | 321.37 | 274.67 1500 284.99 | 135.28 | 107.87
2000 217.9 231.54 | 200.91 2000 162.72 | 120.99 | 104.12
2500 195.94 | 197.54 | 124.38 2500 195.17 92.05 100.71
3000 189.51 162.41 198.83 3000 98.18 75.89 42.75
3500 205.96 | 255.78 97.06 3500 124.92 | 49.44 34.61
4000 157.18 | 13594 | 71.78 4000 195.77 33.96 32.73
4500 173.24 | 166.76 | 64.27 4500 98.25 35.18 35.22
5000 147.86 | 99.51 83.88 5000 126.89 38.71 83.36
5500 112.45 59.87 39.15 5500 84.8 29.23 344
6000 165.12 82.91 26.41 6000 158.09 31.69 33.55
6500 190.25 62.12 23.03 6500 106.94 | 32.08 32.6
7000 21591 71.73 20.62 7000 102.99 29.85 31.17
7500 136.16 | 35.29 21.14 7500 301.55 32.48 29.73
8000 180.38 34.06 21.15 8000 17892 | 35.21 29.42
8500 52.85 26.38 20.57 8500 64.19 30.1 31.41
9000 76.67 24.82 21 9000 316.93 27.18 30.14
9500 94.36 21.37 20.4 9500 135.52 33.18 26.17

10000 56.83 22.29 19.39 10000 172.26 | 27.26 25.55
Table 8. Harmonic Averages with respect to the num- Table 9. Harmonic Averages with respect to the num-
ber of RAL (only Hunter learned) ber of RAL (Both learned)

Learning 20 50 80 Learning 20 50 80
500 405.4 | 337.8 | 388.1 500 359.6 | 371.6 | 3194
1000 3644 | 497.8 | 464.4 1000 490.2 | 239.8 | 2843
1500 426.0 | 529.3 | 464.3 1500 479.0 | 248.2 | 201.3
2000 393.0 | 415.0 | 365.1 2000 301.0 | 2282 | 197.9
2500 363.4 | 366.1 | 237.0 2500 362.1 | 177.6 | 193.6
3000 356.5 | 308.1 | 3729 3000 190.1 | 148.0 84.3
3500 389.0 | 476.7 | 188.9 3500 2412 | 975 68.5
4000 302.5 | 2629 | 141.0 4000 3733 67.3 64.9
4500 333.6 | 321.6 | 126.7 4500 192.3 69.8 69.9
5000 287.2 | 195.1 | 165.0 5000 247.5 76.8 164.0
5500 2204 | 1185 77.7 5500 167.0 | 58.2 68.4
6000 3214 | 163.6 | 52.6 6000 308.1 63.0 66.7
6500 369.7 | 123.1 459 6500 2104 | 63.8 64.9
7000 4189 | 142.0 | 41.1 7000 203.0 | 594 62.1
7500 267.5 70.2 422 7500 579.8 64.7 59.2
8000 352.8 67.8 422 8000 350.0 | 70.1 58.6
8500 105.0 | 52.6 41.0 8500 1274 | 60.0 62.6
9000 152.0 | 495 41.9 9000 612.3 542 60.1
9500 186.9 | 42.6 40.7 9500 267.2 | 66.1 52.2

10000 113.0 | 445 38.7 10000 338.7 544 51.0

(Average) | 297.1 | 235.0 | 165.7 (Average) | 296.0 | 125.6 | 1164

(StdDev) 100.1 | 1514 | 1435 (StdDev) 1264 | 942 100.4

354 K. Takahata and T. Miura / Q-Learning as Failure

Let us illustrate the detailed comparison using the harmonic averages in tables 8 and
9. Similar to the total number of capturing steps, we compare in the case of 50 times
and the others. In the case of only Hunter learned, it deteriorates to 126% in the case
of 20 times, and improves to 70% in the case of the learning is 80 times. As for the
case of both hunter and prey learned, it deteriorated to 235% in the case of 20 times,
and improved to 92% in the case of 80 times. From these results, it can be seen that
the more times the RAL can be performed, the better the results. Let us see the result
the standard deviation of the harmonic averages. In the case of only Hunter learned, the
standard deviation is 66% with 20 times, and 94% with 80 times. As for the case of both
hunter and prey learned, the standard deviation is 134% with 20 times, and 106% with
80 times. Therefore, we cannot say that the standard deviation is affected by the number
of RAL.

6. Conclusion

In this work, we have proposed a new method for reverse action by using Retrospective
Kalman Filter that estimates the state one step before. In the total number of capturing
steps of only Hunter learned, we see an improvement by using QLRKF during learning
process to 65% than QL, and 85% than QLKEF. As for the case of both hunter and prey
learned, we see an improvement to 40% than QL and 84% than QLKEF. In the the arith-
metic averages of the harmonic averages of only Hunter learned, we see an improveme-
ment by using QLRKF during learning process to 75% than QL, and 97% than QLKF.
Moreover, as for the case of both hunter and prey learned, we see an improvement to
40% than QL and 85% than QLKF.

References

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cam-
bridge: MIT press, 1998.
[2] Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore. “Reinforcement Learning: A Survey.”
CoRR ¢s.AI/9605103 (1996)
[3] Hado van Hasselt. “Double Q-learning.” NIPS 2010: 2613-2621
[4] Marco A, Wiering, and Hado van Hasselt. “Ensemble Algorithms in Reinforcement Learning.” IEEE
Trans. Systems, Man, and Cybernetics, Part B 38(4): 930-936 (2008)
[S] Vukosi Ntsakisi Marivate, Michael L. Littman. “An Ensemble of Linearly Combined Reinforcement-
Learning Agents.” AAAI (Late-Breaking Developments) 2013
[6] Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems 3rd Edition. 2002.
[71 Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, Sergey Levine. “Leave no Trace: Learning to Reset for
Safe and Autonomous Reinforcement Learning.” CoRR abs/1711.06782 (2017)
[8] Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine learning 8.3-4 (1992): 279-292.
[9] Kei Takahata, Takao Miura. “Reinforcement Learning using Kalman Filters.” IEEE International Con-
ference on Cognitive Informatics and Cognitive Computing(ICCICC) 2019
[10] Takadama, K.:MultiAgent Learning, Corona-Sha, 2004 (in Japanese)
[11] Adati, S. and Maruta, I. : Fundamentals of Kalman Filter, Tokyo Denki University Press, 2012 (in
Japanese)
[12] Takehiro Kitao, Masato Shirai, and Takao Miura: “Model Selection Based on Kalman Temporal Differ-
ences Learning.” CIC 2017: 41-47
[13] Matthieu Geist, Olivier Pietquin: “Kalman Temporal Differences.” J. Artif. Intell. Res. 39: 483-532
(2010)

