
A Natural Logic System for Large
Knowledge Bases

Troels ANDREASEN a, Henrik BULSKOV a and Jørgen FISCHER NILSSON b

a Computer Science, Roskilde University, Denmark, {troels, bulskov}@ruc.dk
b Mathematics and Computer Science, Technical University of Denmark,

Denmark, jfni@dtu.dk

Abstract. This paper describes principles and structure for a software
system that implements a dialect of natural logic for knowledge bases.
Natural logics are formal logics that resemble stylized natural language
fragments, and whose reasoning rules reflect common-sense reasoning.
Natural logics may be seen as forms of extended syllogistic logic. The
paper proposes and describes realization of deductive querying function-
alities using a previously specified natural logic dialect called Natura-
Log. In focus here is the engineering of an inference engine employing as
a key feature relational database operations. Thereby the inference steps
are subjected to computation in bulk for scaling-up to large knowledge
bases. Accordingly, the system eventually is to be realized as a general-
purpose database application package with the database being turned
logical knowledge base.

Keywords. Natural Logic, Deductive Querying, Large Logical Knowledge
Bases, Relational Data Base Operations

1. Introduction

In a number of papers [1, 2, 3, 4, 5, 6] we have proposed and analyzed a dialect of
natural logic intended for knowledge base use. Natural logics are forms of formal
logic that appear as stylized fragments of natural language. Therefore, a knowl-
edge base consisting of natural logic sentences can be read and understood right
away by domain specialists without understanding of predicate logic, description
logic or logic programming.

In the applied dialect, called NaturaLog, one can state implicitly quantified
relationships between introduced classes. In particular one can specify formal
ontologies by means of the subclass relationship and partonomies by means of
parthood relations. Moreover, one can introduce relations ad libitum. The natural
logic NaturaLog basically covers a fragment of predicate logic with respect to
expressivity, see also [7, 8, 9, 10, 11, 12]. Natural logics are further distinguished
by their appealing to high level “natural” reasoning rules reminiscent of and
departuring from the elementary reasoning rules known from syllogistic logic.

This paper focusses on the engineering of an appropriate inference engine
serving diverse forms of deductive reasoning and querying. In order to address the

Information Modelling and Knowledge Bases XXXII
M. Tropmann-Frick et al. (Eds.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200824

119

scaling-up problem encountered as computational intractability this paper pro-
poses an inference engine using relational database operations such as selection
and equi-join. Thereby logical consequences of knowledge base sentences are com-
puted and recorded en masse rather than in a conventional stepwise fashion. We
envisage applications e.g within the life-sciences employing quantitative complex
models with thousands of classes structured into ontologies supplemented with a
variety of class-class relations.

The paper is organized as follows: After having introduced NaturaLog in
section 2, section 3 explains how sentences are encoded in a relational data base
relation, and section 4 describes realization of the inference engine by computing
and storing of relevant parts of the deductive closure using relational database
query operations. Section 5 covers implementation and section 6 covers query
issues.

2. The NaturaLog Natural Logic

Our natural logic comprises sentences that specify relationships between stated
classes of not further described entities. Here we describe a somewhat simplified
version of NaturaLog. For the currently full version we refer to [12]. Classes
of not further described entities are introduced by common nouns such as cell,
betacell, insulin, hormone. In the case of substances such as insulin the entities
of the class may be conceived as portions of such substances.

The key class-class relationship is the well-known subclass relationship isa.
Thus one can form sentences such as betacell isa cell and insulin isa hormone. The
pertinent sentence form C isa D is actually a shorthand of every C isa D. This is
reminiscent of affirmative categorical sentences in syllogistic logic, cf. [2].

This sentence form is actually a special case of the more general NaturaLog
key sentence form

every C R D
where R is a linguistically transitive verb (or more generally a verb form) des-
ignating a binary relation. This is exemplified by the sentence every betacell pro-
duce insulin. Again, the determiner every is optional: betacell produce insulin is
shorthand of every betacell produce insulin.

There is also the NaturaLog form
some C R D

in which presence of the determiner some is made mandatory.
These natural logic sentence forms have predicate logical construals: [every]

betacell produce insulin in predicate logic becomes the rather incomprehensible
∀x(betacell(x) → ∃y(produces(x,y) ∧ insulin(y))), and in description-logical be-
comes the obscure betacell � ∃produces.insulin. The sentence insulin isa hormone
is explicated simply as ∀x(insulin(x) → hormone(x)). The subclass relation isa is
equipped with built-in rules yielding reflexivity and transitivity.

NaturaLog adopts existential import, meaning that for each mentioned
class C there is implicitly what in a predicate logical construal appears as the
existential statement ∃xC(x), see for instance [2, 11, 12]. As a consequence, there
is no notion of empty class in our natural logic. Two classes are assumed disjoint

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases120

if they have no common subclass. Introduction of a common subclass makes the
two classes overlapping, since their common subclass is bound to be non-empty.
Thus classes at the outset are disjoint. This is in accord with the common default
principle for scientific taxonomies and formal ontologies. We refer to [2, 12] for
further discussion of the rationale.

NaturaLog in addition to simple classes designated by common nouns im-
portantly affords compound terms comprising modifiers that restrict classes to
subclasses. For instance, the sentence [every] cell that produce hormone reside-in
gland comprises the compound term cell that produce hormone consisting of the
class cell attributed the modifier that produce hormone linguistically in the form
of a restrictive relative clause that R D. The compound term cell that produce
hormone thereby designates a subclass of cell. This conforms with the notion of
generative ontologies introduced in [13] reflecting the recursive structure of the
attached modifiers for generating evermore specialized subclasses.

To this end let us specify the recursively defined syntactic notion of compound
concept terms:

A concept term Cterm is a class name C as introduced above, optionally af-
fixed a modifier taking form of either
– a restrictive relative clause that R Cterm, where R is a verb form, or
– a prepositional phrase R Cterm, where R is a preposition here also desig-
nating a binary relation.

Compound modifiers may further be combined by means of logical conjunc-
tion in NaturaLog as introduced in [12].

An essential aspect of natural logic is the provision of inference rules reflect-
ing direct “natural” reasoning on the linguistic forms in sentences. It is important
to stress that the computational reasoning enabling deductive querying is accom-
plished directly on natural logic forms and thus are not conducted by reduction to
predicate logic. This is detailed in section 4. As a preliminary step we explain how
NaturaLog sentences are represented in a database relation.

3. Encoding of Natural Logic in Data Base Relations

The NaturaLog sentences are to be represented in a database relation forming
the knowledge base. In the simple sentences with no compound terms this is done
straightforwardly in principle with tuples such as,

kb(..., every, betacell, produce, insulin)
for the sentence [every] betacell produce insulin. The tuple is stored in a relation
kb and specifies values for attributes QUANT, SUB, REL, OBJ. However, to distin-
guish given sentences from derived and to separate propositions from definitions
two additional attributes MODE and TYPE are added such that the full schema
for the kb relation becomes:

kb(MODE, TYPE, QUANT, SUB, REL, OBJ)
where MODE can take the values given and deriv, TYPE can take the values prop
and defin and QUANT is either every or some.

Sentences with compound terms are decomposed into simple sentences fol-
lowing the methods detailed in [2, 6, 12], that is, by introduction of appropri-

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 121

ate auxiliary class names representing the compound terms. As an example, the
above sentence cell that produce hormone reside-in gland gives rise to the auxiliary
class name cell-that-produce-hormone which has to be defined by two additional
propositions, labeled “defin”, giving altogether three propositions, that is, three
database tuples

cell-that-produce-hormone glandreside_in

cell hormone

produce

Figure 1. Example graph including three sentences

The sentences included in the graph in figure 1 will be represented by the
following tuples in the kb-relation:

kb(given, defin, every, cell-that-produce-hormone, isa, cell)
kb(given, defin, every, cell-that-produce-hormone, produce, hormone)
kb(given, prop, every, cell-that-produce-hormone, reside-in, gland)

Notice that in the graph notation unlabelled arrows represent isa. The definitional
contributions are logically explicated as “if-and-only-if”:

∀x(cell-that-produce-hormone(x) ↔ cell(x)∧producehormone(x))
This reduction of recursive compound terms serves easing and streamlining of the
computation of inference and query answers.

4. Inference through Data Base Query Operations

Let us begin considering a tiny natural logic knowledge base containing solely the
two sentences betacell produce insulin and insulin isa hormone. Suppose we wish
to know which kind of cells that produce hormone giving this information. To
this end we might form the parameterized “query” sentence X produce hormone,
aiming at obtaining answers as instantiation of the parameter variable X. How-
ever, no answer is obtained. This is because the common-sense expected answer
X = betacell necessitates the introduction of inference rules capable of combin-
ing information in sentences according to logical consequence principles in the
computation.

In [6, 12] we devised a collection of deductive inference rules for decomposed
and encoded NaturaLog sentences in a knowledge base. The rules are specified
in Datalog. This means that Datalog functions as a metalogic for Natura-
Log, where also various forms of deductive querying are stated. Here, instead of
Datalog we apply an ordinary relational database query language. The derived
sentences are added to the database relation kb. In this way the query-relevant
part of the deductive closure is materialized in a iterative pre-compilation in-
volving the knowledge base in its entirety. In the course of this computation new
compound terms being potentially relevant to queries are generated. This implies
that subsequent deductive query answer computations reduce to mere sentence

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases122

retrieval from the knowledge base now being extended with materialized inferred
propositions. For instance, for the above example with just two sentences, the
inference engine adds the encoded form of the deduced sentence betacell produce
hormone using the generalization monotonicity rule (5) described below.

This approach to computation replaces the common goal-driven top-down
approach to derivations, known e.g. from logic programming, with a bottom-up
pre-computation with caching drawing on the entire knowledge base. Thereby,
backtracking computation is avoided at the expense of deriving sentences being
irrelevant to the queries at hand. Thus time-consuming query reasoning is traded
for compile-time computation of the deductive closure and storage use.

As indicated above, the inference engine is a mechanism that iteratively ma-
terializes (adds) new tuples to the kb relation by application of the inference rules.
The NaturaLog inference rules are presented below along with examples of in-
ferred propositions, that is, tuples that can be inferred from other tuples in the
kb relation. The result of adding all propositions that can be inferred is a limited
deductive closure of the knowledge base. For practical purposes this computation
should not be performed tuple by tuple. Section 5 exemplify how materialization
of inferred tuples can be performed using SQL bulk insertions.

4.1. Weakening and Dual Relationship

As mentioned in section 2, all classes are non-empty (due to existential import),
and therefore we have that any default every proposition can be weakened to a
some proposition. This is expressed in the weakening rule:

every C R D

some C R D
(1)

allowing to make derivations such as:

kb(given, prop, every, betacell, produce, insulin)
kb(deriv, prop, some, betacell, produce, insulin)

Mathematically, each relation R possesses an inverse relation R−1. Therefore,
for strictly logical reasons and given our pervasive principle of non-empty con-
cepts, for C R D (i.e. every C R some D) implicitly, as explained in chapter [12],
we also have the dual

some D R−1 some C
Dual relations need to be explicitly specified in the knowledge base. For this
purpose we introduce a database relation inv with the schema:

inv(R, Rinv)
Using this we can e.g. specify produced by to be the inverse of produce:

inv(produce, produced by)
The rule expressing the existence of an inverse is the following:

some C R D

some D Rinv C
(2)

where Rinv is the inverse relation to R. As an example we have:

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 123

kb(given, prop, some, betacell, produce, insulin)
kb(deriv, prop, some, insulin, produce by, betacell)

Notice that relation inversion linguistically corresponds to active-to-passive voice
switching as covered in more detail in [12].

The weakening (1) and the dual relationship (2) rule in combination implies:

C R D

some D Rinv C
(3)

An example of application of this rule is:

kb(given, prop, every, betacell, produce, insulin)
kb(deriv, prop, some, insulin, produce by, betacell)

Observe that for the copula isa we have inv(isa, isa).

4.2. Monotonicity Deduction Rules

A query task appeals implicitly to appropriate deduction rules. This is because
a query normally involves propositions that are deducible from the ones given
explicitly in the knowledge base. As an example, given the knowledge base propo-
sitions insulin isa hormone and betacell produce insulin, the query

X produce hormone
would intuitively yield X = betacell (with multiple answers to be expected in a
more comprehensive knowledge base). This is achieved by means of a pair of logical
deduction rules known as monotonicity rules in natural logic [7], the inheritance
and the generalization rule, which can be stated as follows:

Csub isa C C R D

Csub R D
(4)

C R D D isa Dsuper

C R Dsuper
(5)

examples of application of these rules are:

kb(given, prop, every, pancreas, isa, gland)
kb(given, prop, every, gland, produce, hormone)

kb(deriv, prop, every, pancreas, produce, hormone)

kb(given, prop, every, betacell, produce, insulin)
kb(given, prop, every, insulin, isa, hormone)

kb(deriv, prop, every, betacell, produce, hormone)

The rules are illustrated in figure 2. The inheritance rule provides inheritance to
all sub-concepts of a concept C, while the generalization rule admits generalization

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases124

(a) (b)

Figure 2. Monotonicity rules: (a) inheritance and (b) generalization. Dashed relations are
inferred.

of an ascribed property. Notice that the monotonicity rules provide transitivity
of isa with the relation R being isa.

The two monotonicity rules above apply to the form every C R D. The logic
calls for corresponding rules to the form some C R D.
Recalling existential import, we get an overlap rule:

every C isa D1 some C isa D2
some D1 isa D2

(6)

as well as negative sentences:

�	 some C R D

no C R D
(7)

As a special case we get the non-overlap rule where R=isa:

�	 some C isa D

no C isa D
(8)

The negative conclusions obtained in rules 7 and 8 by means of negation by
non-provability are not added to knowledge base.

4.3. Subsumption

The presence of if-and-only-if definitions in the knowledge base, indicated by the
use of definitions for compound terms, calls for the following subsumption rule:

D isa D1
⊗

D R D2 C isa D1 C R D2
C isa D

(9)

where
⊗

indicates the compound term definition as in the decomposition of the
form D isa D1 that R D2. The rule is shown in graph form in figure 3(a). This
subsumption rule yields a derived concept inclusion proposition depicted as a
dashed arc in figure 3. Due to the if-and-only-if definition of D, it holds that for
any concept X such that X isa D1 and X is R related to D2 we must have that X
isa D.

An example of application of this rule is :

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 125

(a)
�

�

�

�� ��

�

�

(b)

����������
	
��
�����������

���� �������

�������

��������

�������

Figure 3. The subsumption rule with an example. Dashed relations are inferred.

kb(given, defin, every, cell-that-produce-insulin, isa, cell)
kb(given, defin, every, cell-that-produce-insulin, produce, insulin)

kb(given, prop, every, betacell, isa, cell)
kb(given, prop, every, betacell, produce, insulin)

kb(deriv, prop, every, betacell, isa, cell-that-produce-insulin)

this example is also shown in graph form in figure 3(b)

4.4. Materialization of New Concepts

All concepts potentially contributing to the answer of a query are to be made
explicit in the knowledge base. To achieve this, we now introduce materialization
inference rules for integrating new concepts. For instance, from cell and produce
and hormone we can construct the constant cell-that-produce-hormone. We dis-
tinguish two materialization cases for pairs of definitional arcs and for pairs of
non-definitional arcs. The following rule take care of pairs of definitional arcs.

A isa B
⊗

A R C C isa D

〈B-that-R-D〉 isa B
⊗ 〈B-that-R-D〉 R D A isa 〈B-that-R-D〉 (10)

Where B-that-R-D is a new concept positioned as illustrated in figure 4 that also
includes a concrete example where the materialized concept is cell-that-produce-
hormone. Observe that in the graph rendition pairs of definitional arcs, unlike
non-definitional arcs, meet in their starting points.

An example of tuples inferred by materialization for definitional arcs is the
following:

kb(given, defin, every, betacell, isa, cell)
kb(given, defin, every, betacell, produce, insulin)

kb(given, prop, every, insulin, isa, hormone)
kb(deriv, defin, every, cell-that-produce-hormone, isa, cell)

kb(deriv, defin, every, cell-that-produce-hormone, produce, hormone)
kb(deriv, prop, every, betacell, isa, cell-that-produce-hormone)

For the case of non-definitional arcs of concepts we have the following rule.

C isa D C R E

〈D-that-R-E〉 isa D
⊗ 〈D-that-R-E〉 R E C isa 〈D-that-R-E〉 (11)

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases126

(a)
A

B

C

R

D

(b)
A

B

C

R

B-that-R-D

D

R

(c)
betacell

cell

insulin

produce

cell-that-
 produce-hormone

hormone

produce

Figure 4. Materialization from definitional arcs with example. New concepts B-that-R-D
and cell-that-produce-hormone

The rule is shown in graph form in figure 5, that also includes an example. The
materialized concepts in the figure are D-that-R-E and cell-that-produce-insulin re-
spectively. The example in figure 5 in inferred database tuple form is the follow-
ing.

kb(given, prop, every, betacell, isa, cell)
kb(given, prop, every, betacell, produce, insulin)

kb(deriv, defin, every, cell-that-produce-insulin, isa, cell)
kb(deriv, defin, every, cell-that-produce-insulin, produce, insulin)

kb(deriv, prop, every, betacell, isa, cell-that-produce-insulin)

(a)
C

D E

R

(b)
�

� �

�����������

�

(c)

����������
	
��
�����������

���� �������

������	

��������

������	

Figure 5. Materialization from non-definitional arcs with example. New concepts are
D-that-R-E and cell-that- produce-hormone

5. Implementation of the Inference Rules by means of Data Base Querying

Execution of queries in a system consisting of a knowledge base and a set of
inference rules as presented in the previous section, can be prohibitively ineffective
if these rules must be applied while evaluating the queries. Instead, as a preprocess
before querying, the knowledge base can be extended with the relevant deductive
closure, i.e. assertion of all the expressions that can be inferred from the set of
inference rules over that base.
Given the following SQL definition of the database schema to represent the knowl-
edge base kb and the inverse relations inv

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 127

CREATE TABLE kb(
mode TEXT,-- 'given' or 'deriv[ed]'
type TEXT, -- 'prop[osition]' or 'defin[ition]'
quant TEXT, -- 'every' or 'some'
sub TEXT, -- subject
rel TEXT, -- relation
obj TEXT -- object

);

CREATE TABLE inv(
rel TEXT, -- relation
invrel TEXT -- inverse relation

);

the deductive closure of the knowledge base kb can be achieved by insertion of all
the new tuples that can be inferred from existing tuples using the inference rules,
as shown in the previous section.
For the monotonicity rule (4)

Csub isa C C R D

Csub R D

the following SQL statement inserts all tuples inferred from the tuples in kb

INSERT INTO kb(
SELECT 'deriv', 'prop', 'every', kb1.sub, kb2.rel, kb2.obj
FROM kb AS kb1, kb AS kb2
WHERE kb1.rel = 'isa'
AND kb1.obj = kb2.sub);

And for the subsumption rule (9)

D isa D1
⊗

D R D2 C isa D1 C R D2
C isa D

the following SQL statement inserts all tuples inferred from the tuples in kb
excluding the cases where D is equal to C and D1 is equal to D2.

INSERT INTO kb(
SELECT 'deriv', 'prop', 'every', p1.sub, 'isa', d1.sub
FROM kb AS d1, kb AS d2, kb AS p1, kb AS p2
WHERE d1.rel = 'isa'
AND d1.type = 'defin'
AND d1.sub = d2.sub
AND d1.obj <> d2.obj
AND d2.type = 'defin'
AND p1.rel = 'isa'
AND p1.sub = p2.sub
AND p1.obj = d1.obj
AND p1.sub <> d1.sub
AND p2.obj = d2.obj
AND d2.rel = p2.rel);

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases128

The remaning inference rules can likewise be expressed as insertion statements.
Note, that the insert statements also must take into account not adding tuples
that are already present in kb, which is left out here for clarity.
Assuming a set of functions that extends the knowledge base if the inference rules
can be applied, for instance, the function monotonicity rules() to apply the two
monotonicity rules. An simplistic algorithm applying all the inference rules until all
possible inferences are asserted into the knowledge base would look:

LOOP
count <- SELECT COUNT(*) FROM kb;
EXECUTE inverse rule();
EXECUTE monotonicity rules();
EXECUTE subsumption rule();
EXECUTE materialization rules();

WHILE count <> SELECT COUNT(*) FROM kb;

Applying this algorithm on the knowledge base in figure 6 will recursively assert all
inferred tuples. The first rule to be executed in the algorithm is the inverse rule which
add all the inverse edges to the knowledge base as shown in figure 7, where the dotted
lines represent the inverted relations in the form some D R−1 some C to distinguish
from the every form. In the rest of the example figures in this section the inverted edges
are left implicit for clarity.

���������

����

��	���
�

��

���

�
�

��

��������

�������

��

���

Figure 6. Knowledge base with given propositions

alphacell

cell

glycagon

produceproduced_by

hormone

betacell

insulin

produce produced_by

Figure 7. Applying the dual relationship rule on the knowledge base from figure 6

Figure 8 shows the result of running one iteration of the algorithm (omitting dual propo-
sitions) where the monotonicity rules add the two tuples

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 129

kb(given, prop, every, alphacell, produce, hormone)
kb(given, prop, every, betacell, produce, hormone)

and the materialization rules the following tuples

kb(given, prop, every, cell-that-produce-glycagon, produce, glycagon)
kb(given, prop, every, cell-that-produce-glycagon, isa, cell)
kb(given, prop, every, alphacell, isa, cell-that-produce-glycagon)
kb(given, prop, every, cell-that-produce-insulin, produce, insulin)
kb(given, prop, every, cell-that-produce-insulin, isa, cell)
kb(given, prop, every, betacell, isa, cell-that-produce-insulin)

���������

����

��	���
�

��

���

�
�

��

��

���

����
����
��

���
��	���
�

��������

�������

��

���

��

���

����
����
��

���
�������

��

�����

���

Figure 8. The first iteration of the algorithm (dual propositions omitted)

The first iteration adds in total eight new tuples (plus all the inverted edges) to the
knowledge base, thus the algorithm will continue with another iteration. In this next
iteration the monotonicity rule will add

kb(given, prop, every, cell-that-produce-insulin, produce, hormone)
kb(given, prop, every, cell-that-produce-glycagon, produce, hormone)

and the materialization rules will add one new concept leading to the following tuples

kb(given, prop, every, cell-that-produce-hormone, isa, cell)
kb(given, prop, every, cell-that-produce-hormone, produce, hormone)
kb(given, prop, every, cell-that-produce-insulin, isa, cell-that-produce-hormone)
kb(given, prop, every, cell-that-produce-glycagon, isa, cell-that-produce-hormone)

Here we have shown the first steps of the deductive closure, but the algorithm will
continue executing all the inference rules on the knowledge base until no more tuples
are added.

6. Deductive Querying

Section 4 introduced to the inference rules that apply to a NaturaLog knowledge base
and gave examples of how the rules apply to specific tuples. Section 5 exemplified how
deductive closure corresponding to the given inference rules can be derived through
database updates that iteratively extends the database relation kb by adding new in-
ferred tuples. Below we introduce different types of queries and describe how these can
be evaluated by accessing the kb relation.

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases130

alphacell

cell

glycagon

produce

hormone

produce

cell-that-produce-glycagon

cell-that-produce-hormone

betacell

insulin

produce

produce

cell-that-produce-insulin

produce

produce

produce

produce

produce

Figure 9. The second iteration of the algorithm (dual propositions omitted)

6.1. Concept Querying

A basic query form is an open proposition with one or more free query variables. To pose
a query e.g. ”what produce insulin” the following parameterized NaturaLog sentence
can be used:

X produce insulin
For the knowledge base shown in figure 9 this query would yield {betacell, cell-that-
produce-insulin} as possible instantiations for the variable X. The query X produce hor-
mone would lead to the answer {alphacell, cell-that-produce-glycagon, betacell, cell-that-
produce-insulin, cell-that-produce-hormone}, and the query betacell produce Y would yield
the answer {insulin, hormone}.

Using a variable in the position of the relation provides similarly the possible in-
stantiations. For instance, the query betacell R hormone yields {produce}, while X R
hormone leads to the answer {(glycagon, isa), (cell-that-produce-hormone, produce), (cell-
that-produce-glycagon, produce), (cell-that-produce-insulin, produce), (insulin, isa), (alpha-
cell, produce), (betacell, produce)}.

Expressions for such concept queries with one or more free variables in SQL are
straightforwardly obtained from the proposition form: The first and the last of the
queries mentioned above can be expressed in SQL as follows.

SELECT sub
FROM kb
WHERE rel = 'produce' and obj = 'hormone';

SELECT sub, rel
FROM kb
WHERE obj = 'hormone';

In the examples above we consider the default proposition form every C R D. As
noticed, the indicated closures shown in figures 6, 8 and 9 does not include propositions
derived from the dual relationship rule that take the form some D R−1 C. This is
to avoid cluttering and maintain readability especially in the two last of these figures.
Figure 7, however, includes duals derived from the given propositions in figure 6 and
indicates how the knowledge base expands when closuring also with respect to dual
relationship. For instance the query X R insulin to the knowledge base in figure 7 would
yield, explicating also the quantifier: {(every, betacell, produce), (some, hormone, isa)}.

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 131

The SQL expression to retrieve this would simply be:

SELECT quant, sub, rel
FROM kb
WHERE obj = 'hormone';

6.2. Commonality Querying

One of the more sophisticated query forms that NaturaLog affords is commonality
querying. The commonality for a pair of stated concepts C and D are the properties
they have in common. Considering for instance alphacell and betacell in figure 9 the
commonality would be {(produce, hormone), (isa, cell), (isa, cell-that-produce-hormone)}.
This can be retrieved by the simple SQL expression:

SELECT rel, obj
FROM kb
WHERE quant = 'every' AND sub = 'alphacell';
INTERSECT

SELECT obj
FROM kb
WHERE quant = 'every' AND obj = 'betacell';

However, the most interesting contribution to the answer in this case would be the most
specific part, that is, {(isa, cell-that-produce-hormone)}. This can also be expressed in
SQL in a straightforward manner, such as:

SELECT rel, obj
FROM kb
WHERE quant = 'every' AND sub = 'alphacell';
INTERSECT

SELECT obj
FROM kb
WHERE quant = 'every' AND obj = 'betacell'
GROUP BY obj;
ORDER BY count(*) DESC LIMIT 1;

6.3. Pathway Querying

The entire knowledge base graph forms a road map between all the applied concepts.
The introduction of a universal concept at the top of the ontology ensures that all
concepts are connected. This concept map can be queried by means of dedicated rules
searching pathways in the graph between two stated concepts in the knowledge base.
The pathway querying applies the given sentences suplemented with their duals, ignoring
other derived propositions. A simple example is given in figure 7.

7. Conclusion

In this paper we have described principles and structure for a software system that im-
plements a dialect of natural logic for knowledge bases. This has been done by explaining

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases132

how the various inference rules can be realized by relational database query facilities.
The derived sentences forming a deductive closure are stored so that querying in the
natural logic is conducted as a mere retrieval process. Accordingly, the system is to be
implemented as a general-purpose database application. It remains to be seen whether
the devised database inference engine principles, is a viable approach when scaling-up
knowledge bases.

References

[1] Troels Andreasen, Henrik Bulskov, Per Anker Jensen, and J. Fischer Nilsson. Com-
puting pathways in bio-models derived from bio-science text sources. In Proceedings
of the IWBBIO International Work-Conference on Bioinformatics and Biomedical
Engineering, Granada, April, pages 217–226, 2014.

[2] J. Fischer Nilsson. In pursuit of natural logics for ontology-structured knowledge
bases. In The Seventh International Conference on Advanced Cognitive Technologies
and Applications, 2015. ISBN 978-1-61208-390-2.

[3] Troels Andreasen, Henrik Bulskov, Per Anker Jensen, and J. Fischer Nilsson. A
system for conceptual pathway finding and deductive querying. In Flexible Query
Answering Systems 2015, pages 461–472. Springer, 2015.

[4] Troels Andreasen, Henrik Bulskov, Per Anker Jensen, and J. Fischer Nilsson. Par-
tiality, Underspecification, and Natural Language Processing, chapter A Natural
Logic for Natural-Language Knowledge Bases. Cambridge Scholars, 2017.

[5] Troels Andreasen, Henrik Bulskov, Per Anker Jensen, and J. Fischer Nilsson.
Pathway computation in models derived from bio-science text sources. In
Marzena Kryszkiewicz, Annalisa Appice, Dominik Slezak, Henryk Rybinski, An-
drzej Skowron, and Zbigniew W. Ras, editors, Foundations of Intelligent Systems,
pages 424–434, Cham, 2017. Springer International Publishing. ISBN 978-3-319-
60438-1.

[6] Troels Andreasen, Henrik Bulskov, Per Anker Jensen, and J. Fischer Nilsson. De-
ductive querying of natural logic bases. In Alfredo Cuzzocrea, Sergio Greco, Hen-
rik Legind Larsen, Domenico Saccà, Troels Andreasen, and Henning Christiansen,
editors, Flexible Query Answering Systems, pages 231–241, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-27629-4.

[7] Johan van Benthem. Essays in Logical Semantics, Volume 29 of Studies in Lin-
guistics and Philosophy. D. Reidel, Dordrecht, Holland, 1986.

[8] J van Benthem. Natural logic, past and future. In Workshop on Natural Logic,
Proof Theory, and Computational Semantics, 2011.

[9] Lawrence S. Moss. Syllogistic logics with verbs. J. Log. Comput., 20(4):947–967,
2010.

[10] Ian Pratt-Hartmann and Lawrence S. Moss. Logics for the relational syllogistic.
Review of Symbolic Logic, 2(4):647–683, 2009.

[11] Gyula Klima. Natural logic, medieval logic and formal semantics. MAGYAR
FILOZÃŞFIAI SZEMLE, 54 (4):58–75, 2010.

[12] Troels Andreasen, Henrik Bulskov, and Jørgen Fischer Nilsson. Natural logic knowl-
edge bases and their graph form. Data & Knowledge Engineering, August 2020.
ISSN 0169-023X. doi: https://doi.org/10.1016/j.datak.2020.101848.

[13] Troels Andreasen and J. Fischer Nilsson. Grammatical specification of
domain ontologies. Data Knowl. Eng., 48(2):221–230, 2004. URL
http://dblp.uni-trier.de/db/journals/dke/dke48.html.

T. Andreasen et al. / A Natural Logic System for Large Knowledge Bases 133

